llama-stack/docs/source/distributions/self_hosted_distro/ollama.md
Xi Yan 7301403ce3
Add eval/scoring/datasetio API providers to distribution templates & UI developer guide (#564)
# What does this PR do?

- add /eval, /scoring, /datasetio API providers to distribution
templates
- regenerate build.yaml / run.yaml files
- fix `template.py` to take in list of providers instead of only first
one
- override memory provider as faiss default for all distro (as only 1
memory provider is needed to start basic flow, chromadb/pgvector need
additional setup step).
```
python llama_stack/scripts/distro_codegen.py
```

- updated README to start UI via conda builds. 

## Test Plan

```
python llama_stack/scripts/distro_codegen.py
```

- Use newly generated `run.yaml` to start server
```
llama stack run ./llama_stack/templates/together/run.yaml
```
<img width="1191" alt="image"
src="https://github.com/user-attachments/assets/62f7d179-0cd0-427c-b6e8-e087d4648f09">


#### Registration
```
❯ llama-stack-client datasets register \
--dataset-id "mmlu" \
--provider-id "huggingface" \
--url "https://huggingface.co/datasets/llamastack/evals" \
--metadata '{"path": "llamastack/evals", "name": "evals__mmlu__details", "split": "train"}' \
--schema '{"input_query": {"type": "string"}, "expected_answer": {"type": "string", "chat_completion_input": {"type": "string"}}}'
❯ llama-stack-client datasets list
┏━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━┓
┃ identifier ┃ provider_id ┃ metadata                                ┃ type    ┃
┡━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━┩
│ mmlu       │ huggingface │ {'path': 'llamastack/evals', 'name':    │ dataset │
│            │             │ 'evals__mmlu__details', 'split':        │         │
│            │             │ 'train'}                                │         │
└────────────┴─────────────┴─────────────────────────────────────────┴─────────┘
```

```
❯ llama-stack-client datasets register \
--dataset-id "simpleqa" \
--provider-id "huggingface" \
--url "https://huggingface.co/datasets/llamastack/evals" \
--metadata '{"path": "llamastack/evals", "name": "evals__simpleqa", "split": "train"}' \
--schema '{"input_query": {"type": "string"}, "expected_answer": {"type": "string", "chat_completion_input": {"type": "string"}}}'
❯ llama-stack-client datasets list
┏━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━┓
┃ identifier ┃ provider_id ┃ metadata                                                      ┃ type    ┃
┡━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━┩
│ mmlu       │ huggingface │ {'path': 'llamastack/evals', 'name': 'evals__mmlu__details',  │ dataset │
│            │             │ 'split': 'train'}                                             │         │
│ simpleqa   │ huggingface │ {'path': 'llamastack/evals', 'name': 'evals__simpleqa',       │ dataset │
│            │             │ 'split': 'train'}                                             │         │
└────────────┴─────────────┴───────────────────────────────────────────────────────────────┴─────────┘
```

```
❯ llama-stack-client eval_tasks register \
> --eval-task-id meta-reference-mmlu \
> --provider-id meta-reference \
> --dataset-id mmlu \
> --scoring-functions basic::regex_parser_multiple_choice_answer
❯ llama-stack-client eval_tasks register \
--eval-task-id meta-reference-simpleqa \
--provider-id meta-reference \
--dataset-id simpleqa \
--scoring-functions llm-as-judge::405b-simpleqa
❯ llama-stack-client eval_tasks list
┏━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━┓
┃ dataset_id ┃ identifier       ┃ metadata ┃ provider_id    ┃ provider_resour… ┃ scoring_functio… ┃ type      ┃
┡━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━┩
│ mmlu       │ meta-reference-… │ {}       │ meta-reference │ meta-reference-… │ ['basic::regex_… │ eval_task │
│ simpleqa   │ meta-reference-… │ {}       │ meta-reference │ meta-reference-… │ ['llm-as-judge:… │ eval_task │
└────────────┴──────────────────┴──────────┴────────────────┴──────────────────┴──────────────────┴───────────┘
```

