mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 11:14:04 +00:00
Clarifai-LiteLLM integration (#1)
* intg v1 clarifai-litellm * Added more community models and testcase * Clarifai-updated markdown docs
This commit is contained in:
parent
fa8a9568aa
commit
318b4813f2
7 changed files with 734 additions and 0 deletions
216
litellm/llms/clarifai.py
Normal file
216
litellm/llms/clarifai.py
Normal file
|
@ -0,0 +1,216 @@
|
|||
import os, types, traceback
|
||||
import json
|
||||
import requests
|
||||
import time
|
||||
from typing import Callable, Optional
|
||||
from litellm.utils import ModelResponse, Usage, Choices, Message
|
||||
import litellm
|
||||
import httpx
|
||||
from .prompt_templates.factory import prompt_factory, custom_prompt
|
||||
|
||||
|
||||
class ClarifaiError(Exception):
|
||||
def __init__(self, status_code, message, url):
|
||||
self.status_code = status_code
|
||||
self.message = message
|
||||
self.request = httpx.Request(
|
||||
method="POST", url=url
|
||||
)
|
||||
self.response = httpx.Response(status_code=status_code, request=self.request)
|
||||
super().__init__(
|
||||
self.message
|
||||
)
|
||||
|
||||
class ClarifaiConfig:
|
||||
"""
|
||||
Reference: https://clarifai.com/meta/Llama-2/models/llama2-70b-chat
|
||||
TODO fill in the details
|
||||
"""
|
||||
max_tokens: Optional[int] = None
|
||||
temperature: Optional[int] = None
|
||||
top_k: Optional[int] = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
max_tokens: Optional[int] = None,
|
||||
temperature: Optional[int] = None,
|
||||
top_k: Optional[int] = None,
|
||||
) -> None:
|
||||
locals_ = locals()
|
||||
for key, value in locals_.items():
|
||||
if key != "self" and value is not None:
|
||||
setattr(self.__class__, key, value)
|
||||
|
||||
@classmethod
|
||||
def get_config(cls):
|
||||
return {
|
||||
k: v
|
||||
for k, v in cls.__dict__.items()
|
||||
if not k.startswith("__")
|
||||
and not isinstance(
|
||||
v,
|
||||
(
|
||||
types.FunctionType,
|
||||
types.BuiltinFunctionType,
|
||||
classmethod,
|
||||
staticmethod,
|
||||
),
|
||||
)
|
||||
and v is not None
|
||||
}
|
||||
|
||||
def validate_environment(api_key):
|
||||
headers = {
|
||||
"accept": "application/json",
|
||||
"content-type": "application/json",
|
||||
}
|
||||
if api_key:
|
||||
headers["Authorization"] = f"Bearer {api_key}"
|
||||
return headers
|
||||
|
||||
def completions_to_model(payload):
|
||||
# if payload["n"] != 1:
|
||||
# raise HTTPException(
|
||||
# status_code=422,
|
||||
# detail="Only one generation is supported. Please set candidate_count to 1.",
|
||||
# )
|
||||
|
||||
params = {}
|
||||
if temperature := payload.get("temperature"):
|
||||
params["temperature"] = temperature
|
||||
if max_tokens := payload.get("max_tokens"):
|
||||
params["max_tokens"] = max_tokens
|
||||
return {
|
||||
"inputs": [{"data": {"text": {"raw": payload["prompt"]}}}],
|
||||
"model": {"output_info": {"params": params}},
|
||||
}
|
||||
|
||||
def convert_model_to_url(model: str, api_base: str):
|
||||
user_id, app_id, model_id = model.split(".")
|
||||
return f"{api_base}/users/{user_id}/apps/{app_id}/models/{model_id}/outputs"
|
||||
|
||||
def get_prompt_model_name(url: str):
|
||||
clarifai_model_name = url.split("/")[-2]
|
||||
if "claude" in clarifai_model_name:
|
||||
return "anthropic", clarifai_model_name.replace("_", ".")
|
||||
if ("llama" in clarifai_model_name)or ("mistral" in clarifai_model_name):
|
||||
return "", "meta-llama/llama-2-chat"
|
||||
else:
|
||||
return "", clarifai_model_name
|
||||
|
||||
def completion(
|
||||
model: str,
|
||||
messages: list,
|
||||
api_base: str,
|
||||
model_response: ModelResponse,
|
||||
print_verbose: Callable,
|
||||
encoding,
|
||||
api_key,
|
||||
logging_obj,
|
||||
custom_prompt_dict={},
|
||||
optional_params=None,
|
||||
litellm_params=None,
|
||||
logger_fn=None,
|
||||
):
|
||||
headers = validate_environment(api_key)
|
||||
model = convert_model_to_url(model, api_base)
|
||||
prompt = " ".join(message["content"] for message in messages) # TODO
|
||||
|
||||
## Load Config
|
||||
config = litellm.ClarifaiConfig.get_config()
|
||||
for k, v in config.items():
|
||||
if (
|
||||
k not in optional_params
|
||||
):
|
||||
optional_params[k] = v
|
||||
|
||||
custom_llm_provider, orig_model_name = get_prompt_model_name(model)
|
||||
if custom_llm_provider == "anthropic":
|
||||
prompt = prompt_factory(
|
||||
model=orig_model_name,
|
||||
messages=messages,
|
||||
api_key=api_key,
|
||||
custom_llm_provider="clarifai"
|
||||
)
|
||||
else:
|
||||
prompt = prompt_factory(
|
||||
model=orig_model_name,
|
||||
messages=messages,
|
||||
api_key=api_key,
|
||||
custom_llm_provider=custom_llm_provider
|
||||
)
|
||||
# print(prompt); exit(0)
|
||||
|
||||
data = {
|
||||
"prompt": prompt,
|
||||
**optional_params,
|
||||
}
|
||||
data = completions_to_model(data)
|
||||
|
||||
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input=prompt,
|
||||
api_key=api_key,
|
||||
additional_args={
|
||||
"complete_input_dict": data,
|
||||
"headers": headers,
|
||||
"api_base": api_base,
|
||||
},
|
||||
)
|
||||
|
||||
## COMPLETION CALL
|
||||
response = requests.post(
|
||||
model,
|
||||
headers=headers,
|
||||
data=json.dumps(data),
|
||||
)
|
||||
# print(response.content); exit()
|
||||
"""
|
||||
{"status":{"code":10000,"description":"Ok","req_id":"d914cf7e097487997910650cde954a37"},"outputs":[{"id":"c2baa668174b4547bd4d2e9f8996198d","status":{"code":10000,"description":"Ok"},"created_at":"2024-02-07T10:57:52.917990493Z","model":{"id":"GPT-4","name":"GPT-4","created_at":"2023-06-08T17:40:07.964967Z","modified_at":"2023-12-04T11:39:54.587604Z","app_id":"chat-completion","model_version":{"id":"5d7a50b44aec4a01a9c492c5a5fcf387","created_at":"2023-11-09T19:57:56.961259Z","status":{"code":21100,"description":"Model is trained and ready"},"completed_at":"2023-11-09T20:00:48.933172Z","visibility":{"gettable":50},"app_id":"chat-completion","user_id":"openai","metadata":{}},"user_id":"openai","model_type_id":"text-to-text","visibility":{"gettable":50},"toolkits":[],"use_cases":[],"languages":[],"languages_full":[],"check_consents":[],"workflow_recommended":false,"image":{"url":"https://data.clarifai.com/small/users/openai/apps/chat-completion/inputs/image/34326a9914d361bb93ae8e5381689755","hosted":{"prefix":"https://data.clarifai.com","suffix":"users/openai/apps/chat-completion/inputs/image/34326a9914d361bb93ae8e5381689755","sizes":["small"],"crossorigin":"use-credentials"}}},"input":{"id":"fba1f22a332743f083ddae0a7eb443ae","data":{"text":{"raw":"what\'s the weather in SF","url":"https://samples.clarifai.com/placeholder.gif"}}},"data":{"text":{"raw":"As an AI, I\'m unable to provide real-time information or updates. Please check a reliable weather website or app for the current weather in San Francisco.","text_info":{"encoding":"UnknownTextEnc"}}}}]}
|
||||
"""
|
||||
if response.status_code != 200:
|
||||
raise ClarifaiError(status_code=response.status_code, message=response.text, url=model)
|
||||
if "stream" in optional_params and optional_params["stream"] == True:
|
||||
return response.iter_lines()
|
||||
else:
|
||||
logging_obj.post_call(
|
||||
input=prompt,
|
||||
api_key=api_key,
|
||||
original_response=response.text,
|
||||
additional_args={"complete_input_dict": data},
|
||||
)
|
||||
## RESPONSE OBJECT
|
||||
completion_response = response.json()
|
||||
# print(completion_response)
|
||||
try:
|
||||
choices_list = []
|
||||
for idx, item in enumerate(completion_response["outputs"]):
|
||||
if len(item["data"]["text"]["raw"]) > 0:
|
||||
message_obj = Message(content=item["data"]["text"]["raw"])
|
||||
else:
|
||||
message_obj = Message(content=None)
|
||||
choice_obj = Choices(
|
||||
finish_reason="stop",
|
||||
index=idx + 1, #check
|
||||
message=message_obj,
|
||||
)
|
||||
choices_list.append(choice_obj)
|
||||
model_response["choices"] = choices_list
|
||||
except Exception as e:
|
||||
raise ClarifaiError(
|
||||
message=traceback.format_exc(), status_code=response.status_code, url=model
|
||||
)
|
||||
|
||||
# Calculate Usage
|
||||
prompt_tokens = len(encoding.encode(prompt))
|
||||
completion_tokens = len(
|
||||
encoding.encode(model_response["choices"][0]["message"].get("content"))
|
||||
)
|
||||
model_response["model"] = model
|
||||
model_response["usage"] = Usage(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
)
|
||||
return model_response
|
Loading…
Add table
Add a link
Reference in a new issue