# What does this PR do? Rename environment var for consistency ## Test Plan No regressions ## Sources ## Before submitting - [X] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [X] Ran pre-commit to handle lint / formatting issues. - [X] Read the [contributor guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md), Pull Request section? - [X] Updated relevant documentation. - [ ] Wrote necessary unit or integration tests. --------- Signed-off-by: Yuan Tang <terrytangyuan@gmail.com> Co-authored-by: Yuan Tang <terrytangyuan@gmail.com>
4.3 KiB
| orphan |
|---|
| true |
TGI Distribution
:maxdepth: 2
:hidden:
self
The llamastack/distribution-tgi distribution consists of the following provider configurations.
| API | Provider(s) |
|---|---|
| agents | inline::meta-reference |
| datasetio | remote::huggingface, inline::localfs |
| eval | inline::meta-reference |
| inference | remote::tgi |
| memory | inline::faiss, remote::chromadb, remote::pgvector |
| safety | inline::llama-guard |
| scoring | inline::basic, inline::llm-as-judge, inline::braintrust |
| telemetry | inline::meta-reference |
| tool_runtime | remote::brave-search, remote::tavily-search, inline::code-interpreter, inline::memory-runtime |
You can use this distribution if you have GPUs and want to run an independent TGI server container for running inference.
Environment Variables
The following environment variables can be configured:
LLAMA_STACK_PORT: Port for the Llama Stack distribution server (default:5001)INFERENCE_MODEL: Inference model loaded into the TGI server (default:meta-llama/Llama-3.2-3B-Instruct)TGI_URL: URL of the TGI server with the main inference model (default:http://127.0.0.1:8080}/v1)TGI_SAFETY_URL: URL of the TGI server with the safety model (default:http://127.0.0.1:8081/v1)SAFETY_MODEL: Name of the safety (Llama-Guard) model to use (default:meta-llama/Llama-Guard-3-1B)
Setting up TGI server
Please check the TGI Getting Started Guide to get a TGI endpoint. Here is a sample script to start a TGI server locally via Docker:
export INFERENCE_PORT=8080
export INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
export CUDA_VISIBLE_DEVICES=0
docker run --rm -it \
-v $HOME/.cache/huggingface:/data \
-p $INFERENCE_PORT:$INFERENCE_PORT \
--gpus $CUDA_VISIBLE_DEVICES \
ghcr.io/huggingface/text-generation-inference:2.3.1 \
--dtype bfloat16 \
--usage-stats off \
--sharded false \
--cuda-memory-fraction 0.7 \
--model-id $INFERENCE_MODEL \
--port $INFERENCE_PORT
If you are using Llama Stack Safety / Shield APIs, then you will need to also run another instance of a TGI with a corresponding safety model like meta-llama/Llama-Guard-3-1B using a script like:
export SAFETY_PORT=8081
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
export CUDA_VISIBLE_DEVICES=1
docker run --rm -it \
-v $HOME/.cache/huggingface:/data \
-p $SAFETY_PORT:$SAFETY_PORT \
--gpus $CUDA_VISIBLE_DEVICES \
ghcr.io/huggingface/text-generation-inference:2.3.1 \
--dtype bfloat16 \
--usage-stats off \
--sharded false \
--model-id $SAFETY_MODEL \
--port $SAFETY_PORT
Running Llama Stack
Now you are ready to run Llama Stack with TGI as the inference provider. You can do this via Conda (build code) or Docker which has a pre-built image.
Via Docker
This method allows you to get started quickly without having to build the distribution code.
LLAMA_STACK_PORT=5001
docker run \
-it \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
llamastack/distribution-tgi \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env TGI_URL=http://host.docker.internal:$INFERENCE_PORT
If you are using Llama Stack Safety / Shield APIs, use:
docker run \
-it \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ./run-with-safety.yaml:/root/my-run.yaml \
llamastack/distribution-tgi \
--yaml-config /root/my-run.yaml \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env TGI_URL=http://host.docker.internal:$INFERENCE_PORT \
--env SAFETY_MODEL=$SAFETY_MODEL \
--env TGI_SAFETY_URL=http://host.docker.internal:$SAFETY_PORT
Via Conda
Make sure you have done pip install llama-stack and have the Llama Stack CLI available.
llama stack build --template tgi --image-type conda
llama stack run ./run.yaml
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env TGI_URL=http://127.0.0.1:$INFERENCE_PORT
If you are using Llama Stack Safety / Shield APIs, use:
llama stack run ./run-with-safety.yaml \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env TGI_URL=http://127.0.0.1:$INFERENCE_PORT \
--env SAFETY_MODEL=$SAFETY_MODEL \
--env TGI_SAFETY_URL=http://127.0.0.1:$SAFETY_PORT