llama-stack/docs/source/distributions/remote_hosted_distro/nvidia.md
Ashwin Bharambe c9e5578151
[memory refactor][5/n] Migrate all vector_io providers (#835)
See https://github.com/meta-llama/llama-stack/issues/827 for the broader
design.

This PR finishes off all the stragglers and migrates everything to the
new naming.
2025-01-22 10:17:59 -08:00

73 lines
2.4 KiB
Markdown

# NVIDIA Distribution
The `llamastack/distribution-nvidia` distribution consists of the following provider configurations.
| API | Provider(s) |
|-----|-------------|
| agents | `inline::meta-reference` |
| datasetio | `remote::huggingface`, `inline::localfs` |
| eval | `inline::meta-reference` |
| inference | `remote::nvidia` |
| safety | `inline::llama-guard` |
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
| telemetry | `inline::meta-reference` |
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::memory-runtime`, `remote::model-context-protocol` |
| vector_io | `inline::faiss` |
### Environment Variables
The following environment variables can be configured:
- `LLAMASTACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
- `NVIDIA_API_KEY`: NVIDIA API Key (default: ``)
### Models
The following models are available by default:
- `meta-llama/Llama-3-8B-Instruct (meta/llama3-8b-instruct)`
- `meta-llama/Llama-3-70B-Instruct (meta/llama3-70b-instruct)`
- `meta-llama/Llama-3.1-8B-Instruct (meta/llama-3.1-8b-instruct)`
- `meta-llama/Llama-3.1-70B-Instruct (meta/llama-3.1-70b-instruct)`
- `meta-llama/Llama-3.1-405B-Instruct-FP8 (meta/llama-3.1-405b-instruct)`
- `meta-llama/Llama-3.2-1B-Instruct (meta/llama-3.2-1b-instruct)`
- `meta-llama/Llama-3.2-3B-Instruct (meta/llama-3.2-3b-instruct)`
- `meta-llama/Llama-3.2-11B-Vision-Instruct (meta/llama-3.2-11b-vision-instruct)`
- `meta-llama/Llama-3.2-90B-Vision-Instruct (meta/llama-3.2-90b-vision-instruct)`
### Prerequisite: API Keys
Make sure you have access to a NVIDIA API Key. You can get one by visiting [https://build.nvidia.com/](https://build.nvidia.com/).
## Running Llama Stack with NVIDIA
You can do this via Conda (build code) or Docker which has a pre-built image.
### Via Docker
This method allows you to get started quickly without having to build the distribution code.
```bash
LLAMA_STACK_PORT=5001
docker run \
-it \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ./run.yaml:/root/my-run.yaml \
llamastack/distribution-nvidia \
--yaml-config /root/my-run.yaml \
--port $LLAMA_STACK_PORT \
--env NVIDIA_API_KEY=$NVIDIA_API_KEY
```
### Via Conda
```bash
llama stack build --template nvidia --image-type conda
llama stack run ./run.yaml \
--port 5001 \
--env NVIDIA_API_KEY=$NVIDIA_API_KEY
--env INFERENCE_MODEL=$INFERENCE_MODEL
```