llama-stack/llama_stack/distribution/ui
ehhuang ca2910d27a
docs: update test_agents to use new Agent SDK API (#1402)
# Summary:
new Agent SDK API is added in
https://github.com/meta-llama/llama-stack-client-python/pull/178

Update docs and test to reflect this.

Closes https://github.com/meta-llama/llama-stack/issues/1365

# Test Plan:
```bash
py.test -v -s --nbval-lax ./docs/getting_started.ipynb

LLAMA_STACK_CONFIG=fireworks \
   pytest -s -v tests/integration/agents/test_agents.py \
  --safety-shield meta-llama/Llama-Guard-3-8B --text-model meta-llama/Llama-3.1-8B-Instruct
```
2025-03-06 15:21:12 -08:00
..
modules build: format codebase imports using ruff linter (#1028) 2025-02-13 10:06:21 -08:00
page docs: update test_agents to use new Agent SDK API (#1402) 2025-03-06 15:21:12 -08:00
__init__.py move playground ui to llama-stack repo (#536) 2024-11-26 22:04:21 -08:00
app.py Fix precommit check after moving to ruff (#927) 2025-02-02 06:46:45 -08:00
README.md chore: Make README code blocks more easily copy pastable (#1420) 2025-03-05 09:11:01 -08:00
requirements.txt [llama stack ui] add native eval & inspect distro & playground pages (#541) 2024-12-04 09:47:09 -08:00

(Experimental) LLama Stack UI

Docker Setup

⚠️ This is a work in progress.

Developer Setup

  1. Start up Llama Stack API server. More details here.
llama stack build --template together --image-type conda

llama stack run together
  1. (Optional) Register datasets and eval tasks as resources. If you want to run pre-configured evaluation flows (e.g. Evaluations (Generation + Scoring) Page).
llama-stack-client datasets register \
--dataset-id "mmlu" \
--provider-id "huggingface" \
--url "https://huggingface.co/datasets/llamastack/evals" \
--metadata '{"path": "llamastack/evals", "name": "evals__mmlu__details", "split": "train"}' \
--schema '{"input_query": {"type": "string"}, "expected_answer": {"type": "string", "chat_completion_input": {"type": "string"}}}'
llama-stack-client benchmarks register \
--eval-task-id meta-reference-mmlu \
--provider-id meta-reference \
--dataset-id mmlu \
--scoring-functions basic::regex_parser_multiple_choice_answer
  1. Start Streamlit UI
cd llama_stack/distribution/ui
pip install -r requirements.txt
streamlit run app.py