mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 11:14:04 +00:00
Bedrock Embeddings refactor + model support (#5462)
* refactor(bedrock): initial commit to refactor bedrock to a folder Improve code readability + maintainability * refactor: more refactor work * fix: fix imports * feat(bedrock/embeddings.py): support translating embedding into amazon embedding formats * fix: fix linting errors * test: skip test on end of life model * fix(cohere/embed.py): fix linting error * fix(cohere/embed.py): fix typing * fix(cohere/embed.py): fix post-call logging for cohere embedding call * test(test_embeddings.py): fix error message assertion in test
This commit is contained in:
parent
6fb82aaf75
commit
37f9705d6e
21 changed files with 1946 additions and 1659 deletions
498
litellm/llms/bedrock/embed/embedding.py
Normal file
498
litellm/llms/bedrock/embed/embedding.py
Normal file
|
@ -0,0 +1,498 @@
|
|||
"""
|
||||
Handles embedding calls to Bedrock's `/invoke` endpoint
|
||||
"""
|
||||
|
||||
import copy
|
||||
import json
|
||||
import os
|
||||
from copy import deepcopy
|
||||
from typing import Any, Callable, List, Literal, Optional, Tuple, Union
|
||||
|
||||
import httpx
|
||||
|
||||
import litellm
|
||||
from litellm import get_secret
|
||||
from litellm.llms.cohere.embed import embedding as cohere_embedding
|
||||
from litellm.llms.custom_httpx.http_handler import (
|
||||
AsyncHTTPHandler,
|
||||
HTTPHandler,
|
||||
_get_httpx_client,
|
||||
)
|
||||
from litellm.types.llms.bedrock import AmazonEmbeddingRequest, CohereEmbeddingRequest
|
||||
from litellm.types.utils import Embedding, EmbeddingResponse, Usage
|
||||
|
||||
from ...base_aws_llm import BaseAWSLLM
|
||||
from ..common_utils import BedrockError, get_runtime_endpoint
|
||||
from .amazon_titan_g1_transformation import AmazonTitanG1Config
|
||||
from .amazon_titan_multimodal_transformation import (
|
||||
_transform_request as amazon_multimodal_transform_request,
|
||||
)
|
||||
from .amazon_titan_multimodal_transformation import (
|
||||
_transform_response as amazon_multimodal_transform_response,
|
||||
)
|
||||
from .amazon_titan_v2_transformation import AmazonTitanV2Config
|
||||
from .cohere_transformation import _transform_request as cohere_transform_request
|
||||
|
||||
|
||||
class BedrockEmbedding(BaseAWSLLM):
|
||||
def _load_credentials(
|
||||
self,
|
||||
optional_params: dict,
|
||||
) -> Tuple[Any, str]:
|
||||
try:
|
||||
from botocore.credentials import Credentials
|
||||
except ImportError as e:
|
||||
raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")
|
||||
## CREDENTIALS ##
|
||||
# pop aws_secret_access_key, aws_access_key_id, aws_session_token, aws_region_name from kwargs, since completion calls fail with them
|
||||
aws_secret_access_key = optional_params.pop("aws_secret_access_key", None)
|
||||
aws_access_key_id = optional_params.pop("aws_access_key_id", None)
|
||||
aws_session_token = optional_params.pop("aws_session_token", None)
|
||||
aws_region_name = optional_params.pop("aws_region_name", None)
|
||||
aws_role_name = optional_params.pop("aws_role_name", None)
|
||||
aws_session_name = optional_params.pop("aws_session_name", None)
|
||||
aws_profile_name = optional_params.pop("aws_profile_name", None)
|
||||
aws_web_identity_token = optional_params.pop("aws_web_identity_token", None)
|
||||
aws_sts_endpoint = optional_params.pop("aws_sts_endpoint", None)
|
||||
|
||||
### SET REGION NAME ###
|
||||
if aws_region_name is None:
|
||||
# check env #
|
