forked from phoenix-oss/llama-stack-mirror
# What does this PR do? PR #639 introduced the notion of Tools API and ability to invoke tools through API just as any resource. This PR changes the Agents to start using the Tools API to invoke tools. Major changes include: 1) Ability to specify tool groups with AgentConfig 2) Agent gets the corresponding tool definitions for the specified tools and pass along to the model 3) Attachements are now named as Documents and their behavior is mostly unchanged from user perspective 4) You can specify args that can be injected to a tool call through Agent config. This is especially useful in case of memory tool, where you want the tool to operate on a specific memory bank. 5) You can also register tool groups with args, which lets the agent inject these as well into the tool call. 6) All tests have been migrated to use new tools API and fixtures including client SDK tests 7) Telemetry just works with tools API because of our trace protocol decorator ## Test Plan ``` pytest -s -v -k fireworks llama_stack/providers/tests/agents/test_agents.py \ --safety-shield=meta-llama/Llama-Guard-3-8B \ --inference-model=meta-llama/Llama-3.1-8B-Instruct pytest -s -v -k together llama_stack/providers/tests/tools/test_tools.py \ --safety-shield=meta-llama/Llama-Guard-3-8B \ --inference-model=meta-llama/Llama-3.1-8B-Instruct LLAMA_STACK_CONFIG="/Users/dineshyv/.llama/distributions/llamastack-together/together-run.yaml" pytest -v tests/client-sdk/agents/test_agents.py ``` run.yaml: https://gist.github.com/dineshyv/0365845ad325e1c2cab755788ccc5994 Notebook: https://colab.research.google.com/drive/1ck7hXQxRl6UvT-ijNRZ-gMZxH1G3cN2d?usp=sharing
154 lines
4.8 KiB
Markdown
154 lines
4.8 KiB
Markdown
---
|
|
orphan: true
|
|
---
|
|
# Remote vLLM Distribution
|
|
```{toctree}
|
|
:maxdepth: 2
|
|
:hidden:
|
|
|
|
self
|
|
```
|
|
|
|
The `llamastack/distribution-remote-vllm` distribution consists of the following provider configurations:
|
|
|
|
| API | Provider(s) |
|
|
|-----|-------------|
|
|
| agents | `inline::meta-reference` |
|
|
| inference | `remote::vllm` |
|
|
| memory | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
|
| safety | `inline::llama-guard` |
|
|
| telemetry | `inline::meta-reference` |
|
|
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::memory-runtime` |
|
|
|
|
|
|
You can use this distribution if you have GPUs and want to run an independent vLLM server container for running inference.
|
|
|
|
### Environment Variables
|
|
|
|
The following environment variables can be configured:
|
|
|
|
- `LLAMASTACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
|
|
- `INFERENCE_MODEL`: Inference model loaded into the vLLM server (default: `meta-llama/Llama-3.2-3B-Instruct`)
|
|
- `VLLM_URL`: URL of the vLLM server with the main inference model (default: `http://host.docker.internal:5100}/v1`)
|
|
- `MAX_TOKENS`: Maximum number of tokens for generation (default: `4096`)
|
|
- `SAFETY_VLLM_URL`: URL of the vLLM server with the safety model (default: `http://host.docker.internal:5101/v1`)
|
|
- `SAFETY_MODEL`: Name of the safety (Llama-Guard) model to use (default: `meta-llama/Llama-Guard-3-1B`)
|
|
|
|
|
|
## Setting up vLLM server
|
|
|
|
Please check the [vLLM Documentation](https://docs.vllm.ai/en/v0.5.5/serving/deploying_with_docker.html) to get a vLLM endpoint. Here is a sample script to start a vLLM server locally via Docker:
|
|
|
|
```bash
|
|
export INFERENCE_PORT=8000
|
|
export INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
|
|
export CUDA_VISIBLE_DEVICES=0
