llama-stack/llama_stack/providers/inline/agents/meta_reference/agent_instance.py
Dinesh Yeduguru ead9397e22
fix: tracing fixes for trace context propogation across coroutines (#1522)
# What does this PR do?
This PR has two fixes needed for correct trace context propagation
across asycnio boundary
Fix 1: Start using context vars to store the global trace context.
This is needed since we cannot use the same trace context across
coroutines since the state is shared. each coroutine
should have its own trace context so that each of it can start storing
its state correctly.
Fix 2: Start a new span for each new coroutines started for running
shields to keep the span tree clean


## Test Plan

### Integration tests with server
LLAMA_STACK_DISABLE_VERSION_CHECK=true llama stack run
~/.llama/distributions/together/together-run.yaml
LLAMA_STACK_CONFIG=http://localhost:8321 pytest -s --safety-shield
meta-llama/Llama-Guard-3-8B --text-model
meta-llama/Llama-3.1-8B-Instruct
server logs:
https://gist.github.com/dineshyv/51ac5d9864ed031d0d89ce77352821fe
test logs:
https://gist.github.com/dineshyv/e66acc1c4648a42f1854600609c467f3
 
### Integration tests with library client
LLAMA_STACK_CONFIG=fireworks pytest -s --safety-shield
meta-llama/Llama-Guard-3-8B --text-model
meta-llama/Llama-3.1-8B-Instruct

logs: https://gist.github.com/dineshyv/ca160696a0b167223378673fb1dcefb8

### Apps test with server:
```
LLAMA_STACK_DISABLE_VERSION_CHECK=true llama stack run ~/.llama/distributions/together/together-run.yaml
python -m examples.agents.e2e_loop_with_client_tools localhost 8321
```
server logs:
https://gist.github.com/dineshyv/1717a572d8f7c14279c36123b79c5797
app logs:
https://gist.github.com/dineshyv/44167e9f57806a0ba3b710c32aec02f8
2025-03-11 07:12:48 -07:00

1048 lines
43 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import copy
import json
import os
import re
import secrets
import string
import uuid
from datetime import datetime
from typing import Any, AsyncGenerator, Dict, List, Optional, Tuple, Union
from urllib.parse import urlparse
import httpx
from llama_stack.apis.agents import (
AgentConfig,
AgentToolGroup,
AgentToolGroupWithArgs,
AgentTurnCreateRequest,
AgentTurnResponseEvent,
AgentTurnResponseEventType,
AgentTurnResponseStepCompletePayload,
AgentTurnResponseStepProgressPayload,
AgentTurnResponseStepStartPayload,
AgentTurnResponseStreamChunk,
AgentTurnResponseTurnAwaitingInputPayload,
AgentTurnResponseTurnCompletePayload,
AgentTurnResumeRequest,
Attachment,
Document,
InferenceStep,
ShieldCallStep,
StepType,
ToolExecutionStep,
Turn,
)
from llama_stack.apis.common.content_types import (
URL,
TextContentItem,
ToolCallDelta,
ToolCallParseStatus,
)
from llama_stack.apis.inference import (
ChatCompletionResponseEventType,
CompletionMessage,
Inference,
Message,
SamplingParams,
StopReason,
SystemMessage,
ToolDefinition,
ToolResponse,
ToolResponseMessage,
UserMessage,
)
from llama_stack.apis.safety import Safety
from llama_stack.apis.tools import (
RAGDocument,
ToolGroups,
ToolInvocationResult,
ToolRuntime,
)
from llama_stack.apis.vector_io import VectorIO
from llama_stack.log import get_logger
from llama_stack.models.llama.datatypes import (
BuiltinTool,
ToolCall,
ToolParamDefinition,
)
from llama_stack.providers.utils.kvstore import KVStore
from llama_stack.providers.utils.telemetry import tracing
from .persistence import AgentPersistence
from .safety import SafetyException, ShieldRunnerMixin
def make_random_string(length: int = 8):
return "".join(secrets.choice(string.ascii_letters + string.digits) for _ in range(length))
TOOLS_ATTACHMENT_KEY_REGEX = re.compile(r"__tools_attachment__=(\{.*?\})")
MEMORY_QUERY_TOOL = "knowledge_search"
WEB_SEARCH_TOOL = "web_search"
RAG_TOOL_GROUP = "builtin::rag"
