forked from phoenix-oss/llama-stack-mirror
Some checks failed
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 4s
Integration Tests / test-matrix (http, inspect) (push) Failing after 9s
Integration Tests / test-matrix (http, inference) (push) Failing after 9s
Integration Tests / test-matrix (http, datasets) (push) Failing after 10s
Integration Tests / test-matrix (http, post_training) (push) Failing after 9s
Integration Tests / test-matrix (library, agents) (push) Failing after 7s
Integration Tests / test-matrix (http, agents) (push) Failing after 10s
Integration Tests / test-matrix (http, tool_runtime) (push) Failing after 8s
Integration Tests / test-matrix (http, providers) (push) Failing after 9s
Integration Tests / test-matrix (library, datasets) (push) Failing after 8s
Integration Tests / test-matrix (library, inference) (push) Failing after 9s
Integration Tests / test-matrix (http, scoring) (push) Failing after 10s
Test Llama Stack Build / generate-matrix (push) Successful in 6s
Integration Tests / test-matrix (library, providers) (push) Failing after 7s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 6s
Integration Tests / test-matrix (library, inspect) (push) Failing after 9s
Test Llama Stack Build / build-single-provider (push) Failing after 7s
Integration Tests / test-matrix (library, scoring) (push) Failing after 9s
Integration Tests / test-matrix (library, post_training) (push) Failing after 9s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 7s
Integration Tests / test-matrix (library, tool_runtime) (push) Failing after 10s
Unit Tests / unit-tests (3.11) (push) Failing after 7s
Test Llama Stack Build / build (push) Failing after 5s
Unit Tests / unit-tests (3.10) (push) Failing after 7s
Update ReadTheDocs / update-readthedocs (push) Failing after 6s
Unit Tests / unit-tests (3.12) (push) Failing after 8s
Unit Tests / unit-tests (3.13) (push) Failing after 7s
Test External Providers / test-external-providers (venv) (push) Failing after 26s
Pre-commit / pre-commit (push) Successful in 1m11s
# What does this PR do? Adds a new endpoint that is compatible with OpenAI for embeddings api. `/openai/v1/embeddings` Added providers for OpenAI, LiteLLM and SentenceTransformer. ## Test Plan ``` LLAMA_STACK_CONFIG=http://localhost:8321 pytest -sv tests/integration/inference/test_openai_embeddings.py --embedding-model all-MiniLM-L6-v2,text-embedding-3-small,gemini/text-embedding-004 ```
207 lines
6.7 KiB
Python
207 lines
6.7 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from collections.abc import AsyncGenerator
|
|
|
|
from cerebras.cloud.sdk import AsyncCerebras
|
|
|
|
from llama_stack.apis.common.content_types import (
|
|
InterleavedContent,
|
|
InterleavedContentItem,
|
|
)
|
|
from llama_stack.apis.inference import (
|
|
ChatCompletionRequest,
|
|
CompletionRequest,
|
|
CompletionResponse,
|
|
EmbeddingsResponse,
|
|
EmbeddingTaskType,
|
|
Inference,
|
|
LogProbConfig,
|
|
Message,
|
|
OpenAIEmbeddingsResponse,
|
|
ResponseFormat,
|
|
SamplingParams,
|
|
TextTruncation,
|
|
ToolChoice,
|
|
ToolConfig,
|
|
ToolDefinition,
|
|
ToolPromptFormat,
|
|
TopKSamplingStrategy,
|
|
)
|
|
from llama_stack.providers.utils.inference.model_registry import (
|
|
ModelRegistryHelper,
|
|
)
|
|
from llama_stack.providers.utils.inference.openai_compat import (
|
|
OpenAIChatCompletionToLlamaStackMixin,
|
|
OpenAICompletionToLlamaStackMixin,
|
|
get_sampling_options,
|
|
process_chat_completion_response,
|
|
process_chat_completion_stream_response,
|
|
process_completion_response,
|
|
process_completion_stream_response,
|
|
)
|
|
from llama_stack.providers.utils.inference.prompt_adapter import (
|
|
chat_completion_request_to_prompt,
|
|
completion_request_to_prompt,
|
|
)
|
|
|
|
from .config import CerebrasImplConfig
|
|
from .models import MODEL_ENTRIES
|
|
|
|
|
|
class CerebrasInferenceAdapter(
|
|
ModelRegistryHelper,
|
|
Inference,
|
|
OpenAIChatCompletionToLlamaStackMixin,
|
|
OpenAICompletionToLlamaStackMixin,
|
|
):
|
|
def __init__(self, config: CerebrasImplConfig) -> None:
|
|
ModelRegistryHelper.__init__(
|
|
self,
|
|
model_entries=MODEL_ENTRIES,
|
|
)
|
|
self.config = config
|
|
|
|
self.client = AsyncCerebras(
|
|
base_url=self.config.base_url,
|
|
api_key=self.config.api_key.get_secret_value(),
|
|
)
|
|
|
|
async def initialize(self) -> None:
|
|
return
|
|
|
|
async def shutdown(self) -> None:
|
|
pass
|
|
|
|
async def completion(
|
|
self,
|
|
model_id: str,
|
|
content: InterleavedContent,
|
|
sampling_params: SamplingParams | None = None,
|
|
response_format: ResponseFormat | None = None,
|
|
stream: bool | None = False,
|
|
logprobs: LogProbConfig | None = None,
|
|
) -> AsyncGenerator:
|
|
if sampling_params is None:
|
|
sampling_params = SamplingParams()
|
|
model = await self.model_store.get_model(model_id)
|
|
request = CompletionRequest(
|
|
model=model.provider_resource_id,
|
|
content=content,
|
|
sampling_params=sampling_params,
|
|
response_format=response_format,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
)
|
|
if stream:
|
|
return self._stream_completion(
|
|
request,
|
|
)
|
|
else:
|
|
return await self._nonstream_completion(request)
|
|
|
|
async def _nonstream_completion(self, request: CompletionRequest) -> CompletionResponse:
|
|
params = await self._get_params(request)
|
|
|
|
r = await self.client.completions.create(**params)
|
|
|
|
return process_completion_response(r)
|
|
|
|
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
|
params = await self._get_params(request)
|
|
|
|
stream = await self.client.completions.create(**params)
|
|
|
|
async for chunk in process_completion_stream_response(stream):
|
|
yield chunk
|
|
|
|
async def chat_completion(
|
|
self,
|
|
model_id: str,
|
|
messages: list[Message],
|
|
sampling_params: SamplingParams | None = None,
|
|
tools: list[ToolDefinition] | None = None,
|
|
tool_choice: ToolChoice | None = ToolChoice.auto,
|
|
tool_prompt_format: ToolPromptFormat | None = None,
|
|
response_format: ResponseFormat | None = None,
|
|
stream: bool | None = False,
|
|
logprobs: LogProbConfig | None = None,
|
|
tool_config: ToolConfig | None = None,
|
|
) -> AsyncGenerator:
|
|
if sampling_params is None:
|
|
sampling_params = SamplingParams()
|
|
model = await self.model_store.get_model(model_id)
|
|
request = ChatCompletionRequest(
|
|
model=model.provider_resource_id,
|
|
messages=messages,
|
|
sampling_params=sampling_params,
|
|
tools=tools or [],
|
|
tool_choice=tool_choice,
|
|
tool_prompt_format=tool_prompt_format,
|
|
response_format=response_format,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
tool_config=tool_config,
|
|
)
|
|
|
|
if stream:
|
|
return self._stream_chat_completion(request)
|
|
else:
|
|
return await self._nonstream_chat_completion(request)
|
|
|
|
async def _nonstream_chat_completion(self, request: CompletionRequest) -> CompletionResponse:
|
|
params = await self._get_params(request)
|
|
|
|
r = await self.client.completions.create(**params)
|
|
|
|
return process_chat_completion_response(r, request)
|
|
|
|
async def _stream_chat_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
|
params = await self._get_params(request)
|
|
|
|
stream = await self.client.completions.create(**params)
|
|
|
|
async for chunk in process_chat_completion_stream_response(stream, request):
|
|
yield chunk
|
|
|
|
async def _get_params(self, request: ChatCompletionRequest | CompletionRequest) -> dict:
|
|
if request.sampling_params and isinstance(request.sampling_params.strategy, TopKSamplingStrategy):
|
|
raise ValueError("`top_k` not supported by Cerebras")
|
|
|
|
prompt = ""
|
|
if isinstance(request, ChatCompletionRequest):
|
|
prompt = await chat_completion_request_to_prompt(request, self.get_llama_model(request.model))
|
|
elif isinstance(request, CompletionRequest):
|
|
prompt = await completion_request_to_prompt(request)
|
|
else:
|
|
raise ValueError(f"Unknown request type {type(request)}")
|
|
|
|
return {
|
|
"model": request.model,
|
|
"prompt": prompt,
|
|
"stream": request.stream,
|
|
**get_sampling_options(request.sampling_params),
|
|
}
|
|
|
|
async def embeddings(
|
|
self,
|
|
model_id: str,
|
|
contents: list[str] | list[InterleavedContentItem],
|
|
text_truncation: TextTruncation | None = TextTruncation.none,
|
|
output_dimension: int | None = None,
|
|
task_type: EmbeddingTaskType | None = None,
|
|
) -> EmbeddingsResponse:
|
|
raise NotImplementedError()
|
|
|
|
async def openai_embeddings(
|
|
self,
|
|
model: str,
|
|
input: str | list[str],
|
|
encoding_format: str | None = "float",
|
|
dimensions: int | None = None,
|
|
user: str | None = None,
|
|
) -> OpenAIEmbeddingsResponse:
|
|
raise NotImplementedError()
|