|
|
|
|
docker run \
|
|
--runtime nvidia \
|
|
--gpus $CUDA_VISIBLE_DEVICES \
|
|
-v ~/.cache/huggingface:/root/.cache/huggingface \
|
|
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
|
|
-p $INFERENCE_PORT:$INFERENCE_PORT \
|
|
--ipc=host \
|
|
vllm/vllm-openai:latest \
|
|
--gpu-memory-utilization 0.7 \
|
|
--model $INFERENCE_MODEL \
|
|
--port $INFERENCE_PORT
|
|
```
|
|
|
|
If you are using Llama Stack Safety / Shield APIs, then you will need to also run another instance of a vLLM with a corresponding safety model like `meta-llama/Llama-Guard-3-1B` using a script like:
|
|
|
|
```bash
|
|
export SAFETY_PORT=8081
|
|
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
|
|
export CUDA_VISIBLE_DEVICES=1
|
|
|
|
docker run \
|
|
--runtime nvidia \
|
|
--gpus $CUDA_VISIBLE_DEVICES \
|
|
-v ~/.cache/huggingface:/root/.cache/huggingface \
|
|
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
|
|
-p $SAFETY_PORT:$SAFETY_PORT \
|
|
--ipc=host \
|
|
vllm/vllm-openai:latest \
|
|
--gpu-memory-utilization 0.7 \
|
|
--model $SAFETY_MODEL \
|
|
--port $SAFETY_PORT
|
|
```
|
|
|
|
## Running Llama Stack
|
|
|
|
Now you are ready to run Llama Stack with vLLM as the inference provider. You can do this via Conda (build code) or Docker which has a pre-built image.
|
|
|
|
### Via Docker
|
|
|
|
This method allows you to get started quickly without having to build the distribution code.
|
|
|
|
```bash
|
|
export INFERENCE_PORT=8000
|
|
export INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
|
|
export LLAMA_STACK_PORT=5001
|
|
|
|
docker run \
|
|
-it \
|
|
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
|
-v ./run.yaml:/root/my-run.yaml \
|
|
llamastack/distribution-remote-vllm \
|
|
--yaml-config /root/my-run.yaml \
|
|
--port $LLAMA_STACK_PORT \
|
|
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
|
--env VLLM_URL=http://host.docker.internal:$INFERENCE_PORT/v1
|
|
```
|
|
|
|
If you are using Llama Stack Safety / Shield APIs, use:
|
|
|
|
```bash
|
|
export SAFETY_PORT=8081
|
|
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
|
|
|
|
docker run \
|
|
-it \
|
|
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
|
-v ./run-with-safety.yaml:/root/my-run.yaml \
|
|
llamastack/distribution-remote-vllm \
|
|
--yaml-config /root/my-run.yaml \
|
|
--port $LLAMA_STACK_PORT \
|
|
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
|
--env VLLM_URL=http://host.docker.internal:$INFERENCE_PORT/v1 \
|
|
--env SAFETY_MODEL=$SAFETY_MODEL \
|
|
--env SAFETY_VLLM_URL=http://host.docker.internal:$SAFETY_PORT/v1
|
|
```
|
|
|
|
|
|
### Via Conda
|
|
|
|
Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available.
|
|
|
|
```bash
|
|
export INFERENCE_PORT=8000
|
|
export INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
|
|
export LLAMA_STACK_PORT=5001
|
|
|
|
cd distributions/remote-vllm
|
|
llama stack build --template remote-vllm --image-type conda
|
|
|
|
llama stack run ./run.yaml \
|
|
--port $LLAMA_STACK_PORT \
|
|
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
|
--env VLLM_URL=http://localhost:$INFERENCE_PORT/v1
|
|
```
|
|
|
|
If you are using Llama Stack Safety / Shield APIs, use:
|
|
|
|
```bash
|
|
export SAFETY_PORT=8081
|
|
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
|
|
|
|
llama stack run ./run-with-safety.yaml \
|
|
--port $LLAMA_STACK_PORT \
|
|
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
|
--env VLLM_URL=http://localhost:$INFERENCE_PORT/v1 \
|
|
--env SAFETY_MODEL=$SAFETY_MODEL \
|
|
--env SAFETY_VLLM_URL=http://localhost:$SAFETY_PORT/v1
|
|
```
|