||||
litellm_aws_region_name = get_secret("AWS_REGION_NAME", None)
|
||||
|
||||
if litellm_aws_region_name is not None and isinstance(
|
||||
litellm_aws_region_name, str
|
||||
):
|
||||
aws_region_name = litellm_aws_region_name
|
||||
|
||||
standard_aws_region_name = get_secret("AWS_REGION", None)
|
||||
if standard_aws_region_name is not None and isinstance(
|
||||
standard_aws_region_name, str
|
||||
):
|
||||
aws_region_name = standard_aws_region_name
|
||||
|
||||
if aws_region_name is None:
|
||||
aws_region_name = "us-west-2"
|
||||
|
||||
credentials: Credentials = self.get_credentials(
|
||||
aws_access_key_id=aws_access_key_id,
|
||||
aws_secret_access_key=aws_secret_access_key,
|
||||
aws_session_token=aws_session_token,
|
||||
aws_region_name=aws_region_name,
|
||||
aws_session_name=aws_session_name,
|
||||
aws_profile_name=aws_profile_name,
|
||||
aws_role_name=aws_role_name,
|
||||
aws_web_identity_token=aws_web_identity_token,
|
||||
aws_sts_endpoint=aws_sts_endpoint,
|
||||
)
|
||||
return credentials, aws_region_name
|
||||
|
||||
async def async_embeddings(self):
|
||||
pass
|
||||
|
||||
def _make_sync_call(
|
||||
self,
|
||||
client: Optional[HTTPHandler],
|
||||
timeout: Optional[Union[float, httpx.Timeout]],
|
||||
api_base: str,
|
||||
headers: dict,
|
||||
data: dict,
|
||||
) -> dict:
|
||||
if client is None or not isinstance(client, HTTPHandler):
|
||||
_params = {}
|
||||
if timeout is not None:
|
||||
if isinstance(timeout, float) or isinstance(timeout, int):
|
||||
timeout = httpx.Timeout(timeout)
|
||||
_params["timeout"] = timeout
|
||||
client = _get_httpx_client(_params) # type: ignore
|
||||
else:
|
||||
client = client
|
||||
try:
|
||||
response = client.post(url=api_base, headers=headers, data=json.dumps(data)) # type: ignore
|
||||
response.raise_for_status()
|
||||
except httpx.HTTPStatusError as err:
|
||||
error_code = err.response.status_code
|
||||
raise BedrockError(status_code=error_code, message=response.text)
|
||||
except httpx.TimeoutException:
|
||||
raise BedrockError(status_code=408, message="Timeout error occurred.")
|
||||
|
||||
return response.json()
|
||||
|
||||
def _single_func_embeddings(
|
||||
self,
|
||||
client: Optional[HTTPHandler],
|
||||
timeout: Optional[Union[float, httpx.Timeout]],
|
||||
batch_data: List[dict],
|
||||
credentials: Any,
|
||||
extra_headers: Optional[dict],
|
||||
endpoint_url: str,
|
||||
aws_region_name: str,
|
||||
model: str,
|
||||
logging_obj: Any,
|
||||
):
|
||||
try:
|
||||
import boto3
|
||||
from botocore.auth import SigV4Auth
|
||||
from botocore.awsrequest import AWSRequest
|
||||
from botocore.credentials import Credentials
|
||||
except ImportError:
|
||||
raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")
|
||||
|
||||
responses: List[dict] = []
|
||||
for data in batch_data:
|
||||
sigv4 = SigV4Auth(credentials, "bedrock", aws_region_name)
|
||||
headers = {"Content-Type": "application/json"}
|
||||
if extra_headers is not None:
|
||||
headers = {"Content-Type": "application/json", **extra_headers}
|
||||
request = AWSRequest(
|
||||
method="POST", url=endpoint_url, data=json.dumps(data), headers=headers
|
||||
)
|
||||
sigv4.add_auth(request)
|
||||
if (
|
||||
extra_headers is not None and "Authorization" in extra_headers
|
||||
): # prevent sigv4 from overwriting the auth header
|
||||
request.headers["Authorization"] = extra_headers["Authorization"]
|
||||
prepped = request.prepare()
|
||||
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input=data,
|
||||
api_key="",
|
||||
additional_args={
|
||||
"complete_input_dict": data,
|
||||
"api_base": prepped.url,
|
||||
"headers": prepped.headers,
|
||||
},
|
||||
)
|
||||
response = self._make_sync_call(
|
||||
client=client,
|
||||
timeout=timeout,
|
||||
api_base=prepped.url,
|
||||
headers=prepped.headers,
|
||||
data=data,
|
||||
)
|
||||
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=data,
|
||||
api_key="",
|
||||
original_response=response,
|
||||
additional_args={"complete_input_dict": data},
|
||||
)
|
||||
|
||||
responses.append(response)
|
||||
|
||||
returned_response: Optional[EmbeddingResponse] = None
|
||||
|
||||
## TRANSFORM RESPONSE ##
|
||||
if model == "amazon.titan-embed-image-v1":
|
||||
returned_response = amazon_multimodal_transform_response(
|
||||
response_list=responses, model=model
|
||||
)
|
||||
elif model == "amazon.titan-embed-text-v1":
|
||||
returned_response = AmazonTitanG1Config()._transform_response(
|
||||
response_list=responses, model=model
|
||||
)
|
||||
elif model == "amazon.titan-embed-text-v2:0":
|
||||
returned_response = AmazonTitanV2Config()._transform_response(
|
||||
response_list=responses, model=model
|
||||
)
|
||||
|
||||
if returned_response is None:
|
||||
raise Exception(
|
||||
"Unable to map model response to known provider format. model={}".format(
|
||||
model
|
||||
)
|
||||
)
|
||||
|
||||
return returned_response
|
||||
|
||||
def embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: List[str],
|
||||
api_base: Optional[str],
|
||||
model_response: EmbeddingResponse,
|
||||
print_verbose: Callable,
|
||||
encoding,
|
||||
logging_obj,
|
||||
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]],
|
||||
timeout: Optional[Union[float, httpx.Timeout]],
|
||||
aembedding: Optional[bool],
|
||||
extra_headers: Optional[dict],
|
||||
optional_params=None,
|
||||
litellm_params=None,
|
||||
) -> EmbeddingResponse:
|
||||
try:
|
||||
import boto3
|
||||
from botocore.auth import SigV4Auth
|
||||
from botocore.awsrequest import AWSRequest
|
||||
from botocore.credentials import Credentials
|
||||
except ImportError:
|
||||
raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")
|
||||
|
||||
credentials, aws_region_name = self._load_credentials(optional_params)
|
||||
|
||||
### TRANSFORMATION ###
|
||||
provider = model.split(".")[0]
|
||||
inference_params = copy.deepcopy(optional_params)
|
||||
inference_params.pop(
|
||||
"user", None
|
||||
) # make sure user is not passed in for bedrock call
|
||||
modelId = (
|
||||
optional_params.pop("model_id", None) or model
|
||||
) # default to model if not passed
|
||||
|
||||
data: Optional[CohereEmbeddingRequest] = None
|
||||
batch_data: Optional[List] = None
|
||||
if provider == "cohere":
|
||||
data = cohere_transform_request(
|
||||
input=input, inference_params=inference_params
|
||||
)
|
||||
elif provider == "amazon" and model in [
|
||||
"amazon.titan-embed-image-v1",
|
||||
"amazon.titan-embed-text-v1",
|
||||
"amazon.titan-embed-text-v2:0",
|
||||
]:
|
||||
batch_data = []
|
||||
for i in input:
|
||||
if model == "amazon.titan-embed-image-v1":
|
||||
transformed_request: AmazonEmbeddingRequest = (
|
||||
amazon_multimodal_transform_request(
|
||||
input=i, inference_params=inference_params
|
||||
)
|
||||
)
|
||||
elif model == "amazon.titan-embed-text-v1":
|
||||
transformed_request = AmazonTitanG1Config()._transform_request(
|
||||
input=i, inference_params=inference_params
|
