llama-stack/docs/source/distributions/self_hosted_distro/together.md
Ashwin Bharambe abfbaf3c1b
refactor(test): move tools, evals, datasetio, scoring and post training tests (#1401)
All of the tests from `llama_stack/providers/tests/` are now moved to
`tests/integration`.

I converted the `tools`, `scoring` and `datasetio` tests to use API.
However, `eval` and `post_training` proved to be a bit challenging to
leaving those. I think `post_training` should be relatively
straightforward also.

As part of this, I noticed that `wolfram_alpha` tool wasn't added to
some of our commonly used distros so I added it. I am going to remove a
lot of code duplication from distros next so while this looks like a
one-off right now, it will go away and be there uniformly for all
distros.
2025-03-04 14:53:47 -08:00

83 lines
2.8 KiB
Markdown

---
orphan: true
---
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
# Together Distribution
```{toctree}
:maxdepth: 2
:hidden:
self
```
The `llamastack/distribution-together` distribution consists of the following provider configurations.
| API | Provider(s) |
|-----|-------------|
| agents | `inline::meta-reference` |
| datasetio | `remote::huggingface`, `inline::localfs` |
| eval | `inline::meta-reference` |
| inference | `remote::together`, `inline::sentence-transformers` |
| safety | `inline::llama-guard` |
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
| telemetry | `inline::meta-reference` |
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::rag-runtime`, `remote::model-context-protocol`, `remote::wolfram-alpha` |
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
### Environment Variables
The following environment variables can be configured:
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
- `TOGETHER_API_KEY`: Together.AI API Key (default: ``)
### Models
The following models are available by default:
- `meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo (aliases: meta-llama/Llama-3.1-8B-Instruct)`
- `meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo (aliases: meta-llama/Llama-3.1-70B-Instruct)`
- `meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo (aliases: meta-llama/Llama-3.1-405B-Instruct-FP8)`
- `meta-llama/Llama-3.2-3B-Instruct-Turbo (aliases: meta-llama/Llama-3.2-3B-Instruct)`
- `meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo (aliases: meta-llama/Llama-3.2-11B-Vision-Instruct)`
- `meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo (aliases: meta-llama/Llama-3.2-90B-Vision-Instruct)`
- `meta-llama/Llama-3.3-70B-Instruct-Turbo (aliases: meta-llama/Llama-3.3-70B-Instruct)`
- `meta-llama/Meta-Llama-Guard-3-8B (aliases: meta-llama/Llama-Guard-3-8B)`
- `meta-llama/Llama-Guard-3-11B-Vision-Turbo (aliases: meta-llama/Llama-Guard-3-11B-Vision)`
- `togethercomputer/m2-bert-80M-8k-retrieval `
- `togethercomputer/m2-bert-80M-32k-retrieval `
### Prerequisite: API Keys
Make sure you have access to a Together API Key. You can get one by visiting [together.xyz](https://together.xyz/).
## Running Llama Stack with Together
You can do this via Conda (build code) or Docker which has a pre-built image.
### Via Docker
This method allows you to get started quickly without having to build the distribution code.
```bash
LLAMA_STACK_PORT=5001
docker run \
-it \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
llamastack/distribution-together \
--port $LLAMA_STACK_PORT \
--env TOGETHER_API_KEY=$TOGETHER_API_KEY
```
### Via Conda
```bash
llama stack build --template together --image-type conda
llama stack run ./run.yaml \
--port $LLAMA_STACK_PORT \
--env TOGETHER_API_KEY=$TOGETHER_API_KEY
```