Litellm dev 12 07 2024 (#7086)
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 11s

* fix(main.py): support passing max retries to azure/openai embedding integrations

Fixes https://github.com/BerriAI/litellm/issues/7003

* feat(team_endpoints.py): allow updating team model aliases

Closes https://github.com/BerriAI/litellm/issues/6956

* feat(router.py): allow specifying model id as fallback - skips any cooldown check

Allows a default model to be checked if all models in cooldown

s/o @micahjsmith

* docs(reliability.md): add fallback to specific model to docs

* fix(utils.py): new 'is_prompt_caching_valid_prompt' helper util

Allows user to identify if messages/tools have prompt caching

Related issue: https://github.com/BerriAI/litellm/issues/6784

* feat(router.py): store model id for prompt caching valid prompt

Allows routing to that model id on subsequent requests

* fix(router.py): only cache if prompt is valid prompt caching prompt

prevents storing unnecessary items in cache

* feat(router.py): support routing prompt caching enabled models to previous deployments

Closes https://github.com/BerriAI/litellm/issues/6784

* test: fix linting errors

* feat(databricks/): convert basemodel to dict and exclude none values

allow passing pydantic message to databricks

* fix(utils.py): ensure all chat completion messages are dict

* (feat) Track `custom_llm_provider` in LiteLLMSpendLogs (#7081)

* add custom_llm_provider to SpendLogsPayload

* add custom_llm_provider to SpendLogs

* add custom llm provider to SpendLogs payload

* test_spend_logs_payload

* Add MLflow to the side bar (#7031)

Signed-off-by: B-Step62 <yuki.watanabe@databricks.com>

* (bug fix) SpendLogs update DB catch all possible DB errors for retrying  (#7082)

* catch DB_CONNECTION_ERROR_TYPES

* fix DB retry mechanism for SpendLog updates

* use DB_CONNECTION_ERROR_TYPES in auth checks

* fix exp back off for writing SpendLogs

* use _raise_failed_update_spend_exception to ensure errors print as NON blocking

* test_update_spend_logs_multiple_batches_with_failure

* (Feat) Add StructuredOutputs support for Fireworks.AI (#7085)

* fix model cost map fireworks ai "supports_response_schema": true,

* fix supports_response_schema

* fix map openai params fireworks ai

* test_map_response_format

* test_map_response_format

* added deepinfra/Meta-Llama-3.1-405B-Instruct (#7084)

* bump: version 1.53.9 → 1.54.0

* fix deepinfra

* litellm db fixes LiteLLM_UserTable (#7089)

* ci/cd queue new release

* fix llama-3.3-70b-versatile

* refactor - use consistent file naming convention `AI21/` -> `ai21`  (#7090)

* fix refactor - use consistent file naming convention

* ci/cd run again

* fix naming structure

* fix use consistent naming (#7092)

---------

Signed-off-by: B-Step62 <yuki.watanabe@databricks.com>
Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: Yuki Watanabe <31463517+B-Step62@users.noreply.github.com>
Co-authored-by: ali sayyah <ali.sayyah2@gmail.com>
This commit is contained in:
Krish Dholakia 2024-12-08 00:30:33 -08:00 committed by GitHub
parent 36e99ebce7
commit 0c0498dd60
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
24 changed files with 840 additions and 193 deletions

View file

@ -0,0 +1,193 @@
"""
Wrapper around router cache. Meant to store model id when prompt caching supported prompt is called.
"""
import hashlib
import json
import time
from typing import TYPE_CHECKING, Any, List, Optional, Tuple, TypedDict
import litellm
from litellm import verbose_logger
from litellm.caching.caching import Cache, DualCache
from litellm.caching.in_memory_cache import InMemoryCache
from litellm.types.llms.openai import AllMessageValues, ChatCompletionToolParam
if TYPE_CHECKING:
from opentelemetry.trace import Span as _Span
from litellm.router import Router
litellm_router = Router
Span = _Span
else:
Span = Any
litellm_router = Any
class PromptCachingCacheValue(TypedDict):
model_id: str
class PromptCachingCache:
def __init__(self, cache: DualCache):
self.cache = cache
self.in_memory_cache = InMemoryCache()
@staticmethod
def serialize_object(obj: Any) -> Any:
"""Helper function to serialize Pydantic objects, dictionaries, or fallback to string."""
if hasattr(obj, "dict"):
# If the object is a Pydantic model, use its `dict()` method
return obj.dict()
elif isinstance(obj, dict):
# If the object is a dictionary, serialize it with sorted keys
return json.dumps(
obj, sort_keys=True, separators=(",", ":")
) # Standardize serialization
elif isinstance(obj, list):
# Serialize lists by ensuring each element is handled properly
return [PromptCachingCache.serialize_object(item) for item in obj]
elif isinstance(obj, (int, float, bool)):
return obj # Keep primitive types as-is
return str(obj)
@staticmethod
def get_prompt_caching_cache_key(
messages: Optional[List[AllMessageValues]],
tools: Optional[List[ChatCompletionToolParam]],
) -> Optional[str]:
if messages is None and tools is None:
return None
# Use serialize_object for consistent and stable serialization
data_to_hash = {}
if messages is not None:
serialized_messages = PromptCachingCache.serialize_object(messages)
data_to_hash["messages"] = serialized_messages
if tools is not None:
serialized_tools = PromptCachingCache.serialize_object(tools)
data_to_hash["tools"] = serialized_tools
# Combine serialized data into a single string
data_to_hash_str = json.dumps(
data_to_hash,
sort_keys=True,
separators=(",", ":"),
)
# Create a hash of the serialized data for a stable cache key
hashed_data = hashlib.sha256(data_to_hash_str.encode()).hexdigest()
return f"deployment:{hashed_data}:prompt_caching"
def add_model_id(
self,
model_id: str,
messages: Optional[List[AllMessageValues]],
tools: Optional[List[ChatCompletionToolParam]],
) -> None:
if messages is None and tools is None:
return None
cache_key = PromptCachingCache.get_prompt_caching_cache_key(messages, tools)
self.cache.set_cache(
cache_key, PromptCachingCacheValue(model_id=model_id), ttl=300
)
return None
async def async_add_model_id(
self,
model_id: str,
messages: Optional[List[AllMessageValues]],
tools: Optional[List[ChatCompletionToolParam]],
) -> None:
if messages is None and tools is None:
return None
cache_key = PromptCachingCache.get_prompt_caching_cache_key(messages, tools)
await self.cache.async_set_cache(
cache_key,
PromptCachingCacheValue(model_id=model_id),
ttl=300, # store for 5 minutes
)
return None
async def async_get_model_id(
self,
messages: Optional[List[AllMessageValues]],
tools: Optional[List[ChatCompletionToolParam]],
) -> Optional[PromptCachingCacheValue]:
"""
if messages is not none
- check full messages
- check messages[:-1]
- check messages[:-2]
- check messages[:-3]
use self.cache.async_batch_get_cache(keys=potential_cache_keys])
"""
if messages is None and tools is None:
return None
# Generate potential cache keys by slicing messages
potential_cache_keys = []
if messages is not None:
full_cache_key = PromptCachingCache.get_prompt_caching_cache_key(
messages, tools
)
potential_cache_keys.append(full_cache_key)
# Check progressively shorter message slices
for i in range(1, min(4, len(messages))):
partial_messages = messages[:-i]
partial_cache_key = PromptCachingCache.get_prompt_caching_cache_key(
partial_messages, tools
)
potential_cache_keys.append(partial_cache_key)
# Perform batch cache lookup
cache_results = await self.cache.async_batch_get_cache(
keys=potential_cache_keys
)
if cache_results is None:
return None
# Return the first non-None cache result
for result in cache_results:
if result is not None:
return result
return None
def get_model_id(
self,
messages: Optional[List[AllMessageValues]],
tools: Optional[List[ChatCompletionToolParam]],
) -> Optional[PromptCachingCacheValue]:
if messages is None and tools is None:
return None
cache_key = PromptCachingCache.get_prompt_caching_cache_key(messages, tools)
return self.cache.get_cache(cache_key)
async def async_get_prompt_caching_deployment(
self,
router: litellm_router,
messages: Optional[List[AllMessageValues]],
tools: Optional[List[ChatCompletionToolParam]],
) -> Optional[dict]:
model_id_dict = await self.async_get_model_id(
messages=messages,
tools=tools,
)
if model_id_dict is not None:
healthy_deployment_pydantic_obj = router.get_deployment(
model_id=model_id_dict["model_id"]
)
if healthy_deployment_pydantic_obj is not None:
return healthy_deployment_pydantic_obj.model_dump(exclude_none=True)
return None