forked from phoenix-oss/llama-stack-mirror
# What does this PR do? [Provide a short summary of what this PR does and why. Link to relevant issues if applicable.] [//]: # (If resolving an issue, uncomment and update the line below) [//]: # (Closes #[issue-number]) ## Test Plan [Describe the tests you ran to verify your changes with result summaries. *Provide clear instructions so the plan can be easily re-executed.*] [//]: # (## Documentation) --------- Co-authored-by: Francisco Arceo <farceo@redhat.com>
3.2 KiB
3.2 KiB
NVIDIA Distribution
The llamastack/distribution-nvidia
distribution consists of the following provider configurations.
API | Provider(s) |
---|---|
agents | inline::meta-reference |
datasetio | inline::localfs |
eval | inline::meta-reference |
inference | remote::nvidia |
post_training | remote::nvidia |
safety | remote::nvidia |
scoring | inline::basic |
telemetry | inline::meta-reference |
tool_runtime | inline::rag-runtime |
vector_io | inline::faiss |
Environment Variables
The following environment variables can be configured:
NVIDIA_API_KEY
: NVIDIA API Key (default: ``)NVIDIA_USER_ID
: NVIDIA User ID (default:llama-stack-user
)NVIDIA_DATASET_NAMESPACE
: NVIDIA Dataset Namespace (default:default
)NVIDIA_ACCESS_POLICIES
: NVIDIA Access Policies (default:{}
)NVIDIA_PROJECT_ID
: NVIDIA Project ID (default:test-project
)NVIDIA_CUSTOMIZER_URL
: NVIDIA Customizer URL (default:https://customizer.api.nvidia.com
)NVIDIA_OUTPUT_MODEL_DIR
: NVIDIA Output Model Directory (default:test-example-model@v1
)GUARDRAILS_SERVICE_URL
: URL for the NeMo Guardrails Service (default:http://0.0.0.0:7331
)INFERENCE_MODEL
: Inference model (default:Llama3.1-8B-Instruct
)SAFETY_MODEL
: Name of the model to use for safety (default:meta/llama-3.1-8b-instruct
)
Models
The following models are available by default:
meta/llama3-8b-instruct (aliases: meta-llama/Llama-3-8B-Instruct)
meta/llama3-70b-instruct (aliases: meta-llama/Llama-3-70B-Instruct)
meta/llama-3.1-8b-instruct (aliases: meta-llama/Llama-3.1-8B-Instruct)
meta/llama-3.1-70b-instruct (aliases: meta-llama/Llama-3.1-70B-Instruct)
meta/llama-3.1-405b-instruct (aliases: meta-llama/Llama-3.1-405B-Instruct-FP8)
meta/llama-3.2-1b-instruct (aliases: meta-llama/Llama-3.2-1B-Instruct)
meta/llama-3.2-3b-instruct (aliases: meta-llama/Llama-3.2-3B-Instruct)
meta/llama-3.2-11b-vision-instruct (aliases: meta-llama/Llama-3.2-11B-Vision-Instruct)
meta/llama-3.2-90b-vision-instruct (aliases: meta-llama/Llama-3.2-90B-Vision-Instruct)
nvidia/llama-3.2-nv-embedqa-1b-v2
nvidia/nv-embedqa-e5-v5
nvidia/nv-embedqa-mistral-7b-v2
snowflake/arctic-embed-l
Prerequisite: API Keys
Make sure you have access to a NVIDIA API Key. You can get one by visiting https://build.nvidia.com/.
Running Llama Stack with NVIDIA
You can do this via Conda (build code) or Docker which has a pre-built image.
Via Docker
This method allows you to get started quickly without having to build the distribution code.
LLAMA_STACK_PORT=8321
docker run \
-it \
--pull always \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ./run.yaml:/root/my-run.yaml \
llamastack/distribution-nvidia \
--yaml-config /root/my-run.yaml \
--port $LLAMA_STACK_PORT \
--env NVIDIA_API_KEY=$NVIDIA_API_KEY
Via Conda
llama stack build --template nvidia --image-type conda
llama stack run ./run.yaml \
--port 8321 \
--env NVIDIA_API_KEY=$NVIDIA_API_KEY
--env INFERENCE_MODEL=$INFERENCE_MODEL