(Feat) - new endpoint GET /v1/fine_tuning/jobs/{fine_tuning_job_id:path} (#7427)

* init commit ft jobs logging

* add ft logging

* add logging for FineTuningJob

* simple FT Job create test

* simplify Azure fine tuning to use all methods in OAI ft

* update doc string

* add aretrieve_fine_tuning_job

* re use from litellm.proxy.utils import handle_exception_on_proxy

* fix naming

* add /fine_tuning/jobs/{fine_tuning_job_id:path}

* remove unused imports

* update func signature

* run ci/cd again

* ci/cd run again

* fix code qulity

* ci/cd run again
This commit is contained in:
Ishaan Jaff 2024-12-27 17:01:14 -08:00 committed by GitHub
parent 5e8c64f128
commit 2ece919f01
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
5 changed files with 400 additions and 227 deletions

View file

@ -1,179 +1,48 @@
from typing import Any, Coroutine, Optional, Union
from typing import Optional, Union
import httpx
from openai import AsyncAzureOpenAI, AzureOpenAI
from openai.types.fine_tuning import FineTuningJob
from openai import AsyncAzureOpenAI, AsyncOpenAI, AzureOpenAI, OpenAI
from litellm._logging import verbose_logger
from litellm.llms.azure.files.handler import get_azure_openai_client
from litellm.llms.base import BaseLLM
from litellm.llms.openai.fine_tuning.handler import OpenAIFineTuningAPI
class AzureOpenAIFineTuningAPI(BaseLLM):
class AzureOpenAIFineTuningAPI(OpenAIFineTuningAPI):
"""
AzureOpenAI methods to support for batches
AzureOpenAI methods to support fine tuning, inherits from OpenAIFineTuningAPI.
"""
def __init__(self) -> None:
super().__init__()
async def acreate_fine_tuning_job(
def get_openai_client(
self,
create_fine_tuning_job_data: dict,
openai_client: AsyncAzureOpenAI,
) -> FineTuningJob:
response = await openai_client.fine_tuning.jobs.create(
**create_fine_tuning_job_data # type: ignore
)
return response
def create_fine_tuning_job(
self,
_is_async: bool,
create_fine_tuning_job_data: dict,
api_key: Optional[str],
api_base: Optional[str],
timeout: Union[float, httpx.Timeout],
max_retries: Optional[int],
organization: Optional[str] = None,
client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None,
organization: Optional[str],
client: Optional[
Union[OpenAI, AsyncOpenAI, AzureOpenAI, AsyncAzureOpenAI]
] = None,
_is_async: bool = False,
api_version: Optional[str] = None,
) -> Union[FineTuningJob, Coroutine[Any, Any, FineTuningJob]]:
openai_client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = (
get_azure_openai_client(
api_key=api_key,
api_base=api_base,
timeout=timeout,
max_retries=max_retries,
organization=organization,
api_version=api_version,
client=client,
_is_async=_is_async,
)
) -> Optional[
Union[
OpenAI,
AsyncOpenAI,
AzureOpenAI,
AsyncAzureOpenAI,
]
]:
# Override to use Azure-specific client initialization
if isinstance(client, OpenAI) or isinstance(client, AsyncOpenAI):
client = None
return get_azure_openai_client(
api_key=api_key,
api_base=api_base,
timeout=timeout,
max_retries=max_retries,
organization=organization,
api_version=api_version,
client=client,
_is_async=_is_async,
)
if openai_client is None:
raise ValueError(
"AzureOpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
)
if _is_async is True:
if not isinstance(openai_client, AsyncAzureOpenAI):
raise ValueError(
"AzureOpenAI client is not an instance of AsyncAzureOpenAI. Make sure you passed an AsyncAzureOpenAI client."
)
return self.acreate_fine_tuning_job( # type: ignore
create_fine_tuning_job_data=create_fine_tuning_job_data,
openai_client=openai_client,
)
verbose_logger.debug(
"creating fine tuning job, args= %s", create_fine_tuning_job_data
)
response = openai_client.fine_tuning.jobs.create(**create_fine_tuning_job_data) # type: ignore
return response
async def acancel_fine_tuning_job(
self,
fine_tuning_job_id: str,
openai_client: AsyncAzureOpenAI,
) -> FineTuningJob:
response = await openai_client.fine_tuning.jobs.cancel(
fine_tuning_job_id=fine_tuning_job_id
)
return response
def cancel_fine_tuning_job(
self,
_is_async: bool,
fine_tuning_job_id: str,
api_key: Optional[str],
api_base: Optional[str],
timeout: Union[float, httpx.Timeout],
max_retries: Optional[int],
organization: Optional[str] = None,
api_version: Optional[str] = None,
client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None,
):
openai_client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = (
get_azure_openai_client(
api_key=api_key,
api_base=api_base,
api_version=api_version,
timeout=timeout,
max_retries=max_retries,
organization=organization,
client=client,
_is_async=_is_async,
)
)
if openai_client is None:
raise ValueError(
"AzureOpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
)
if _is_async is True:
if not isinstance(openai_client, AsyncAzureOpenAI):
raise ValueError(
"AzureOpenAI client is not an instance of AsyncAzureOpenAI. Make sure you passed an AsyncAzureOpenAI client."
)
return self.acancel_fine_tuning_job( # type: ignore
fine_tuning_job_id=fine_tuning_job_id,
openai_client=openai_client,
)
verbose_logger.debug("canceling fine tuning job, args= %s", fine_tuning_job_id)
response = openai_client.fine_tuning.jobs.cancel(
fine_tuning_job_id=fine_tuning_job_id
)
return response
async def alist_fine_tuning_jobs(
self,
openai_client: AsyncAzureOpenAI,
after: Optional[str] = None,
limit: Optional[int] = None,
):
response = await openai_client.fine_tuning.jobs.list(after=after, limit=limit) # type: ignore
return response
def list_fine_tuning_jobs(
self,
_is_async: bool,
api_key: Optional[str],
api_base: Optional[str],
timeout: Union[float, httpx.Timeout],
max_retries: Optional[int],
organization: Optional[str] = None,
client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None,
api_version: Optional[str] = None,
after: Optional[str] = None,
limit: Optional[int] = None,
):
openai_client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = (
get_azure_openai_client(
api_key=api_key,
api_base=api_base,
api_version=api_version,
timeout=timeout,
max_retries=max_retries,
organization=organization,
client=client,
_is_async=_is_async,
)
)
if openai_client is None:
raise ValueError(
"AzureOpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
)
if _is_async is True:
if not isinstance(openai_client, AsyncAzureOpenAI):
raise ValueError(
"AzureOpenAI client is not an instance of AsyncAzureOpenAI. Make sure you passed an AsyncAzureOpenAI client."
)
return self.alist_fine_tuning_jobs( # type: ignore
after=after,
limit=limit,
openai_client=openai_client,
)
verbose_logger.debug("list fine tuning job, after= %s, limit= %s", after, limit)
response = openai_client.fine_tuning.jobs.list(after=after, limit=limit) # type: ignore
return response