llama-stack/docs/source/distributions/self_hosted_distro/nvidia.md
raghotham ed58a94b30
docs: fixes to quick start (#1943)
# What does this PR do?
[Provide a short summary of what this PR does and why. Link to relevant
issues if applicable.]

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]

[//]: # (## Documentation)

---------

Co-authored-by: Francisco Arceo <farceo@redhat.com>
2025-04-11 13:41:23 -07:00

3.2 KiB

NVIDIA Distribution

The llamastack/distribution-nvidia distribution consists of the following provider configurations.

API Provider(s)
agents inline::meta-reference
datasetio inline::localfs
eval inline::meta-reference
inference remote::nvidia
post_training remote::nvidia
safety remote::nvidia
scoring inline::basic
telemetry inline::meta-reference
tool_runtime inline::rag-runtime
vector_io inline::faiss

Environment Variables

The following environment variables can be configured:

  • NVIDIA_API_KEY: NVIDIA API Key (default: ``)
  • NVIDIA_USER_ID: NVIDIA User ID (default: llama-stack-user)
  • NVIDIA_DATASET_NAMESPACE: NVIDIA Dataset Namespace (default: default)
  • NVIDIA_ACCESS_POLICIES: NVIDIA Access Policies (default: {})
  • NVIDIA_PROJECT_ID: NVIDIA Project ID (default: test-project)
  • NVIDIA_CUSTOMIZER_URL: NVIDIA Customizer URL (default: https://customizer.api.nvidia.com)
  • NVIDIA_OUTPUT_MODEL_DIR: NVIDIA Output Model Directory (default: test-example-model@v1)
  • GUARDRAILS_SERVICE_URL: URL for the NeMo Guardrails Service (default: http://0.0.0.0:7331)
  • INFERENCE_MODEL: Inference model (default: Llama3.1-8B-Instruct)
  • SAFETY_MODEL: Name of the model to use for safety (default: meta/llama-3.1-8b-instruct)

Models

The following models are available by default:

  • meta/llama3-8b-instruct (aliases: meta-llama/Llama-3-8B-Instruct)
  • meta/llama3-70b-instruct (aliases: meta-llama/Llama-3-70B-Instruct)
  • meta/llama-3.1-8b-instruct (aliases: meta-llama/Llama-3.1-8B-Instruct)
  • meta/llama-3.1-70b-instruct (aliases: meta-llama/Llama-3.1-70B-Instruct)
  • meta/llama-3.1-405b-instruct (aliases: meta-llama/Llama-3.1-405B-Instruct-FP8)
  • meta/llama-3.2-1b-instruct (aliases: meta-llama/Llama-3.2-1B-Instruct)
  • meta/llama-3.2-3b-instruct (aliases: meta-llama/Llama-3.2-3B-Instruct)
  • meta/llama-3.2-11b-vision-instruct (aliases: meta-llama/Llama-3.2-11B-Vision-Instruct)
  • meta/llama-3.2-90b-vision-instruct (aliases: meta-llama/Llama-3.2-90B-Vision-Instruct)
  • nvidia/llama-3.2-nv-embedqa-1b-v2
  • nvidia/nv-embedqa-e5-v5
  • nvidia/nv-embedqa-mistral-7b-v2
  • snowflake/arctic-embed-l

Prerequisite: API Keys

Make sure you have access to a NVIDIA API Key. You can get one by visiting https://build.nvidia.com/.

Running Llama Stack with NVIDIA

You can do this via Conda (build code) or Docker which has a pre-built image.

Via Docker

This method allows you to get started quickly without having to build the distribution code.

LLAMA_STACK_PORT=8321
docker run \
  -it \
  --pull always \
  -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
  -v ./run.yaml:/root/my-run.yaml \
  llamastack/distribution-nvidia \
  --yaml-config /root/my-run.yaml \
  --port $LLAMA_STACK_PORT \
  --env NVIDIA_API_KEY=$NVIDIA_API_KEY

Via Conda

llama stack build --template nvidia --image-type conda
llama stack run ./run.yaml \
  --port 8321 \
  --env NVIDIA_API_KEY=$NVIDIA_API_KEY
  --env INFERENCE_MODEL=$INFERENCE_MODEL