logger = get_logger(name=__name__, category="agents")
class ChatAgent(ShieldRunnerMixin):
def __init__(
self,
agent_id: str,
agent_config: AgentConfig,
tempdir: str,
inference_api: Inference,
safety_api: Safety,
tool_runtime_api: ToolRuntime,
tool_groups_api: ToolGroups,
vector_io_api: VectorIO,
persistence_store: KVStore,
):
self.agent_id = agent_id
self.agent_config = agent_config
self.tempdir = tempdir
self.inference_api = inference_api
self.safety_api = safety_api
self.vector_io_api = vector_io_api
self.storage = AgentPersistence(agent_id, persistence_store)
self.tool_runtime_api = tool_runtime_api
self.tool_groups_api = tool_groups_api
ShieldRunnerMixin.__init__(
self,
safety_api,
input_shields=agent_config.input_shields,
output_shields=agent_config.output_shields,
)
def turn_to_messages(self, turn: Turn) -> List[Message]:
messages = []
# NOTE: if a toolcall response is in a step, we do not add it when processing the input messages
tool_call_ids = set()
for step in turn.steps:
if step.step_type == StepType.tool_execution.value:
for response in step.tool_responses:
tool_call_ids.add(response.call_id)
for m in turn.input_messages:
msg = m.model_copy()
# We do not want to keep adding RAG context to the input messages
# May be this should be a parameter of the agentic instance
# that can define its behavior in a custom way
if isinstance(msg, UserMessage):
msg.context = None
if isinstance(msg, ToolResponseMessage):
if msg.call_id in tool_call_ids:
# NOTE: do not add ToolResponseMessage here, we'll add them in tool_execution steps
continue
messages.append(msg)
for step in turn.steps:
if step.step_type == StepType.inference.value:
messages.append(step.model_response)
elif step.step_type == StepType.tool_execution.value:
for response in step.tool_responses:
messages.append(
ToolResponseMessage(
call_id=response.call_id,
tool_name=response.tool_name,
content=response.content,
)
)
elif step.step_type == StepType.shield_call.value:
if step.violation:
# CompletionMessage itself in the ShieldResponse
messages.append(
CompletionMessage(
content=step.violation.user_message,
stop_reason=StopReason.end_of_turn,
)
)
return messages
async def create_session(self, name: str) -> str:
return await self.storage.create_session(name)
async def get_messages_from_turns(self, turns: List[Turn]) -> List[Message]:
messages = []
if self.agent_config.instructions != "":
messages.append(SystemMessage(content=self.agent_config.instructions))
for turn in turns:
messages.extend(self.turn_to_messages(turn))
return messages
async def create_and_execute_turn(self, request: AgentTurnCreateRequest) -> AsyncGenerator:
async with tracing.span("create_and_execute_turn") as span:
span.set_attribute("session_id", request.session_id)
span.set_attribute("agent_id", self.agent_id)
span.set_attribute("request", request.model_dump_json())
turn_id = str(uuid.uuid4())
span.set_attribute("turn_id", turn_id)
async for chunk in self._run_turn(request, turn_id):
yield chunk
async def resume_turn(self, request: AgentTurnResumeRequest) -> AsyncGenerator:
async with tracing.span("resume_turn") as span:
span.set_attribute("agent_id", self.agent_id)
span.set_attribute("session_id", request.session_id)
span.set_attribute("turn_id", request.turn_id)
span.set_attribute("request", request.model_dump_json())
async for chunk in self._run_turn(request):
yield chunk
async def _run_turn(
self,
request: Union[AgentTurnCreateRequest, AgentTurnResumeRequest],
turn_id: Optional[str] = None,
) -> AsyncGenerator:
assert request.stream is True, "Non-streaming not supported"
is_resume = isinstance(request, AgentTurnResumeRequest)
session_info = await self.storage.get_session_info(request.session_id)
if session_info is None:
raise ValueError(f"Session {request.session_id} not found")
