mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-24 18:24:20 +00:00
(chore) remove bloat caching tests
This commit is contained in:
parent
a3d280baa3
commit
3945bfadb7
1 changed files with 0 additions and 122 deletions
|
@ -19,52 +19,6 @@ messages = [{"role": "user", "content": "who is ishaan Github? "}]
|
|||
# comment
|
||||
|
||||
|
||||
def test_gpt_cache():
|
||||
try:
|
||||
# INIT GPT Cache #
|
||||
from gptcache import cache
|
||||
import gptcache
|
||||
|
||||
from gptcache.processor.pre import last_content_without_prompt
|
||||
from litellm.gpt_cache import completion
|
||||
from typing import Dict, Any
|
||||
|
||||
def pre_cache_func(data: Dict[str, Any], **params: Dict[str, Any]) -> Any:
|
||||
# use this to set cache key
|
||||
print("in do nothing")
|
||||
last_content_without_prompt_val = last_content_without_prompt(data, **params)
|
||||
print("last content without prompt", last_content_without_prompt_val)
|
||||
print("model", data["model"])
|
||||
cache_key = last_content_without_prompt_val + data["model"]
|
||||
print("cache_key", cache_key)
|
||||
return cache_key
|
||||
|
||||
|
||||
cache.init(pre_func=pre_cache_func)
|
||||
cache.set_openai_key()
|
||||
|
||||
messages = [{"role": "user", "content": "why should I use LiteLLM today"}]
|
||||
response1 = completion(model="gpt-3.5-turbo", messages=messages)
|
||||
response2 = completion(model="gpt-3.5-turbo", messages=messages)
|
||||
response3 = completion(model="command-nightly", messages=messages)
|
||||
|
||||
if response1["choices"] != response2["choices"]: # same models should cache
|
||||
print(f"response1: {response1}")
|
||||
print(f"response2: {response2}")
|
||||
pytest.fail(f"Error occurred:")
|
||||
|
||||
if response3["choices"] == response2["choices"]: # different models, don't cache
|
||||
# if models are different, it should not return cached response
|
||||
print(f"response2: {response2}")
|
||||
print(f"response3: {response3}")
|
||||
pytest.fail(f"Error occurred:")
|
||||
except:
|
||||
pass
|
||||
|
||||
|
||||
# test_gpt_cache()
|
||||
|
||||
|
||||
####### Updated Caching as of Aug 28, 2023 ###################
|
||||
messages = [{"role": "user", "content": "who is ishaan 5222"}]
|
||||
def test_caching_v2():
|
||||
|
@ -198,82 +152,6 @@ def test_embedding_caching_azure():
|
|||
# test_embedding_caching_azure()
|
||||
|
||||
|
||||
# test caching with streaming
|
||||
# flaky test on circle ci for some reason?
|
||||
# def test_caching_v2_stream_basic():
|
||||
# try:
|
||||
# litellm.cache = Cache()
|
||||
# messages = [{"role": "user", "content": "tell me a story in 2 sentences"}]
|
||||
# response1 = completion(model="gpt-3.5-turbo", messages=messages, stream=True)
|
||||
|
||||
# result_string = ""
|
||||
# for chunk in response1:
|
||||
# print(chunk)
|
||||
# result_string+=chunk['choices'][0]['delta']['content']
|
||||
# # response1_id = chunk['id']
|
||||
|
||||
# print("current cache")
|
||||
# print(litellm.cache.cache.cache_dict)
|
||||
|
||||
# result2_string=""
|
||||
# import time
|
||||
# time.sleep(1)
|
||||
# response2 = completion(model="gpt-3.5-turbo", messages=messages, stream=True)
|
||||
# for chunk in response2:
|
||||
# print(chunk)
|
||||
# result2_string+=chunk['choices'][0]['delta']['content']
|
||||
# if result_string != result2_string:
|
||||
# print(result_string)
|
||||
# print(result2_string)
|
||||
# pytest.fail(f"Error occurred: Caching with streaming failed, strings diff")
|
||||
# litellm.cache = None
|
||||
|
||||
# except Exception as e:
|
||||
# print(f"error occurred: {traceback.format_exc()}")
|
||||
# pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
# test_caching_v2_stream_basic()
|
||||
|
||||
# def test_caching_v2_stream():
|
||||
# try:
|
||||
# litellm.cache = Cache()
|
||||
# # litellm.token="ishaan@berri.ai"
|
||||
# messages = [{"role": "user", "content": "tell me a story in 2 sentences"}]
|
||||
# response1 = completion(model="gpt-3.5-turbo", messages=messages, stream=True)
|
||||
|
||||
# messages = [{"role": "user", "content": "tell me a chair"}]
|
||||
# response7 = completion(model="command-nightly", messages=messages)
|
||||
# messages = [{"role": "user", "content": "sing a song"}]
|
||||
# response8 = completion(model="gpt-3.5-turbo", messages=messages, stream=True)
|
||||
|
||||
# result_string = ""
|
||||
# for chunk in response1:
|
||||
# print(chunk)
|
||||
# result_string+=chunk['choices'][0]['delta']['content']
|
||||
# # response1_id = chunk['id']
|
||||
|
||||
# print("current cache")
|
||||
# messages = [{"role": "user", "content": "tell me a story in 2 sentences"}]
|
||||
# print(litellm.cache.cache.cache_dict)
|
||||
|
||||
# result2_string=""
|
||||
# response2 = completion(model="gpt-3.5-turbo", messages=messages, stream=True)
|
||||
# for chunk in response2:
|
||||
# print(chunk)
|
||||
# result2_string+=chunk['choices'][0]['delta']['content']
|
||||
# if result_string != result2_string:
|
||||
# print(result_string)
|
||||
# print(result2_string)
|
||||
# pytest.fail(f"Error occurred: Caching with streaming failed, strings diff")
|
||||
# litellm.cache = None
|
||||
|
||||
# except Exception as e:
|
||||
# print(f"error occurred: {traceback.format_exc()}")
|
||||
# pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
# test_caching_v2_stream()
|
||||
|
||||
|
||||
def test_redis_cache_completion():
|
||||
litellm.set_verbose = True
|
||||
messages = [{"role": "user", "content": "who is ishaan CTO of litellm from litellm 2023"}]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue