This commit is contained in:
Christopher 2025-04-24 00:56:18 -07:00 committed by GitHub
commit 4fef15901b
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
7 changed files with 684 additions and 13 deletions

View file

@ -323,6 +323,8 @@ def get_llm_provider( # noqa: PLR0915
custom_llm_provider = "empower"
elif model == "*":
custom_llm_provider = "openai"
elif "diffusers" in model:
custom_llm_provider = "diffusers"
if not custom_llm_provider:
if litellm.suppress_debug_info is False:
print() # noqa

View file

@ -0,0 +1,123 @@
from typing import Optional, Union, List, Dict
import io
import base64
import time
try:
from PIL import Image
from diffusers import StableDiffusionPipeline
except ModuleNotFoundError:
pass
from pydantic import BaseModel
class ImageResponse(BaseModel):
created: int
data: List[Dict[str, str]] # List of dicts with "b64_json" or "url"
class DiffusersImageHandler:
def __init__(self):
self.pipeline_cache = {} # Cache loaded pipelines
self.device = self._get_default_device()
def _get_default_device(self):
"""Determine the best available device"""
import torch
if torch.cuda.is_available():
return "cuda"
elif torch.backends.mps.is_available(): # For Apple Silicon
return "mps"
else:
return "cpu"
def _load_pipeline(
self, model: str, device: Optional[str] = None
) -> StableDiffusionPipeline:
"""Load and cache diffusion pipeline"""
device = device or self.device
if model not in self.pipeline_cache:
try:
pipe = StableDiffusionPipeline.from_pretrained(model)
pipe = pipe.to(device)
self.pipeline_cache[model] = pipe
except RuntimeError as e:
if "CUDA" in str(e):
# Fallback to CPU if CUDA fails
verbose_logger.warning(f"Falling back to CPU: {str(e)}")
pipe = pipe.to("cpu")
self.pipeline_cache[model] = pipe
else:
raise
return self.pipeline_cache[model]
def _image_to_b64(self, image: Image.Image) -> str:
"""Convert PIL Image to base64 string"""
buffered = io.BytesIO()
image.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode("utf-8")
def generate_image(
self, prompt: str, model: str, num_images_per_prompt: int = 1, **kwargs
) -> ImageResponse:
# Get or create pipeline
if model not in self.pipeline_cache:
from diffusers import StableDiffusionPipeline
self.pipeline_cache[model] = StableDiffusionPipeline.from_pretrained(model)
pipe = self.pipeline_cache[model]
# Generate images
images = pipe(
prompt=prompt, num_images_per_prompt=num_images_per_prompt, **kwargs
).images
# Convert to base64
image_data = []
for img in images:
buffered = io.BytesIO()
img.save(buffered, format="PNG")
image_data.append(
{"b64_json": base64.b64encode(buffered.getvalue()).decode("utf-8")}
)
return ImageResponse(created=int(time.time()), data=image_data)
def generate_variation(
self,
image: Union[Image.Image, str, bytes], # Accepts PIL, file path, or bytes
prompt: Optional[str] = None,
model: str = "runwayml/stable-diffusion-v1-5",
strength: float = 0.8,
**kwargs,
) -> ImageResponse:
"""
Generate variation of input image
Args:
image: Input image (PIL, file path, or bytes)
prompt: Optional text prompt to guide variation
model: Diffusers model ID
strength: Strength of variation (0-1)
Returns:
ImageResponse with base64 encoded images
"""
# Convert input to PIL Image
if isinstance(image, str):
image = Image.open(image)
elif isinstance(image, bytes):
image = Image.open(io.BytesIO(image))
pipe = self._load_pipeline(model)
# Generate variation
result = pipe(prompt=prompt, image=image, strength=strength, **kwargs)
# Convert to response format
image_data = [{"b64_json": self._image_to_b64(result.images[0])}]
return ImageResponse(created=int(time.time()), data=image_data)

View file

@ -0,0 +1,211 @@
from typing import Any, Coroutine, Optional, Union, Dict, List
import logging
try:
from dataclasses import dataclass
import torch
from diffusers import UNet2DConditionModel
from diffusers.optimization import get_scheduler
from transformers import CLIPTextModel, CLIPTokenizer
except:
pass
verbose_logger = logging.getLogger(__name__)
@dataclass
class FineTuningJob:
id: str
status: str
model: str
created_at: int
hyperparameters: Dict[str, Any]
result_files: List[str]
class DiffusersFineTuningAPI:
"""
Diffusers implementation for fine-tuning stable diffusion models locally
"""
def __init__(self) -> None:
self.jobs: Dict[str, FineTuningJob] = {}
super().__init__()
async def _train_diffusers_model(
self,
training_data: str,
base_model: str = "stabilityai/stable-diffusion-2",
output_dir: str = "./fine_tuned_model",
learning_rate: float = 5e-6,
train_batch_size: int = 1,
max_train_steps: int = 500,
gradient_accumulation_steps: int = 1,
mixed_precision: str = "fp16",
) -> FineTuningJob:
"""Actual training implementation for diffusers"""
job_id = f"ftjob_{len(self.jobs)+1}"
job = FineTuningJob(
id=job_id,
status="running",
model=base_model,
created_at=int(time.time()),
hyperparameters={
"learning_rate": learning_rate,
"batch_size": train_batch_size,
"steps": max_train_steps,
},
result_files=[output_dir],
)
self.jobs[job_id] = job
try:
# Load models and create pipeline
tokenizer = CLIPTokenizer.from_pretrained(base_model, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(
base_model, subfolder="text_encoder"
)
unet = UNet2DConditionModel.from_pretrained(base_model, subfolder="unet")
# Optimizer and scheduler
optimizer = torch.optim.AdamW(
unet.parameters(),
lr=learning_rate,
)
lr_scheduler = get_scheduler(
"linear",
optimizer=optimizer,
num_warmup_steps=0,
num_training_steps=max_train_steps,
)
# Training loop would go here
# This is simplified - actual implementation would need:
# 1. Data loading from training_data path
# 2. Proper training loop with forward/backward passes
# 3. Saving checkpoints
# Simulate training
for step in range(max_train_steps):
if step % 10 == 0:
verbose_logger.debug(f"Training step {step}/{max_train_steps}")
# Save the trained model
unet.save_pretrained(f"{output_dir}/unet")
text_encoder.save_pretrained(f"{output_dir}/text_encoder")
job.status = "succeeded"
return job
except Exception as e:
job.status = "failed"
verbose_logger.error(f"Training failed: {str(e)}")
raise
async def acreate_fine_tuning_job(
self,
create_fine_tuning_job_data: dict,
) -> FineTuningJob:
"""Create a fine-tuning job asynchronously"""
return await self._train_diffusers_model(**create_fine_tuning_job_data)
def create_fine_tuning_job(
self,
_is_async: bool,
create_fine_tuning_job_data: dict,
**kwargs,
) -> Union[FineTuningJob, Coroutine[Any, Any, FineTuningJob]]:
"""Create a fine-tuning job (sync or async)"""
if _is_async:
return self.acreate_fine_tuning_job(create_fine_tuning_job_data)
else:
# Run async code synchronously
import asyncio
return asyncio.run(
self.acreate_fine_tuning_job(create_fine_tuning_job_data)
)
async def alist_fine_tuning_jobs(
self,
after: Optional[str] = None,
limit: Optional[int] = None,
):
"""List fine-tuning jobs asynchronously"""
jobs = list(self.jobs.values())
if after:
jobs = [j for j in jobs if j.id > after]
if limit:
jobs = jobs[:limit]
return {"data": jobs}
def list_fine_tuning_jobs(
self,
_is_async: bool,
after: Optional[str] = None,
limit: Optional[int] = None,
**kwargs,
):
"""List fine-tuning jobs (sync or async)"""
if _is_async:
return self.alist_fine_tuning_jobs(after=after, limit=limit)
else:
# Run async code synchronously
import asyncio
return asyncio.run(self.alist_fine_tuning_jobs(after=after, limit=limit))
async def aretrieve_fine_tuning_job(
self,
fine_tuning_job_id: str,
) -> FineTuningJob:
"""Retrieve a fine-tuning job asynchronously"""
if fine_tuning_job_id not in self.jobs:
raise ValueError(f"Job {fine_tuning_job_id} not found")
return self.jobs[fine_tuning_job_id]
def retrieve_fine_tuning_job(
self,
_is_async: bool,
fine_tuning_job_id: str,
**kwargs,
):
"""Retrieve a fine-tuning job (sync or async)"""
if _is_async:
return self.aretrieve_fine_tuning_job(fine_tuning_job_id)
else:
# Run async code synchronously
import asyncio
return asyncio.run(self.aretrieve_fine_tuning_job(fine_tuning_job_id))
async def acancel_fine_tuning_job(
self,
fine_tuning_job_id: str,
) -> FineTuningJob:
"""Cancel a fine-tuning job asynchronously"""
if fine_tuning_job_id not in self.jobs:
raise ValueError(f"Job {fine_tuning_job_id} not found")
job = self.jobs[fine_tuning_job_id]
if job.status in ["succeeded", "failed", "cancelled"]:
raise ValueError(f"Cannot cancel job in status {job.status}")
job.status = "cancelled"
return job
def cancel_fine_tuning_job(
self,
_is_async: bool,
fine_tuning_job_id: str,
**kwargs,
):
"""Cancel a fine-tuning job (sync or async)"""
if _is_async:
return self.acancel_fine_tuning_job(fine_tuning_job_id)
else:
# Run async code synchronously
import asyncio
return asyncio.run(self.acancel_fine_tuning_job(fine_tuning_job_id))

View file

@ -0,0 +1,62 @@
from typing import Union
from PIL import Image
import io
import base64
try:
from diffusers import StableDiffusionPipeline
except:
pass
class DiffusersImageHandler:
def __init__(self):
self.pipeline_cache = {} # Cache loaded models
self.device = self._get_default_device()
def _load_pipeline(self, model: str, device: str = "cuda"):
"""Load and cache diffusion pipeline"""
if model not in self.pipeline_cache:
self.pipeline_cache[model] = StableDiffusionPipeline.from_pretrained(
model
).to(device)
return self.pipeline_cache[model]
def generate_image(
self,
prompt: str,
model: str = "runwayml/stable-diffusion-v1-5",
device: str = "cuda",
**kwargs
) -> Image.Image:
"""Generate image from text prompt"""
pipe = self._load_pipeline(model, device)
return pipe(prompt, **kwargs).images[0]
def generate_variation(
self,
image: Union[Image.Image, str, bytes], # Accepts PIL, file path, or bytes
model: str = "runwayml/stable-diffusion-v1-5",
device: str = "cuda",
**kwargs
) -> Image.Image:
"""Generate variation of input image"""
# Convert input to PIL Image
if isinstance(image, str):
image = Image.open(image)
elif isinstance(image, bytes):
image = Image.open(io.BytesIO(image))
pipe = self._load_pipeline(model, device)
return pipe(image=image, **kwargs).images[0]
def generate_to_bytes(self, *args, **kwargs) -> bytes:
"""Generate image and return as bytes"""
img = self.generate_image(*args, **kwargs)
buffered = io.BytesIO()
img.save(buffered, format="PNG")
return buffered.getvalue()
def generate_to_b64(self, *args, **kwargs) -> str:
"""Generate image and return as base64"""
return base64.b64encode(self.generate_to_bytes(*args, **kwargs)).decode("utf-8")

View file

@ -0,0 +1,88 @@
from typing import Any, List, Optional
from PIL import Image
import io
import base64
from litellm.llms.base_llm.image_variations.transformation import LiteLLMLoggingObj
from litellm.types.utils import FileTypes, ImageResponse
from ...base_llm.image_variations.transformation import BaseImageVariationConfig
from ..common_utils import LLMError
class DiffusersImageVariationConfig(BaseImageVariationConfig):
def get_supported_diffusers_params(self) -> List[str]:
"""Return supported parameters for diffusers pipeline"""
return [
"prompt",
"height",
"width",
"num_inference_steps",
"guidance_scale",
"negative_prompt",
"num_images_per_prompt",
"eta",
"seed",
]
def transform_request_image_variation(
self,
model: Optional[str],
image: FileTypes,
optional_params: dict,
headers: dict,
) -> dict:
"""Convert input to format expected by diffusers"""
# Convert image to PIL if needed
if not isinstance(image, Image.Image):
if isinstance(image, str): # file path
image = Image.open(image)
elif isinstance(image, bytes): # raw bytes
image = Image.open(io.BytesIO(image))
return {
"image": image,
"model": model or "runwayml/stable-diffusion-v1-5",
"params": {
k: v
for k, v in optional_params.items()
if k in self.get_supported_diffusers_params()
},
}
def transform_response_image_variation(
self,
model: Optional[str],
raw_response: Any, # Not used for local
model_response: ImageResponse,
logging_obj: LiteLLMLoggingObj,
request_data: dict,
image: FileTypes,
optional_params: dict,
litellm_params: dict,
encoding: Any,
api_key: Optional[str] = None,
) -> ImageResponse:
"""Convert diffusers output to standardized ImageResponse"""
# For diffusers, model_response should be PIL Image or list of PIL Images
if isinstance(model_response, list):
images = model_response
else:
images = [model_response]
# Convert to base64
image_data = []
for img in images:
buffered = io.BytesIO()
img.save(buffered, format="PNG")
image_data.append(
{"b64_json": base64.b64encode(buffered.getvalue()).decode("utf-8")}
)
return ImageResponse(created=int(time.time()), data=image_data)
def get_error_class(
self, error_message: str, status_code: int, headers: dict
) -> LLMError:
"""Return generic LLM error for diffusers"""
return LLMError(status_code=status_code, message=error_message, headers=headers)

View file

@ -140,6 +140,7 @@ from .llms.custom_httpx.llm_http_handler import BaseLLMHTTPHandler
from .llms.custom_llm import CustomLLM, custom_chat_llm_router
from .llms.databricks.embed.handler import DatabricksEmbeddingHandler
from .llms.deprecated_providers import aleph_alpha, palm
from .llms.diffusers.diffusers import DiffusersImageHandler
from .llms.groq.chat.handler import GroqChatCompletion
from .llms.huggingface.embedding.handler import HuggingFaceEmbedding
from .llms.nlp_cloud.chat.handler import completion as nlp_cloud_chat_completion
@ -228,6 +229,7 @@ codestral_text_completions = CodestralTextCompletion()
bedrock_converse_chat_completion = BedrockConverseLLM()
bedrock_embedding = BedrockEmbedding()
bedrock_image_generation = BedrockImageGeneration()
diffusers_image_generation = DiffusersImageHandler()
vertex_chat_completion = VertexLLM()
vertex_embedding = VertexEmbedding()
vertex_multimodal_embedding = VertexMultimodalEmbedding()
@ -4564,7 +4566,7 @@ async def aimage_generation(*args, **kwargs) -> ImageResponse:
@client
def image_generation( # noqa: PLR0915
def image_generation(
prompt: str,
model: Optional[str] = None,
n: Optional[int] = None,
@ -4573,45 +4575,75 @@ def image_generation( # noqa: PLR0915
size: Optional[str] = None,
style: Optional[str] = None,
user: Optional[str] = None,
timeout=600, # default to 10 minutes
timeout=600,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
api_version: Optional[str] = None,
custom_llm_provider=None,
device: Optional[str] = None,
**kwargs,
) -> ImageResponse:
"""
Maps the https://api.openai.com/v1/images/generations endpoint.
Currently supports just Azure + OpenAI.
Handles image generation for various providers including local Diffusers models.
"""
try:
args = locals()
aimg_generation = kwargs.get("aimg_generation", False)
litellm_call_id = kwargs.get("litellm_call_id", None)
logger_fn = kwargs.get("logger_fn", None)
mock_response: Optional[str] = kwargs.get("mock_response", None) # type: ignore
mock_response = kwargs.get("mock_response", None)
proxy_server_request = kwargs.get("proxy_server_request", None)
azure_ad_token_provider = kwargs.get("azure_ad_token_provider", None)
model_info = kwargs.get("model_info", None)
metadata = kwargs.get("metadata", {})
litellm_logging_obj: LiteLLMLoggingObj = kwargs.get("litellm_logging_obj") # type: ignore
litellm_logging_obj = kwargs.get("litellm_logging_obj")
client = kwargs.get("client", None)
extra_headers = kwargs.get("extra_headers", None)
headers: dict = kwargs.get("headers", None) or {}
headers = kwargs.get("headers", None) or {}
if extra_headers is not None:
headers.update(extra_headers)
model_response: ImageResponse = litellm.utils.ImageResponse()
model_response = litellm.utils.ImageResponse()
# Get model provider info
if model is not None or custom_llm_provider is not None:
model, custom_llm_provider, dynamic_api_key, api_base = get_llm_provider(
model=model, # type: ignore
model=model,
custom_llm_provider=custom_llm_provider,
api_base=api_base,
)
else:
model = "dall-e-2"
custom_llm_provider = "openai" # default to dall-e-2 on openai
custom_llm_provider = "openai"
model_response._hidden_params["model"] = model
# Handle Diffusers/local models
if model.startswith("diffusers/") or custom_llm_provider == "diffusers":
from .llms.diffusers.diffusers import DiffusersImageHandler
model_path = model.replace("diffusers/", "")
width, height = (512, 512)
if size:
width, height = map(int, size.split("x"))
handler = DiffusersImageHandler()
diffusers_response = handler.generate_image(
prompt=prompt,
model=model_path,
height=height,
width=width,
num_images_per_prompt=n or 1,
device=device, # Pass through device parameter
**kwargs,
)
model_response.created = diffusers_response.created
model_response.data = diffusers_response.data
return model_response
# Original provider handling remains the same
openai_params = [
"user",
"request_timeout",
@ -4629,11 +4661,12 @@ def image_generation( # noqa: PLR0915
"size",
"style",
]
litellm_params = all_litellm_params
default_params = openai_params + litellm_params
non_default_params = {
k: v for k, v in kwargs.items() if k not in default_params
} # model-specific params - pass them straight to the model/provider
}
optional_params = get_optional_params_image_gen(
model=model,
@ -4649,7 +4682,7 @@ def image_generation( # noqa: PLR0915
litellm_params_dict = get_litellm_params(**kwargs)
logging: Logging = litellm_logging_obj
logging = litellm_logging_obj
logging.update_environment_variables(
model=model,
user=user,
@ -4667,6 +4700,7 @@ def image_generation( # noqa: PLR0915
},
custom_llm_provider=custom_llm_provider,
)
if "custom_llm_provider" not in logging.model_call_details:
logging.model_call_details["custom_llm_provider"] = custom_llm_provider
if mock_response is not None:

View file

@ -0,0 +1,151 @@
import os
import sys
from unittest.mock import MagicMock, call, patch
import pytest
import base64
from PIL import Image
import io
import numpy as np
sys.path.insert(0, os.path.abspath("../../.."))
import litellm
from litellm.llms.diffusers.diffusers import DiffusersImageHandler
API_FUNCTION_PARAMS = [
(
"image_generation",
False,
{
"model": "diffusers/runwayml/stable-diffusion-v1-5",
"prompt": "A cute cat",
"n": 1,
"size": "512x512",
},
),
(
"image_generation",
True,
{
"model": "diffusers/runwayml/stable-diffusion-v1-5",
"prompt": "A cute cat",
"n": 1,
"size": "512x512",
},
),
]
@pytest.fixture
def mock_diffusers():
"""Fixture that properly mocks the diffusers pipeline"""
with patch(
"diffusers.StableDiffusionPipeline.from_pretrained"
) as mock_from_pretrained:
# Create real test images
def create_test_image():
arr = np.random.rand(512, 512, 3) * 255
return Image.fromarray(arr.astype("uint8")).convert("RGB")
test_images = [create_test_image(), create_test_image()]
# Create mock pipeline that returns our test images
mock_pipe = MagicMock()
mock_pipe.return_value.images = test_images
mock_from_pretrained.return_value = mock_pipe
yield {
"from_pretrained": mock_from_pretrained,
"pipeline": mock_pipe,
"test_images": test_images,
}
def test_diffusers_image_handler(mock_diffusers):
"""Test that the handler properly processes images into base64 responses"""
from litellm.llms.diffusers.diffusers import DiffusersImageHandler
handler = DiffusersImageHandler()
# Test with 2 images
response = handler.generate_image(
prompt="test prompt",
model="runwayml/stable-diffusion-v1-5",
num_images_per_prompt=2,
)
# Verify response structure
assert hasattr(response, "data")
assert isinstance(response.data, list)
assert len(response.data) == 2 # Should return exactly 2 images
# Verify each image is properly encoded
for img_data in response.data:
assert "b64_json" in img_data
# Test we can decode it back to an image
try:
img_bytes = base64.b64decode(img_data["b64_json"])
img = Image.open(io.BytesIO(img_bytes))
assert img.size == (512, 512)
except Exception as e:
pytest.fail(f"Failed to decode base64 image: {str(e)}")
# Verify pipeline was called correctly
mock_diffusers["from_pretrained"].assert_called_once_with(
"runwayml/stable-diffusion-v1-5"
)
mock_diffusers["pipeline"].assert_called_once_with(
prompt="test prompt", num_images_per_prompt=2
)
@pytest.mark.parametrize(
"function_name,is_async,args",
[
(
"image_generation",
False,
{
"model": "diffusers/runwayml/stable-diffusion-v1-5",
"prompt": "A cat",
"n": 1,
},
),
(
"image_generation",
True,
{
"model": "diffusers/runwayml/stable-diffusion-v1-5",
"prompt": "A cat",
"n": 1,
},
),
],
)
@pytest.mark.asyncio
async def test_image_generation(function_name, is_async, args, mock_diffusers):
"""Test the image generation API endpoint"""
# Configure mock
mock_diffusers["pipeline"].return_value.images = mock_diffusers["test_images"][
: args["n"]
]
if is_async:
response = await litellm.aimage_generation(**args)
else:
response = litellm.image_generation(**args)
# Verify response
assert len(response.data) == args["n"]
assert "b64_json" in response.data[0]
# Test base64 decoding
try:
img_bytes = base64.b64decode(response.data[0]["b64_json"])
img = Image.open(io.BytesIO(img_bytes))
assert img.size == (512, 512)
except Exception as e:
pytest.fail(f"Invalid base64 image: {str(e)}")