llama-stack/docs/source/distributions/self_hosted_distro/cerebras.md
Xi Yan c1d18283d2
feat(eval api): (2.2/n) delete eval / scoring / scoring_fn apis (#1700)
# What does this PR do?
- To make it easier, delete existing `eval/scoring/scoring_function`
apis. There will be a bunch of broken impls here. The sequence is:
1. migrate benchmark graders
2. clean up existing scoring functions

- Add a skeleton evaluation impl to make tests pass. 

## Test Plan
tested in following PRs

[//]: # (## Documentation)
2025-03-19 11:04:23 -07:00

1.9 KiB

Cerebras Distribution

The llamastack/distribution-cerebras distribution consists of the following provider configurations.

API Provider(s)
agents inline::meta-reference
datasetio remote::huggingface, inline::localfs
inference remote::cerebras, inline::sentence-transformers
safety inline::llama-guard
telemetry inline::meta-reference
tool_runtime remote::brave-search, remote::tavily-search, inline::code-interpreter, inline::rag-runtime
vector_io inline::faiss, remote::chromadb, remote::pgvector

Environment Variables

The following environment variables can be configured:

  • LLAMA_STACK_PORT: Port for the Llama Stack distribution server (default: 5001)
  • CEREBRAS_API_KEY: Cerebras API Key (default: ``)

Models

The following models are available by default:

  • llama3.1-8b (aliases: meta-llama/Llama-3.1-8B-Instruct)
  • llama-3.3-70b (aliases: meta-llama/Llama-3.3-70B-Instruct)

Prerequisite: API Keys

Make sure you have access to a Cerebras API Key. You can get one by visiting cloud.cerebras.ai.

Running Llama Stack with Cerebras

You can do this via Conda (build code) or Docker which has a pre-built image.

Via Docker

This method allows you to get started quickly without having to build the distribution code.

LLAMA_STACK_PORT=5001
docker run \
  -it \
  -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
  -v ./run.yaml:/root/my-run.yaml \
  llamastack/distribution-cerebras \
  --yaml-config /root/my-run.yaml \
  --port $LLAMA_STACK_PORT \
  --env CEREBRAS_API_KEY=$CEREBRAS_API_KEY

Via Conda

llama stack build --template cerebras --image-type conda
llama stack run ./run.yaml \
  --port 5001 \
  --env CEREBRAS_API_KEY=$CEREBRAS_API_KEY