||||
)
|
||||
elif model == "amazon.titan-embed-text-v2:0":
|
||||
transformed_request = AmazonTitanV2Config()._transform_request(
|
||||
input=i, inference_params=inference_params
|
||||
)
|
||||
batch_data.append(transformed_request)
|
||||
|
||||
### SET RUNTIME ENDPOINT ###
|
||||
endpoint_url = get_runtime_endpoint(
|
||||
api_base=api_base,
|
||||
aws_bedrock_runtime_endpoint=optional_params.pop(
|
||||
"aws_bedrock_runtime_endpoint", None
|
||||
),
|
||||
aws_region_name=aws_region_name,
|
||||
)
|
||||
endpoint_url = f"{endpoint_url}/model/{modelId}/invoke"
|
||||
|
||||
if batch_data is not None:
|
||||
return self._single_func_embeddings(
|
||||
client=(
|
||||
client
|
||||
if client is not None and isinstance(client, HTTPHandler)
|
||||
else None
|
||||
),
|
||||
timeout=timeout,
|
||||
batch_data=batch_data,
|
||||
credentials=credentials,
|
||||
extra_headers=extra_headers,
|
||||
endpoint_url=endpoint_url,
|
||||
aws_region_name=aws_region_name,
|
||||
model=model,
|
||||
logging_obj=logging_obj,
|
||||
)
|
||||
elif data is None:
|
||||
raise Exception("Unable to map request to provider")
|
||||
|
||||
sigv4 = SigV4Auth(credentials, "bedrock", aws_region_name)
|
||||
headers = {"Content-Type": "application/json"}
|
||||
if extra_headers is not None:
|
||||
headers = {"Content-Type": "application/json", **extra_headers}
|
||||
request = AWSRequest(
|
||||
method="POST", url=endpoint_url, data=json.dumps(data), headers=headers
|
||||
)
|
||||
sigv4.add_auth(request)
|
||||
if (
|
||||
extra_headers is not None and "Authorization" in extra_headers
|
||||
): # prevent sigv4 from overwriting the auth header
|
||||
request.headers["Authorization"] = extra_headers["Authorization"]
|
||||
prepped = request.prepare()
|
||||
|
||||
## ROUTING ##
|
||||
return cohere_embedding(
|
||||
model=model,
|
||||
input=input,
|
||||
model_response=model_response,
|
||||
logging_obj=logging_obj,
|
||||
optional_params=optional_params,
|
||||
encoding=encoding,
|
||||
data=data, # type: ignore
|
||||
complete_api_base=prepped.url,
|
||||
api_key=None,
|
||||
aembedding=aembedding,
|
||||
timeout=timeout,
|
||||
client=client,
|
||||
headers=prepped.headers,
|
||||
)
|
||||
|
||||
# def _embedding_func_single(
|
||||
# model: str,
|
||||
# input: str,
|
||||
# client: Any,
|
||||
# optional_params=None,
|
||||
# encoding=None,
|
||||
# logging_obj=None,
|
||||
# ):
|
||||
# if isinstance(input, str) is False:
|
||||
# raise BedrockError(
|
||||
# message="Bedrock Embedding API input must be type str | List[str]",
|
||||
# status_code=400,
|
||||
# )
|
||||
# # logic for parsing in - calling - parsing out model embedding calls
|
||||
# ## FORMAT EMBEDDING INPUT ##
|
||||
# provider = model.split(".")[0]
|
||||
# inference_params = copy.deepcopy(optional_params)
|
||||
# inference_params.pop(
|
||||
# "user", None
|
||||
# ) # make sure user is not passed in for bedrock call
|
||||
# modelId = (
|
||||
# optional_params.pop("model_id", None) or model
|
||||
# ) # default to model if not passed
|
||||
# if provider == "amazon":
|
||||
# input = input.replace(os.linesep, " ")
|
||||
# data = {"inputText": input, **inference_params}
|
||||
# # data = json.dumps(data)
|
||||
# elif provider == "cohere":
|
||||
# inference_params["input_type"] = inference_params.get(
|
||||
# "input_type", "search_document"
|
||||
# ) # aws bedrock example default - https://us-east-1.console.aws.amazon.com/bedrock/home?region=us-east-1#/providers?model=cohere.embed-english-v3
|
||||
# data = {"texts": [input], **inference_params} # type: ignore
|
||||
# body = json.dumps(data).encode("utf-8") # type: ignore
|
||||
# ## LOGGING
|
||||
# request_str = f"""
|
||||
# response = client.invoke_model(
|
||||
# body={body},
|
||||
# modelId={modelId},
|
||||
# accept="*/*",
|
||||
# contentType="application/json",
|
||||
# )""" # type: ignore
|
||||
# logging_obj.pre_call(
|
||||
# input=input,
|
||||
# api_key="", # boto3 is used for init.
|
||||
# additional_args={
|
||||
# "complete_input_dict": {"model": modelId, "texts": input},
|
||||
# "request_str": request_str,
|
||||
# },
|
||||
# )
|
||||
# try:
|
||||
# response = client.invoke_model(
|
||||
# body=body,
|
||||
# modelId=modelId,
|
||||
# accept="*/*",
|
||||
# contentType="application/json",
|
||||
# )
|
||||
# response_body = json.loads(response.get("body").read())
|
||||
# ## LOGGING
|
||||
# logging_obj.post_call(
|
||||
# input=input,
|
||||
# api_key="",
|
||||
# additional_args={"complete_input_dict": data},
|
||||
# original_response=json.dumps(response_body),
|
||||
# )
|
||||
# if provider == "cohere":
|
||||
# response = response_body.get("embeddings")
|
||||
# # flatten list
|
||||
# response = [item for sublist in response for item in sublist]
|
||||
# return response
|
||||
# elif provider == "amazon":
|
||||
# return response_body.get("embedding")
|
||||
# except Exception as e:
|
||||
# raise BedrockError(
|
||||
# message=f"Embedding Error with model {model}: {e}", status_code=500
|
||||
# )
|
||||
|
||||
# def embedding(
|
||||
# model: str,
|
||||
# input: Union[list, str],
|
||||
# model_response: litellm.EmbeddingResponse,
|
||||
# api_key: Optional[str] = None,
|
||||
# logging_obj=None,
|
||||
# optional_params=None,
|
||||
# encoding=None,
|
||||
# ):
|
||||
# ### BOTO3 INIT ###
|
||||
# # pop aws_secret_access_key, aws_access_key_id, aws_region_name from kwargs, since completion calls fail with them
|
||||
# aws_secret_access_key = optional_params.pop("aws_secret_access_key", None)
|
||||
# aws_access_key_id = optional_params.pop("aws_access_key_id", None)
|
||||
# aws_region_name = optional_params.pop("aws_region_name", None)
|
||||
# aws_role_name = optional_params.pop("aws_role_name", None)
|
||||
# aws_session_name = optional_params.pop("aws_session_name", None)
|
||||
# aws_bedrock_runtime_endpoint = optional_params.pop(
|
||||
# "aws_bedrock_runtime_endpoint", None
|
||||
# )
|
||||
# aws_web_identity_token = optional_params.pop("aws_web_identity_token", None)
|
||||
|
||||
# # use passed in BedrockRuntime.Client if provided, otherwise create a new one
|
||||
# client = init_bedrock_client(
|
||||
# aws_access_key_id=aws_access_key_id,
|
||||
# aws_secret_access_key=aws_secret_access_key,
|
||||
# aws_region_name=aws_region_name,
|
||||
# aws_bedrock_runtime_endpoint=aws_bedrock_runtime_endpoint,
|
||||
# aws_web_identity_token=aws_web_identity_token,
|
||||
# aws_role_name=aws_role_name,
|
||||
# aws_session_name=aws_session_name,
|
||||
# )
|
||||
# if isinstance(input, str):
|
||||
# ## Embedding Call
|
||||
# embeddings = [
|
||||
# _embedding_func_single(
|
||||
# model,
|
||||
# input,
|
||||
# optional_params=optional_params,
|
||||
# client=client,
|
||||
# logging_obj=logging_obj,
|
||||
# )
|
||||
# ]
|
||||
# elif isinstance(input, list):
|
||||
# ## Embedding Call - assuming this is a List[str]
|
||||
# embeddings = [
|
||||
# _embedding_func_single(
|
||||
# model,
|
||||
# i,
|
||||
# optional_params=optional_params,
|
||||
# client=client,
|
||||
# logging_obj=logging_obj,
|
||||
# )
|
||||
# for i in input
|
||||
# ] # [TODO]: make these parallel calls
|
||||
# else:
|
||||
# # enters this branch if input = int, ex. input=2
|
||||
# raise BedrockError(
|
||||
# message="Bedrock Embedding API input must be type str | List[str]",
|
||||
# status_code=400,
|
||||
# )
|
||||
|
||||
# ## Populate OpenAI compliant dictionary
|
||||
# embedding_response = []
|
||||
# for idx, embedding in enumerate(embeddings):
|
||||
# embedding_response.append(
|
||||
# {
|
||||
# "object": "embedding",
|
||||
# "index": idx,
|
||||
# "embedding": embedding,
|
||||
# }
|
||||
# )
|
||||
# model_response.object = "list"
|
||||
# model_response.data = embedding_response
|
||||
# model_response.model = model
|
||||
# input_tokens = 0
|
||||
|
||||
# input_str = "".join(input)
|
||||
|
||||
# input_tokens += len(encoding.encode(input_str))
|
||||
|
||||
# usage = Usage(
|
||||
# prompt_tokens=input_tokens,
|
||||
# completion_tokens=0,
|
||||
# total_tokens=input_tokens + 0,
|
||||
# )
|
||||
# model_response.usage = usage
|
||||
|
||||
# return model_response
|
Loading…
Add table
Add a link
Reference in a new issue