turns = await self.storage.get_session_turns(request.session_id)
if is_resume and len(turns) == 0:
raise ValueError("No turns found for session")
steps = []
messages = await self.get_messages_from_turns(turns)
if is_resume:
if isinstance(request.tool_responses[0], ToolResponseMessage):
tool_response_messages = request.tool_responses
tool_responses = [
ToolResponse(call_id=x.call_id, tool_name=x.tool_name, content=x.content)
for x in request.tool_responses
]
else:
tool_response_messages = [
ToolResponseMessage(call_id=x.call_id, tool_name=x.tool_name, content=x.content)
for x in request.tool_responses
]
tool_responses = request.tool_responses
messages.extend(tool_response_messages)
last_turn = turns[-1]
last_turn_messages = self.turn_to_messages(last_turn)
last_turn_messages = [
x for x in last_turn_messages if isinstance(x, UserMessage) or isinstance(x, ToolResponseMessage)
]
last_turn_messages.extend(tool_response_messages)
# get steps from the turn
steps = last_turn.steps
# mark tool execution step as complete
# if there's no tool execution in progress step (due to storage, or tool call parsing on client),
# we'll create a new tool execution step with current time
in_progress_tool_call_step = await self.storage.get_in_progress_tool_call_step(
request.session_id, request.turn_id
)
now = datetime.now().astimezone().isoformat()
tool_execution_step = ToolExecutionStep(
step_id=(in_progress_tool_call_step.step_id if in_progress_tool_call_step else str(uuid.uuid4())),
turn_id=request.turn_id,
tool_calls=(in_progress_tool_call_step.tool_calls if in_progress_tool_call_step else []),
tool_responses=tool_responses,
completed_at=now,
started_at=(in_progress_tool_call_step.started_at if in_progress_tool_call_step else now),
)
steps.append(tool_execution_step)
yield AgentTurnResponseStreamChunk(
event=AgentTurnResponseEvent(
payload=AgentTurnResponseStepCompletePayload(
step_type=StepType.tool_execution.value,
step_id=tool_execution_step.step_id,
step_details=tool_execution_step,
)
)
)
input_messages = last_turn_messages
turn_id = request.turn_id
start_time = last_turn.started_at
else:
messages.extend(request.messages)
start_time = datetime.now().astimezone().isoformat()
input_messages = request.messages
output_message = None
async for chunk in self.run(
session_id=request.session_id,
turn_id=turn_id,
input_messages=messages,
sampling_params=self.agent_config.sampling_params,
stream=request.stream,
documents=request.documents if not is_resume else None,
toolgroups_for_turn=request.toolgroups if not is_resume else None,
):
if isinstance(chunk, CompletionMessage):
output_message = chunk
continue
assert isinstance(chunk, AgentTurnResponseStreamChunk), f"Unexpected type {type(chunk)}"
event = chunk.event
if event.payload.event_type == AgentTurnResponseEventType.step_complete.value:
steps.append(event.payload.step_details)
yield chunk
assert output_message is not None
turn = Turn(
turn_id=turn_id,
session_id=request.session_id,
input_messages=input_messages,
output_message=output_message,
started_at=start_time,
completed_at=datetime.now().astimezone().isoformat(),
steps=steps,
)
await self.storage.add_turn_to_session(request.session_id, turn)
if output_message.tool_calls:
chunk = AgentTurnResponseStreamChunk(
event=AgentTurnResponseEvent(
payload=AgentTurnResponseTurnAwaitingInputPayload(
turn=turn,
)
)
)
else:
chunk = AgentTurnResponseStreamChunk(
event=AgentTurnResponseEvent(
payload=AgentTurnResponseTurnCompletePayload(
turn=turn,
)
)
)
yield chunk
async def run(
self,
session_id: str,
turn_id: str,
input_messages: List[Message],
sampling_params: SamplingParams,
stream: bool = False,
documents: Optional[List[Document]] = None,
toolgroups_for_turn: Optional[List[AgentToolGroup]] = None,
) -> AsyncGenerator:
# Doing async generators makes downstream code much simpler and everything amenable to
# streaming. However, it also makes things complicated here because AsyncGenerators cannot
# return a "final value" for the `yield from` statement. we simulate that by yielding a
# final boolean (to see whether an exception happened) and then explicitly testing for it.
if len(self.input_shields) > 0:
async for res in self.run_multiple_shields_wrapper(
turn_id, input_messages, self.input_shields, "user-input"
):
if isinstance(res, bool):
return
else:
yield res
async for res in self._run(
session_id,
turn_id,
input_messages,
sampling_params,
stream,
documents,
toolgroups_for_turn,
):
if isinstance(res, bool):
return
elif isinstance(res, CompletionMessage):
final_response = res
break
else:
yield res
assert final_response is not None
# for output shields run on the full input and output combination
messages = input_messages + [final_response]
if len(self.output_shields) > 0:
async for res in self.run_multiple_shields_wrapper(
turn_id, messages, self.output_shields, "assistant-output"
):
if isinstance(res, bool):
return
else:
yield res
yield final_response
async def run_multiple_shields_wrapper(
self,
turn_id: str,
messages: List[Message],
shields: List[str],
touchpoint: str,
) -> AsyncGenerator:
async with tracing.span("run_shields") as span:
span.set_attribute("input", [m.model_dump_json() for m in messages])
if len(shields) == 0:
span.set_attribute("output", "no shields")
return
step_id = str(uuid.uuid4())
shield_call_start_time = datetime.now().astimezone().isoformat()
try:
yield AgentTurnResponseStreamChunk(
event=AgentTurnResponseEvent(
payload=AgentTurnResponseStepStartPayload(
step_type=StepType.shield_call.value,
step_id=step_id,
metadata=dict(touchpoint=touchpoint),
)
)
)
await self.run_multiple_shields(messages, shields)
except SafetyException as e:
yield AgentTurnResponseStreamChunk(
event=AgentTurnResponseEvent(
payload=AgentTurnResponseStepCompletePayload(
step_type=StepType.shield_call.value,
step_id=step_id,
step_details=ShieldCallStep(
step_id=step_id,
turn_id=turn_id,
violation=e.violation,
started_at=shield_call_start_time,
completed_at=datetime.now().astimezone().isoformat(),
),
)
)
)
span.set_attribute("output", e.violation.model_dump_json())
yield CompletionMessage(
content=str(e),
stop_reason=StopReason.end_of_turn,
)
yield False
yield AgentTurnResponseStreamChunk(
event=AgentTurnResponseEvent(
payload=AgentTurnResponseStepCompletePayload(
step_type=StepType.shield_call.value,
step_id=step_id,
step_details=ShieldCallStep(
step_id=step_id,
turn_id=turn_id,
violation=None,
started_at=shield_call_start_time,
completed_at=datetime.now().astimezone().isoformat(),
),
)
)
)
span.set_attribute("output", "no violations")
async def _run(
self,
session_id: str,
turn_id: str,
input_messages: List[Message],
sampling_params: SamplingParams,
stream: bool = False,
documents: Optional[List[Document]] = None,
toolgroups_for_turn: Optional[List[AgentToolGroup]] = None,
) -> AsyncGenerator:
# TODO: simplify all of this code, it can be simpler
toolgroup_args = {}
toolgroups = set()
for toolgroup in self.agent_config.toolgroups + (toolgroups_for_turn or []):
if isinstance(toolgroup, AgentToolGroupWithArgs):
tool_group_name, tool_name = self._parse_toolgroup_name(toolgroup.name)
toolgroups.add(tool_group_name)
toolgroup_args[tool_group_name] = toolgroup.args
else:
toolgroups.add(toolgroup)
tool_defs, tool_to_group = await self._get_tool_defs(toolgroups_for_turn)
if documents:
await self.handle_documents(session_id, documents, input_messages, tool_defs)
session_info = await self.storage.get_session_info(session_id)
# if the session has a memory bank id, let the memory tool use it
if session_info and session_info.vector_db_id:
if RAG_TOOL_GROUP not in toolgroup_args:
toolgroup_args[RAG_TOOL_GROUP] = {"vector_db_ids": [session_info.vector_db_id]}
else:
toolgroup_args[RAG_TOOL_GROUP]["vector_db_ids"].append(session_info.vector_db_id)
output_attachments = []
n_iter = await self.storage.get_num_infer_iters_in_turn(session_id, turn_id) or 0
# Build a map of custom tools to their definitions for faster lookup
client_tools = {}
for tool in self.agent_config.client_tools:
client_tools[tool.name] = tool
while True:
step_id = str(uuid.uuid4())
inference_start_time = datetime.now().astimezone().isoformat()
yield AgentTurnResponseStreamChunk(
event=AgentTurnResponseEvent(
payload=AgentTurnResponseStepStartPayload(
step_type=StepType.inference.value,
step_id=step_id,
)
)
)
tool_calls = []
content = ""
stop_reason = None
async with tracing.span("inference") as span:
async for chunk in await self.inference_api.chat_completion(
self.agent_config.model,
input_messages,
tools=tool_defs,
tool_prompt_format=self.agent_config.tool_config.tool_prompt_format,
response_format=self.agent_config.response_format,
stream=True,
sampling_params=sampling_params,
tool_config=self.agent_config.tool_config,
):
event = chunk.event
if event.event_type == ChatCompletionResponseEventType.start:
continue
elif event.event_type == ChatCompletionResponseEventType.complete:
stop_reason = StopReason.end_of_turn
continue
delta = event.delta
if delta.type == "tool_call":
if delta.parse_status == ToolCallParseStatus.succeeded:
tool_calls.append(delta.tool_call)
elif delta.parse_status == ToolCallParseStatus.failed:
# If we cannot parse the tools, set the content to the unparsed raw text
content = delta.tool_call
if stream:
yield AgentTurnResponseStreamChunk(
event=AgentTurnResponseEvent(
payload=AgentTurnResponseStepProgressPayload(
step_type=StepType.inference.value,
step_id=step_id,
delta=delta,
)
)
)
elif delta.type == "text":
content += delta.text
if stream and event.stop_reason is None:
yield AgentTurnResponseStreamChunk(
event=AgentTurnResponseEvent(
payload=AgentTurnResponseStepProgressPayload(
step_type=StepType.inference.value,
step_id=step_id,
delta=delta,
)
)
)
else:
raise ValueError(f"Unexpected delta type {type(delta)}")
if event.stop_reason is not None:
stop_reason = event.stop_reason
span.set_attribute("stop_reason", stop_reason)
span.set_attribute(
"input",
json.dumps([json.loads(m.model_dump_json()) for m in input_messages]),
)
output_attr = json.dumps(
{
"content": content,
"tool_calls": [json.loads(t.model_dump_json()) for t in tool_calls],
}
)
span.set_attribute("output", output_attr)
n_iter += 1
await self.storage.set_num_infer_iters_in_turn(session_id, turn_id, n_iter)
stop_reason = stop_reason or StopReason.out_of_tokens
# If tool calls are parsed successfully,
# if content is not made null the tool call str will also be in the content
# and tokens will have tool call syntax included twice
if tool_calls:
content = ""
message = CompletionMessage(
content=content,
stop_reason=stop_reason,
tool_calls=tool_calls,
)
yield AgentTurnResponseStreamChunk(
event=AgentTurnResponseEvent(
payload=AgentTurnResponseStepCompletePayload(
step_type=StepType.inference.value,
step_id=step_id,
step_details=InferenceStep(
# somewhere deep, we are re-assigning message or closing over some
# variable which causes message to mutate later on. fix with a
# `deepcopy` for now, but this is symptomatic of a deeper issue.
step_id=step_id,
turn_id=turn_id,
model_response=copy.deepcopy(message),
started_at=inference_start_time,
completed_at=datetime.now().astimezone().isoformat(),
),
)
)
)
if n_iter >= self.agent_config.max_infer_iters:
logger.info(f"done with MAX iterations ({n_iter}), exiting.")
# NOTE: mark end_of_turn to indicate to client that we are done with the turn
# Do not continue the tool call loop after this point
message.stop_reason = StopReason.end_of_turn
yield message
break
if stop_reason == StopReason.out_of_tokens:
logger.info("out of token budget, exiting.")
yield message
break
if len(message.tool_calls) == 0:
if stop_reason == StopReason.end_of_turn:
# TODO: UPDATE RETURN TYPE TO SEND A TUPLE OF (MESSAGE, ATTACHMENTS)
if len(output_attachments) > 0:
if isinstance(message.content, list):
message.content += output_attachments
else:
message.content = [message.content] + output_attachments
yield message
else:
logger.debug(f"completion message with EOM (iter: {n_iter}): {str(message)}")
input_messages = input_messages + [message]
else:
logger.debug(f"completion message (iter: {n_iter}) from the model: {str(message)}")
# 1. Start the tool execution step and progress
step_id = str(uuid.uuid4())
yield AgentTurnResponseStreamChunk(
event=AgentTurnResponseEvent(
payload=AgentTurnResponseStepStartPayload(
step_type=StepType.tool_execution.value,
step_id=step_id,
)
)
)
tool_call = message.tool_calls[0]
yield AgentTurnResponseStreamChunk(
event=AgentTurnResponseEvent(
payload=AgentTurnResponseStepProgressPayload(
step_type=StepType.tool_execution.value,
step_id=step_id,
tool_call=tool_call,
delta=ToolCallDelta(
parse_status=ToolCallParseStatus.in_progress,
tool_call=tool_call,
),
)
)
)
# If tool is a client tool, yield CompletionMessage and return
if tool_call.tool_name in client_tools:
# NOTE: mark end_of_message to indicate to client that it may
# call the tool and continue the conversation with the tool's response.
message.stop_reason = StopReason.end_of_message
await self.storage.set_in_progress_tool_call_step(
session_id,
turn_id,
ToolExecutionStep(
step_id=step_id,
turn_id=turn_id,
tool_calls=[tool_call],
tool_responses=[],
started_at=datetime.now().astimezone().isoformat(),
),
)
yield message
return
# If tool is a builtin server tool, execute it
tool_name = tool_call.tool_name
if isinstance(tool_name, BuiltinTool):
tool_name = tool_name.value
async with tracing.span(
"tool_execution",
{
"tool_name": tool_name,
"input": message.model_dump_json(),
},
) as span:
tool_execution_start_time = datetime.now().astimezone().isoformat()
tool_call = message.tool_calls[0]
tool_result = await execute_tool_call_maybe(
self.tool_runtime_api,
session_id,
tool_call,
toolgroup_args,
tool_to_group,
)
if tool_result.content is None:
raise ValueError(
f"Tool call result (id: {tool_call.call_id}, name: {tool_call.tool_name}) does not have any content"
)
result_messages = [
ToolResponseMessage(
call_id=tool_call.call_id,
tool_name=tool_call.tool_name,
content=tool_result.content,
)
]
assert len(result_messages) == 1, "Currently not supporting multiple messages"
result_message = result_messages[0]
span.set_attribute("output", result_message.model_dump_json())
yield AgentTurnResponseStreamChunk(
event=AgentTurnResponseEvent(
payload=AgentTurnResponseStepCompletePayload(
step_type=StepType.tool_execution.value,
step_id=step_id,
step_details=ToolExecutionStep(
step_id=step_id,
turn_id=turn_id,
tool_calls=[tool_call],
tool_responses=[
ToolResponse(
call_id=result_message.call_id,
tool_name=result_message.tool_name,
content=result_message.content,
metadata=tool_result.metadata,
)
],
started_at=tool_execution_start_time,
completed_at=datetime.now().astimezone().isoformat(),
),
)
)
)
# TODO: add tool-input touchpoint and a "start" event for this step also
# but that needs a lot more refactoring of Tool code potentially
if (type(result_message.content) is str) and (
out_attachment := _interpret_content_as_attachment(result_message.content)
):
# NOTE: when we push this message back to the model, the model may ignore the
# attached file path etc. since the model is trained to only provide a user message
# with the summary. We keep all generated attachments and then attach them to final message
output_attachments.append(out_attachment)
input_messages = input_messages + [message, result_message]
async def _get_tool_defs(
self, toolgroups_for_turn: Optional[List[AgentToolGroup]] = None
) -> Tuple[List[ToolDefinition], Dict[str, str]]:
# Determine which tools to include
tool_groups_to_include = toolgroups_for_turn or self.agent_config.toolgroups or []
agent_config_toolgroups = []
for toolgroup in tool_groups_to_include:
name = toolgroup.name if isinstance(toolgroup, AgentToolGroupWithArgs) else toolgroup
if name not in agent_config_toolgroups:
agent_config_toolgroups.append(name)
tool_name_to_def = {}
tool_to_group = {}
for tool_def in self.agent_config.client_tools:
if tool_name_to_def.get(tool_def.name, None):
raise ValueError(f"Tool {tool_def.name} already exists")
tool_name_to_def[tool_def.name] = ToolDefinition(
tool_name=tool_def.name,
description=tool_def.description,
parameters={
param.name: ToolParamDefinition(
param_type=param.parameter_type,
description=param.description,
required=param.required,
default=param.default,
)
for param in tool_def.parameters
},
)
tool_to_group[tool_def.name] = "__client_tools__"
for toolgroup_name_with_maybe_tool_name in agent_config_toolgroups:
toolgroup_name, tool_name = self._parse_toolgroup_name(toolgroup_name_with_maybe_tool_name)
tools = await self.tool_groups_api.list_tools(toolgroup_id=toolgroup_name)
if not tools.data:
available_tool_groups = ", ".join(
[t.identifier for t in (await self.tool_groups_api.list_tool_groups()).data]
)
raise ValueError(f"Toolgroup {toolgroup_name} not found, available toolgroups: {available_tool_groups}")
if tool_name is not None and not any(tool.identifier == tool_name for tool in tools.data):
raise ValueError(
f"Tool {tool_name} not found in toolgroup {toolgroup_name}. Available tools: {', '.join([tool.identifier for tool in tools.data])}"
)
for tool_def in tools.data:
if toolgroup_name.startswith("builtin") and toolgroup_name != RAG_TOOL_GROUP:
tool_name = tool_def.identifier
built_in_type = BuiltinTool.brave_search
if tool_name == "web_search":
built_in_type = BuiltinTool.brave_search
else:
built_in_type = BuiltinTool(tool_name)
if tool_name_to_def.get(built_in_type, None):
raise ValueError(f"Tool {built_in_type} already exists")
tool_name_to_def[built_in_type] = ToolDefinition(
tool_name=built_in_type,
description=tool_def.description,
parameters={
param.name: ToolParamDefinition(
param_type=param.parameter_type,
description=param.description,
required=param.required,
default=param.default,
)
for param in tool_def.parameters
},
)
tool_to_group[built_in_type] = tool_def.toolgroup_id
continue
if tool_name_to_def.get(tool_def.identifier, None):
raise ValueError(f"Tool {tool_def.identifier} already exists")
if tool_name in (None, tool_def.identifier):
tool_name_to_def[tool_def.identifier] = ToolDefinition(
tool_name=tool_def.identifier,
description=tool_def.description,
parameters={
param.name: ToolParamDefinition(
param_type=param.parameter_type,
description=param.description,
required=param.required,
default=param.default,
)
for param in tool_def.parameters
},
)
tool_to_group[tool_def.identifier] = tool_def.toolgroup_id
return list(tool_name_to_def.values()), tool_to_group
def _parse_toolgroup_name(self, toolgroup_name_with_maybe_tool_name: str) -> tuple[str, Optional[str]]:
"""Parse a toolgroup name into its components.
Args:
toolgroup_name: The toolgroup name to parse (e.g. "builtin::rag/knowledge_search")
Returns:
A tuple of (tool_type, tool_group, tool_name)
"""
split_names = toolgroup_name_with_maybe_tool_name.split("/")
if len(split_names) == 2:
# e.g. "builtin::rag"
tool_group, tool_name = split_names
else:
tool_group, tool_name = split_names[0], None
return tool_group, tool_name
async def handle_documents(
self,
session_id: str,
documents: List[Document],
input_messages: List[Message],
tool_defs: Dict[str, ToolDefinition],
) -> None:
memory_tool = any(tool_def.tool_name == MEMORY_QUERY_TOOL for tool_def in tool_defs)
code_interpreter_tool = any(tool_def.tool_name == BuiltinTool.code_interpreter for tool_def in tool_defs)
content_items = []
url_items = []
pattern = re.compile("^(https?://|file://|data:)")
for d in documents:
if isinstance(d.content, URL):
url_items.append(d.content)
elif pattern.match(d.content):
url_items.append(URL(uri=d.content))
else:
content_items.append(d)
# Save the contents to a tempdir and use its path as a URL if code interpreter is present
if code_interpreter_tool:
for c in content_items:
temp_file_path = os.path.join(self.tempdir, f"{make_random_string()}.txt")
with open(temp_file_path, "w") as temp_file:
temp_file.write(c.content)
url_items.append(URL(uri=f"file://{temp_file_path}"))
if memory_tool and code_interpreter_tool:
# if both memory and code_interpreter are available, we download the URLs
# and attach the data to the last message.
msg = await attachment_message(self.tempdir, url_items)
input_messages.append(msg)
# Since memory is present, add all the data to the memory bank
await self.add_to_session_vector_db(session_id, documents)
elif code_interpreter_tool:
# if only code_interpreter is available, we download the URLs to a tempdir
# and attach the path to them as a message to inference with the
# assumption that the model invokes the code_interpreter tool with the path
msg = await attachment_message(self.tempdir, url_items)
input_messages.append(msg)
elif memory_tool:
# if only memory is available, we load the data from the URLs and content items to the memory bank
await self.add_to_session_vector_db(session_id, documents)
else:
# if no memory or code_interpreter tool is available,
# we try to load the data from the URLs and content items as a message to inference
# and add it to the last message's context
input_messages[-1].context = "\n".join(
[doc.content for doc in content_items] + await load_data_from_urls(url_items)
)
async def _ensure_vector_db(self, session_id: str) -> str:
session_info = await self.storage.get_session_info(session_id)
if session_info is None:
raise ValueError(f"Session {session_id} not found")
if session_info.vector_db_id is None:
vector_db_id = f"vector_db_{session_id}"
# TODO: the semantic for registration is definitely not "creation"
# so we need to fix it if we expect the agent to create a new vector db
# for each session
await self.vector_io_api.register_vector_db(
vector_db_id=vector_db_id,
embedding_model="all-MiniLM-L6-v2",
)
await self.storage.add_vector_db_to_session(session_id, vector_db_id)
else:
vector_db_id = session_info.vector_db_id
return vector_db_id
async def add_to_session_vector_db(self, session_id: str, data: List[Document]) -> None:
vector_db_id = await self._ensure_vector_db(session_id)
documents = [
RAGDocument(
document_id=str(uuid.uuid4()),
content=a.content,
mime_type=a.mime_type,
metadata={},
)
for a in data
]
await self.tool_runtime_api.rag_tool.insert(
documents=documents,
vector_db_id=vector_db_id,
chunk_size_in_tokens=512,
)
async def load_data_from_urls(urls: List[URL]) -> List[str]:
data = []
for url in urls:
uri = url.uri
if uri.startswith("file://"):
filepath = uri[len("file://") :]
with open(filepath, "r") as f:
data.append(f.read())
elif uri.startswith("http"):
async with httpx.AsyncClient() as client:
r = await client.get(uri)
resp = r.text
data.append(resp)
return data
async def attachment_message(tempdir: str, urls: List[URL]) -> ToolResponseMessage:
content = []
for url in urls:
uri = url.uri
if uri.startswith("file://"):
filepath = uri[len("file://") :]
elif uri.startswith("http"):
path = urlparse(uri).path
basename = os.path.basename(path)
filepath = f"{tempdir}/{make_random_string() + basename}"
logger.info(f"Downloading {url} -> {filepath}")
async with httpx.AsyncClient() as client:
r = await client.get(uri)
resp = r.text
with open(filepath, "w") as fp:
fp.write(resp)
else:
raise ValueError(f"Unsupported URL {url}")
content.append(
TextContentItem(
text=f'# User provided a file accessible to you at "{filepath}"\nYou can use code_interpreter to load and inspect it.'
)
)
return ToolResponseMessage(
call_id="",
tool_name=BuiltinTool.code_interpreter,
content=content,
)
async def execute_tool_call_maybe(
tool_runtime_api: ToolRuntime,
session_id: str,
tool_call: ToolCall,
toolgroup_args: Dict[str, Dict[str, Any]],
tool_to_group: Dict[str, str],
) -> ToolInvocationResult:
name = tool_call.tool_name
group_name = tool_to_group.get(name, None)
if group_name is None:
raise ValueError(f"Tool {name} not found in any tool group")
if isinstance(name, BuiltinTool):
if name == BuiltinTool.brave_search:
name = WEB_SEARCH_TOOL
else:
name = name.value
logger.info(f"executing tool call: {name} with args: {tool_call.arguments}")
result = await tool_runtime_api.invoke_tool(
tool_name=name,
kwargs={
"session_id": session_id,
# get the arguments generated by the model and augment with toolgroup arg overrides for the agent
**tool_call.arguments,
**toolgroup_args.get(group_name, {}),
},
)
logger.info(f"tool call {name} completed with result: {result}")
return result
def _interpret_content_as_attachment(
content: str,
) -> Optional[Attachment]:
match = re.search(TOOLS_ATTACHMENT_KEY_REGEX, content)
if match:
snippet = match.group(1)
data = json.loads(snippet)
return Attachment(
url=URL(uri="file://" + data["filepath"]),
mime_type=data["mimetype"],
)
return None