call_openai_tool on MCP client

This commit is contained in:
Ishaan Jaff 2025-03-21 14:36:32 -07:00
parent 1f3aa82095
commit 147787b9e0
2 changed files with 90 additions and 2 deletions

View file

@ -1,6 +1,8 @@
import json
from typing import List, Literal, Union
from mcp import ClientSession
from mcp.types import CallToolResult
from mcp.types import Tool as MCPTool
from openai.types.chat import ChatCompletionToolParam
from openai.types.shared_params.function_definition import FunctionDefinition
@ -19,6 +21,27 @@ def transform_mcp_tool_to_openai_tool(mcp_tool: MCPTool) -> ChatCompletionToolPa
)
def _get_function_arguments(function: FunctionDefinition) -> dict:
"""Helper to safely get and parse function arguments."""
arguments = function.get("arguments", {})
if isinstance(arguments, str):
try:
arguments = json.loads(arguments)
except json.JSONDecodeError:
arguments = {}
return arguments if isinstance(arguments, dict) else {}
def transform_openai_tool_to_mcp_tool(openai_tool: ChatCompletionToolParam) -> MCPTool:
"""Convert an OpenAI tool to an MCP tool."""
function = openai_tool["function"]
return MCPTool(
name=function["name"],
description=function.get("description", ""),
inputSchema=_get_function_arguments(function),
)
async def load_mcp_tools(
session: ClientSession, format: Literal["mcp", "openai"] = "mcp"
) -> Union[List[MCPTool], List[ChatCompletionToolParam]]:
@ -38,3 +61,31 @@ async def load_mcp_tools(
transform_mcp_tool_to_openai_tool(mcp_tool=tool) for tool in tools.tools
]
return tools.tools
async def call_mcp_tool(
session: ClientSession,
name: str,
arguments: dict,
) -> CallToolResult:
"""Call an MCP tool."""
tool_result = await session.call_tool(
name=name,
arguments=arguments,
)
return tool_result
async def call_openai_tool(
session: ClientSession,
openai_tool: ChatCompletionToolParam,
) -> CallToolResult:
"""Call an OpenAI tool using MCP client."""
mcp_tool = transform_openai_tool_to_mcp_tool(
openai_tool=openai_tool,
)
return await call_mcp_tool(
session=session,
name=mcp_tool.name,
arguments=mcp_tool.inputSchema,
)

View file

@ -10,7 +10,11 @@ sys.path.insert(
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client
import os
from litellm.mcp_client.tools import load_mcp_tools
from litellm.mcp_client.tools import (
load_mcp_tools,
transform_openai_tool_to_mcp_tool,
call_openai_tool,
)
import litellm
import pytest
import json
@ -34,11 +38,12 @@ async def test_mcp_agent():
print("MCP TOOLS: ", tools)
# Create and run the agent
messages = [{"role": "user", "content": "what's (3 + 5)"}]
print(os.getenv("OPENAI_API_KEY"))
llm_response = await litellm.acompletion(
model="gpt-4o",
api_key=os.getenv("OPENAI_API_KEY"),
messages=[{"role": "user", "content": "what's (3 + 5) x 12?"}],
messages=messages,
tools=tools,
)
print("LLM RESPONSE: ", json.dumps(llm_response, indent=4, default=str))
@ -51,3 +56,35 @@ async def test_mcp_agent():
]
== "add"
)
openai_tool = llm_response["choices"][0]["message"]["tool_calls"][0]
# Convert the OpenAI tool to an MCP tool
mcp_tool = transform_openai_tool_to_mcp_tool(openai_tool)
print("MCP TOOL: ", mcp_tool)
# Call the tool using MCP client
call_result = await call_openai_tool(
session=session,
openai_tool=openai_tool,
)
print("CALL RESULT: ", call_result)
# send the tool result to the LLM
messages.append(llm_response["choices"][0]["message"])
messages.append(
{
"role": "tool",
"content": str(call_result.content[0].text),
"tool_call_id": openai_tool["id"],
}
)
print("final messages: ", messages)
llm_response = await litellm.acompletion(
model="gpt-4o",
api_key=os.getenv("OPENAI_API_KEY"),
messages=messages,
tools=tools,
)
print(
"FINAL LLM RESPONSE: ", json.dumps(llm_response, indent=4, default=str)
)