forked from phoenix-oss/llama-stack-mirror
All of the tests from `llama_stack/providers/tests/` are now moved to `tests/integration`. I converted the `tools`, `scoring` and `datasetio` tests to use API. However, `eval` and `post_training` proved to be a bit challenging to leaving those. I think `post_training` should be relatively straightforward also. As part of this, I noticed that `wolfram_alpha` tool wasn't added to some of our commonly used distros so I added it. I am going to remove a lot of code duplication from distros next so while this looks like a one-off right now, it will go away and be there uniformly for all distros.
83 lines
2.8 KiB
Markdown
83 lines
2.8 KiB
Markdown
---
|
|
orphan: true
|
|
---
|
|
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
|
|
# Together Distribution
|
|
|
|
```{toctree}
|
|
:maxdepth: 2
|
|
:hidden:
|
|
|
|
self
|
|
```
|
|
|
|
The `llamastack/distribution-together` distribution consists of the following provider configurations.
|
|
|
|
| API | Provider(s) |
|
|
|-----|-------------|
|
|
| agents | `inline::meta-reference` |
|
|
| datasetio | `remote::huggingface`, `inline::localfs` |
|
|
| eval | `inline::meta-reference` |
|
|
| inference | `remote::together`, `inline::sentence-transformers` |
|
|
| safety | `inline::llama-guard` |
|
|
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
|
|
| telemetry | `inline::meta-reference` |
|
|
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::rag-runtime`, `remote::model-context-protocol`, `remote::wolfram-alpha` |
|
|
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
|
|
|
|
|
### Environment Variables
|
|
|
|
The following environment variables can be configured:
|
|
|
|
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
|
|
- `TOGETHER_API_KEY`: Together.AI API Key (default: ``)
|
|
|
|
### Models
|
|
|
|
The following models are available by default:
|
|
|
|
- `meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo (aliases: meta-llama/Llama-3.1-8B-Instruct)`
|
|
- `meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo (aliases: meta-llama/Llama-3.1-70B-Instruct)`
|
|
- `meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo (aliases: meta-llama/Llama-3.1-405B-Instruct-FP8)`
|
|
- `meta-llama/Llama-3.2-3B-Instruct-Turbo (aliases: meta-llama/Llama-3.2-3B-Instruct)`
|
|
- `meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo (aliases: meta-llama/Llama-3.2-11B-Vision-Instruct)`
|
|
- `meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo (aliases: meta-llama/Llama-3.2-90B-Vision-Instruct)`
|
|
- `meta-llama/Llama-3.3-70B-Instruct-Turbo (aliases: meta-llama/Llama-3.3-70B-Instruct)`
|
|
- `meta-llama/Meta-Llama-Guard-3-8B (aliases: meta-llama/Llama-Guard-3-8B)`
|
|
- `meta-llama/Llama-Guard-3-11B-Vision-Turbo (aliases: meta-llama/Llama-Guard-3-11B-Vision)`
|
|
- `togethercomputer/m2-bert-80M-8k-retrieval `
|
|
- `togethercomputer/m2-bert-80M-32k-retrieval `
|
|
|
|
|
|
### Prerequisite: API Keys
|
|
|
|
Make sure you have access to a Together API Key. You can get one by visiting [together.xyz](https://together.xyz/).
|
|
|
|
|
|
## Running Llama Stack with Together
|
|
|
|
You can do this via Conda (build code) or Docker which has a pre-built image.
|
|
|
|
### Via Docker
|
|
|
|
This method allows you to get started quickly without having to build the distribution code.
|
|
|
|
```bash
|
|
LLAMA_STACK_PORT=5001
|
|
docker run \
|
|
-it \
|
|
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
|
llamastack/distribution-together \
|
|
--port $LLAMA_STACK_PORT \
|
|
--env TOGETHER_API_KEY=$TOGETHER_API_KEY
|
|
```
|
|
|
|
### Via Conda
|
|
|
|
```bash
|
|
llama stack build --template together --image-type conda
|
|
llama stack run ./run.yaml \
|
|
--port $LLAMA_STACK_PORT \
|
|
--env TOGETHER_API_KEY=$TOGETHER_API_KEY
|
|
```
|