#### Test with UI
```
streamlit run app.py
```

## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-12-05 16:29:32 -08:00

149 lines
5 KiB
Markdown

---
orphan: true
---
# Ollama Distribution
```{toctree}
:maxdepth: 2
:hidden:
self
```
The `llamastack/distribution-ollama` distribution consists of the following provider configurations.
| API | Provider(s) |
|-----|-------------|
| agents | `inline::meta-reference` |
| datasetio | `remote::huggingface`, `inline::localfs` |
| eval | `inline::meta-reference` |
| inference | `remote::ollama` |
| memory | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
| safety | `inline::llama-guard` |
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
| telemetry | `inline::meta-reference` |
You should use this distribution if you have a regular desktop machine without very powerful GPUs. Of course, if you have powerful GPUs, you can still continue using this distribution since Ollama supports GPU acceleration.### Environment Variables
The following environment variables can be configured:
- `LLAMASTACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
- `OLLAMA_URL`: URL of the Ollama server (default: `http://127.0.0.1:11434`)
- `INFERENCE_MODEL`: Inference model loaded into the Ollama server (default: `meta-llama/Llama-3.2-3B-Instruct`)
- `SAFETY_MODEL`: Safety model loaded into the Ollama server (default: `meta-llama/Llama-Guard-3-1B`)
## Setting up Ollama server
Please check the [Ollama Documentation](https://github.com/ollama/ollama) on how to install and run Ollama. After installing Ollama, you need to run `ollama serve` to start the server.
In order to load models, you can run:
```bash
export INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct"
# ollama names this model differently, and we must use the ollama name when loading the model
export OLLAMA_INFERENCE_MODEL="llama3.2:3b-instruct-fp16"
ollama run $OLLAMA_INFERENCE_MODEL --keepalive 60m
```
If you are using Llama Stack Safety / Shield APIs, you will also need to pull and run the safety model.
```bash
export SAFETY_MODEL="meta-llama/Llama-Guard-3-1B"
# ollama names this model differently, and we must use the ollama name when loading the model
export OLLAMA_SAFETY_MODEL="llama-guard3:1b"
ollama run $OLLAMA_SAFETY_MODEL --keepalive 60m
```
## Running Llama Stack
Now you are ready to run Llama Stack with Ollama as the inference provider. You can do this via Conda (build code) or Docker which has a pre-built image.
### Via Docker
This method allows you to get started quickly without having to build the distribution code.
```bash
export LLAMA_STACK_PORT=5001
docker run \
-it \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ~/.llama:/root/.llama \
llamastack/distribution-ollama \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env OLLAMA_URL=http://host.docker.internal:11434
```
If you are using Llama Stack Safety / Shield APIs, use:
```bash
docker run \
-it \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ~/.llama:/root/.llama \
-v ./run-with-safety.yaml:/root/my-run.yaml \
llamastack/distribution-ollama \
--yaml-config /root/my-run.yaml \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env SAFETY_MODEL=$SAFETY_MODEL \
--env OLLAMA_URL=http://host.docker.internal:11434
```
### Via Conda
Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available.
```bash
export LLAMA_STACK_PORT=5001
llama stack build --template ollama --image-type conda
llama stack run ./run.yaml \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env OLLAMA_URL=http://localhost:11434
```
If you are using Llama Stack Safety / Shield APIs, use:
```bash
llama stack run ./run-with-safety.yaml \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env SAFETY_MODEL=$SAFETY_MODEL \
--env OLLAMA_URL=http://localhost:11434
```
### (Optional) Update Model Serving Configuration
```{note}
Please check the [model_aliases](https://github.com/meta-llama/llama-stack/blob/main/llama_stack/providers/remote/inference/ollama/ollama.py#L45) for the supported Ollama models.
```
To serve a new model with `ollama`
```bash
ollama run <model_name>
```
To make sure that the model is being served correctly, run `ollama ps` to get a list of models being served by ollama.
```
$ ollama ps
NAME ID SIZE PROCESSOR UNTIL
llama3.1:8b-instruct-fp16 4aacac419454 17 GB 100% GPU 4 minutes from now
```
To verify that the model served by ollama is correctly connected to Llama Stack server
```bash
$ llama-stack-client models list
+----------------------+----------------------+---------------+-----------------------------------------------+
| identifier | llama_model | provider_id | metadata |
+======================+======================+===============+===============================================+
| Llama3.1-8B-Instruct | Llama3.1-8B-Instruct | ollama0 | {'ollama_model': 'llama3.1:8b-instruct-fp16'} |
+----------------------+----------------------+---------------+-----------------------------------------------+
```