llama-stack/docs/source/distributions/self_hosted_distro/bedrock.md

2 KiB

Bedrock Distribution

:maxdepth: 2
:hidden:

self

The llamastack/distribution-bedrock distribution consists of the following provider configurations:

API Provider(s)
agents inline::meta-reference
datasetio remote::huggingface, inline::localfs
eval inline::meta-reference
inference remote::bedrock
memory inline::faiss, remote::chromadb, remote::pgvector
safety remote::bedrock
scoring inline::basic, inline::llm-as-judge, inline::braintrust
telemetry inline::meta-reference

Environment Variables

The following environment variables can be configured:

  • LLAMASTACK_PORT: Port for the Llama Stack distribution server (default: 5001)

Models

The following models are available by default:

  • meta-llama/Llama-3.1-8B-Instruct (meta.llama3-1-8b-instruct-v1:0)
  • meta-llama/Llama-3.1-70B-Instruct (meta.llama3-1-70b-instruct-v1:0)
  • meta-llama/Llama-3.1-405B-Instruct-FP8 (meta.llama3-1-405b-instruct-v1:0)

Prerequisite: API Keys

Make sure you have access to a AWS Bedrock API Key. You can get one by visiting AWS Bedrock.

Running Llama Stack with AWS Bedrock

You can do this via Conda (build code) or Docker which has a pre-built image.

Via Docker

This method allows you to get started quickly without having to build the distribution code.

LLAMA_STACK_PORT=5001
docker run \
  -it \
  -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
  llamastack/distribution-bedrock \
  --port $LLAMA_STACK_PORT \
  --env AWS_ACCESS_KEY_ID=$AWS_ACCESS_KEY_ID \
  --env AWS_SECRET_ACCESS_KEY=$AWS_SECRET_ACCESS_KEY \
  --env AWS_SESSION_TOKEN=$AWS_SESSION_TOKEN

Via Conda

llama stack build --template bedrock --image-type conda
llama stack run ./run.yaml \
  --port $LLAMA_STACK_PORT \
  --env AWS_ACCESS_KEY_ID=$AWS_ACCESS_KEY_ID \
  --env AWS_SECRET_ACCESS_KEY=$AWS_SECRET_ACCESS_KEY \
  --env AWS_SESSION_TOKEN=$AWS_SESSION_TOKEN