mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-27 11:43:54 +00:00
Add cost tracking for rerank via bedrock (#8691)
* feat(bedrock/rerank): infer model region if model given as arn * test: add unit testing to ensure bedrock region name inferred from arn on rerank * feat(bedrock/rerank/transformation.py): include search units for bedrock rerank result Resolves https://github.com/BerriAI/litellm/issues/7258#issuecomment-2671557137 * test(test_bedrock_completion.py): add testing for bedrock cohere rerank * feat(cost_calculator.py): refactor rerank cost tracking to support bedrock cost tracking * build(model_prices_and_context_window.json): add amazon.rerank model to model cost map * fix(cost_calculator.py): bedrock/common_utils.py get base model from model w/ arn -> handles rerank model * build(model_prices_and_context_window.json): add bedrock cohere rerank pricing * feat(bedrock/rerank): migrate bedrock config to basererank config * Revert "feat(bedrock/rerank): migrate bedrock config to basererank config" This reverts commit84fae1f167
. * test: add testing to ensure large doc / queries are correctly counted * Revert "test: add testing to ensure large doc / queries are correctly counted" This reverts commit4337f1657e
. * fix(migrate-jina-ai-to-rerank-config): enables cost tracking * refactor(jina_ai/): finish migrating jina ai to base rerank config enables cost tracking * fix(jina_ai/rerank): e2e jina ai rerank cost tracking * fix: cleanup dead code * fix: fix python3.8 compatibility error * test: fix test * test: add e2e testing for azure ai rerank * fix: fix linting error * test: mark cohere as flaky
This commit is contained in:
parent
e5f7bde268
commit
30a4f2abc2
26 changed files with 524 additions and 296 deletions
|
@ -1,9 +1,10 @@
|
|||
from abc import ABC, abstractmethod
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import httpx
|
||||
|
||||
from litellm.types.rerank import OptionalRerankParams, RerankResponse
|
||||
from litellm.types.rerank import OptionalRerankParams, RerankBilledUnits, RerankResponse
|
||||
from litellm.types.utils import ModelInfo
|
||||
|
||||
from ..chat.transformation import BaseLLMException
|
||||
|
||||
|
@ -66,7 +67,7 @@ class BaseRerankConfig(ABC):
|
|||
@abstractmethod
|
||||
def map_cohere_rerank_params(
|
||||
self,
|
||||
non_default_params: Optional[dict],
|
||||
non_default_params: dict,
|
||||
model: str,
|
||||
drop_params: bool,
|
||||
query: str,
|
||||
|
@ -79,8 +80,48 @@ class BaseRerankConfig(ABC):
|
|||
) -> OptionalRerankParams:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_error_class(
|
||||
self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers]
|
||||
) -> BaseLLMException:
|
||||
pass
|
||||
raise BaseLLMException(
|
||||
status_code=status_code,
|
||||
message=error_message,
|
||||
headers=headers,
|
||||
)
|
||||
|
||||
def calculate_rerank_cost(
|
||||
self,
|
||||
model: str,
|
||||
custom_llm_provider: Optional[str] = None,
|
||||
billed_units: Optional[RerankBilledUnits] = None,
|
||||
model_info: Optional[ModelInfo] = None,
|
||||
) -> Tuple[float, float]:
|
||||
"""
|
||||
Calculates the cost per query for a given rerank model.
|
||||
|
||||
Input:
|
||||
- model: str, the model name without provider prefix
|
||||
- custom_llm_provider: str, the provider used for the model. If provided, used to check if the litellm model info is for that provider.
|
||||
- num_queries: int, the number of queries to calculate the cost for
|
||||
- model_info: ModelInfo, the model info for the given model
|
||||
|
||||
Returns:
|
||||
Tuple[float, float] - prompt_cost_in_usd, completion_cost_in_usd
|
||||
"""
|
||||
|
||||
if (
|
||||
model_info is None
|
||||
or "input_cost_per_query" not in model_info
|
||||
or model_info["input_cost_per_query"] is None
|
||||
or billed_units is None
|
||||
):
|
||||
return 0.0, 0.0
|
||||
|
||||
search_units = billed_units.get("search_units")
|
||||
|
||||
if search_units is None:
|
||||
return 0.0, 0.0
|
||||
|
||||
prompt_cost = model_info["input_cost_per_query"] * search_units
|
||||
|
||||
return prompt_cost, 0.0
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue