# What does this PR do? Model context protocol (MCP) allows for remote tools to be connected with Agents. The current Ollama provider does not support it. This PR adds necessary code changes to ensure that the integration between Ollama backend and MCP works. This PR is an extension of #816 for Ollama. ## Test Plan [Describe the tests you ran to verify your changes with result summaries. *Provide clear instructions so the plan can be easily re-executed.*] 1. Run llama-stack server with the command: ``` llama stack build --template ollama --image-type conda llama stack run ./templates/ollama/run.yaml \ --port $LLAMA_STACK_PORT \ --env INFERENCE_MODEL=$INFERENCE_MODEL \ --env OLLAMA_URL=http://localhost:11434 ``` 2. Run the sample client agent with MCP tool: ``` from llama_stack_client.lib.agents.agent import Agent from llama_stack_client.lib.agents.event_logger import EventLogger from llama_stack_client.types.agent_create_params import AgentConfig from llama_stack_client.types.shared_params.url import URL from llama_stack_client import LlamaStackClient from termcolor import cprint ## Start the local MCP server # git clone https://github.com/modelcontextprotocol/python-sdk # Follow instructions to get the env ready # cd examples/servers/simple-tool # uv run mcp-simple-tool --transport sse --port 8000 # Connect to the llama stack server base_url="http://localhost:8321" model_id="meta-llama/Llama-3.2-3B-Instruct" client = LlamaStackClient(base_url=base_url) # Register MCP tools client.toolgroups.register( toolgroup_id="mcp::filesystem", provider_id="model-context-protocol", mcp_endpoint=URL(uri="http://localhost:8000/sse")) # Define an agent with MCP toolgroup agent_config = AgentConfig( model=model_id, instructions="You are a helpful assistant", toolgroups=["mcp::filesystem"], input_shields=[], output_shields=[], enable_session_persistence=False, ) agent = Agent(client, agent_config) user_prompts = [ "Fetch content from https://www.google.com and print the response" ] # Run a session with the agent session_id = agent.create_session("test-session") for prompt in user_prompts: cprint(f"User> {prompt}", "green") response = agent.create_turn( messages=[ { "role": "user", "content": prompt, } ], session_id=session_id, ) for log in EventLogger().log(response): log.print() ``` # Documentation The file docs/source/distributions/self_hosted_distro/ollama.md is updated to indicate the MCP tool runtime availability. Signed-off-by: Shreyanand <shanand@redhat.com>
5.4 KiB
orphan |
---|
true |
Ollama Distribution
:maxdepth: 2
:hidden:
self
The llamastack/distribution-ollama
distribution consists of the following provider configurations.
API | Provider(s) |
---|---|
agents | inline::meta-reference |
datasetio | remote::huggingface , inline::localfs |
eval | inline::meta-reference |
inference | remote::ollama |
safety | inline::llama-guard |
scoring | inline::basic , inline::llm-as-judge , inline::braintrust |
telemetry | inline::meta-reference |
tool_runtime | remote::brave-search , remote::tavily-search , inline::code-interpreter , inline::rag-runtime , remote::model-context-protocol |
vector_io | inline::sqlite-vec , remote::chromadb , remote::pgvector |
You should use this distribution if you have a regular desktop machine without very powerful GPUs. Of course, if you have powerful GPUs, you can still continue using this distribution since Ollama supports GPU acceleration.
Environment Variables
The following environment variables can be configured:
LLAMA_STACK_PORT
: Port for the Llama Stack distribution server (default:5001
)OLLAMA_URL
: URL of the Ollama server (default:http://127.0.0.1:11434
)INFERENCE_MODEL
: Inference model loaded into the Ollama server (default:meta-llama/Llama-3.2-3B-Instruct
)SAFETY_MODEL
: Safety model loaded into the Ollama server (default:meta-llama/Llama-Guard-3-1B
)
Setting up Ollama server
Please check the Ollama Documentation on how to install and run Ollama. After installing Ollama, you need to run ollama serve
to start the server.
In order to load models, you can run:
export INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct"
# ollama names this model differently, and we must use the ollama name when loading the model
export OLLAMA_INFERENCE_MODEL="llama3.2:3b-instruct-fp16"
ollama run $OLLAMA_INFERENCE_MODEL --keepalive 60m
If you are using Llama Stack Safety / Shield APIs, you will also need to pull and run the safety model.
export SAFETY_MODEL="meta-llama/Llama-Guard-3-1B"
# ollama names this model differently, and we must use the ollama name when loading the model
export OLLAMA_SAFETY_MODEL="llama-guard3:1b"
ollama run $OLLAMA_SAFETY_MODEL --keepalive 60m
Running Llama Stack
Now you are ready to run Llama Stack with Ollama as the inference provider. You can do this via Conda (build code) or Docker which has a pre-built image.
Via Docker
This method allows you to get started quickly without having to build the distribution code.
export LLAMA_STACK_PORT=5001
docker run \
-it \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ~/.llama:/root/.llama \
llamastack/distribution-ollama \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env OLLAMA_URL=http://host.docker.internal:11434
If you are using Llama Stack Safety / Shield APIs, use:
# You need a local checkout of llama-stack to run this, get it using
# git clone https://github.com/meta-llama/llama-stack.git
cd /path/to/llama-stack
docker run \
-it \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ~/.llama:/root/.llama \
-v ./llama_stack/templates/ollama/run-with-safety.yaml:/root/my-run.yaml \
llamastack/distribution-ollama \
--yaml-config /root/my-run.yaml \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env SAFETY_MODEL=$SAFETY_MODEL \
--env OLLAMA_URL=http://host.docker.internal:11434
Via Conda
Make sure you have done uv pip install llama-stack
and have the Llama Stack CLI available.
export LLAMA_STACK_PORT=5001
llama stack build --template ollama --image-type conda
llama stack run ./run.yaml \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env OLLAMA_URL=http://localhost:11434
If you are using Llama Stack Safety / Shield APIs, use:
llama stack run ./run-with-safety.yaml \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env SAFETY_MODEL=$SAFETY_MODEL \
--env OLLAMA_URL=http://localhost:11434
(Optional) Update Model Serving Configuration
Please check the [model_entries](https://github.com/meta-llama/llama-stack/blob/main/llama_stack/providers/remote/inference/ollama/ollama.py#L45) for the supported Ollama models.
To serve a new model with ollama
ollama run <model_name>
To make sure that the model is being served correctly, run ollama ps
to get a list of models being served by ollama.
$ ollama ps
NAME ID SIZE PROCESSOR UNTIL
llama3.1:8b-instruct-fp16 4aacac419454 17 GB 100% GPU 4 minutes from now
To verify that the model served by ollama is correctly connected to Llama Stack server
$ llama-stack-client models list
+----------------------+----------------------+---------------+-----------------------------------------------+
| identifier | llama_model | provider_id | metadata |
+======================+======================+===============+===============================================+
| Llama3.1-8B-Instruct | Llama3.1-8B-Instruct | ollama0 | {'ollama_model': 'llama3.1:8b-instruct-fp16'} |
+----------------------+----------------------+---------------+-----------------------------------------------+