LiteLLM Minor Fixes & Improvements (10/15/2024) (#6242)

* feat(litellm_pre_call_utils.py): support forwarding request headers to backend llm api

* fix(litellm_pre_call_utils.py): handle custom litellm key header

* test(router_code_coverage.py): check if all router functions are dire… (#6186)

* test(router_code_coverage.py): check if all router functions are directly tested

prevent regressions

* docs(configs.md): document all environment variables (#6185)

* docs: make it easier to find anthropic/openai prompt caching doc

* aded codecov yml (#6207)

* fix codecov.yaml

* run ci/cd again

* (refactor) caching use LLMCachingHandler for async_get_cache and set_cache  (#6208)

* use folder for caching

* fix importing caching

* fix clickhouse pyright

* fix linting

* fix correctly pass kwargs and args

* fix test case for embedding

* fix linting

* fix embedding caching logic

* fix refactor handle utils.py

* fix test_embedding_caching_azure_individual_items_reordered

* (feat) prometheus have well defined latency buckets (#6211)

* fix prometheus have well defined latency buckets

* use a well define latency bucket

* use types file for prometheus logging

* add test for LATENCY_BUCKETS

* fix prom testing

* fix config.yml

* (refactor caching) use LLMCachingHandler for caching streaming responses  (#6210)

* use folder for caching

* fix importing caching

* fix clickhouse pyright

* fix linting

* fix correctly pass kwargs and args

* fix test case for embedding

* fix linting

* fix embedding caching logic

* fix refactor handle utils.py

* refactor async set stream cache

* fix linting

* bump (#6187)

* update code cov yaml

* fix config.yml

* add caching component to code cov

* fix config.yml ci/cd

* add coverage for proxy auth

* (refactor caching) use common `_retrieve_from_cache` helper  (#6212)

* use folder for caching

* fix importing caching

* fix clickhouse pyright

* fix linting

* fix correctly pass kwargs and args

* fix test case for embedding

* fix linting

* fix embedding caching logic

* fix refactor handle utils.py

* refactor async set stream cache

* fix linting

* refactor - use _retrieve_from_cache

* refactor use _convert_cached_result_to_model_response

* fix linting errors

* bump: version 1.49.2 → 1.49.3

* fix code cov components

* test(test_router_helpers.py): add router component unit tests

* test: add additional router tests

* test: add more router testing

* test: add more router testing + more mock functions

* ci(router_code_coverage.py): fix check

---------

Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: yujonglee <yujonglee.dev@gmail.com>

* bump: version 1.49.3 → 1.49.4

* (refactor) use helper function `_assemble_complete_response_from_streaming_chunks` to assemble complete responses in caching and logging callbacks (#6220)

* (refactor) use _assemble_complete_response_from_streaming_chunks

* add unit test for test_assemble_complete_response_from_streaming_chunks_1

* fix assemble complete_streaming_response

* config add logging_testing

* add logging_coverage in codecov

* test test_assemble_complete_response_from_streaming_chunks_3

* add unit tests for _assemble_complete_response_from_streaming_chunks

* fix remove unused / junk function

* add test for streaming_chunks when error assembling

* (refactor) OTEL - use safe_set_attribute for setting attributes (#6226)

* otel - use safe_set_attribute for setting attributes

* fix OTEL only use safe_set_attribute

* (fix) prompt caching cost calculation OpenAI, Azure OpenAI  (#6231)

* fix prompt caching cost calculation

* fix testing for prompt cache cost calc

* fix(allowed_model_region): allow us as allowed region (#6234)

* test(router_code_coverage.py): check if all router functions are dire… (#6186)

* test(router_code_coverage.py): check if all router functions are directly tested

prevent regressions

* docs(configs.md): document all environment variables (#6185)

* docs: make it easier to find anthropic/openai prompt caching doc

* aded codecov yml (#6207)

* fix codecov.yaml

* run ci/cd again

* (refactor) caching use LLMCachingHandler for async_get_cache and set_cache  (#6208)

* use folder for caching

* fix importing caching

* fix clickhouse pyright

* fix linting

* fix correctly pass kwargs and args

* fix test case for embedding

* fix linting

* fix embedding caching logic

* fix refactor handle utils.py

* fix test_embedding_caching_azure_individual_items_reordered

* (feat) prometheus have well defined latency buckets (#6211)

* fix prometheus have well defined latency buckets

* use a well define latency bucket

* use types file for prometheus logging

* add test for LATENCY_BUCKETS

* fix prom testing

* fix config.yml

* (refactor caching) use LLMCachingHandler for caching streaming responses  (#6210)

* use folder for caching

* fix importing caching

* fix clickhouse pyright

* fix linting

* fix correctly pass kwargs and args

* fix test case for embedding

* fix linting

* fix embedding caching logic

* fix refactor handle utils.py

* refactor async set stream cache

* fix linting

* bump (#6187)

* update code cov yaml

* fix config.yml

* add caching component to code cov

* fix config.yml ci/cd

* add coverage for proxy auth

* (refactor caching) use common `_retrieve_from_cache` helper  (#6212)

* use folder for caching

* fix importing caching

* fix clickhouse pyright

* fix linting

* fix correctly pass kwargs and args

* fix test case for embedding

* fix linting

* fix embedding caching logic

* fix refactor handle utils.py

* refactor async set stream cache

* fix linting

* refactor - use _retrieve_from_cache

* refactor use _convert_cached_result_to_model_response

* fix linting errors

* bump: version 1.49.2 → 1.49.3

* fix code cov components

* test(test_router_helpers.py): add router component unit tests

* test: add additional router tests

* test: add more router testing

* test: add more router testing + more mock functions

* ci(router_code_coverage.py): fix check

---------

Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: yujonglee <yujonglee.dev@gmail.com>

* bump: version 1.49.3 → 1.49.4

* (refactor) use helper function `_assemble_complete_response_from_streaming_chunks` to assemble complete responses in caching and logging callbacks (#6220)

* (refactor) use _assemble_complete_response_from_streaming_chunks

* add unit test for test_assemble_complete_response_from_streaming_chunks_1

* fix assemble complete_streaming_response

* config add logging_testing

* add logging_coverage in codecov

* test test_assemble_complete_response_from_streaming_chunks_3

* add unit tests for _assemble_complete_response_from_streaming_chunks

* fix remove unused / junk function

* add test for streaming_chunks when error assembling

* (refactor) OTEL - use safe_set_attribute for setting attributes (#6226)

* otel - use safe_set_attribute for setting attributes

* fix OTEL only use safe_set_attribute

* fix(allowed_model_region): allow us as allowed region

---------

Co-authored-by: Krish Dholakia <krrishdholakia@gmail.com>
Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: yujonglee <yujonglee.dev@gmail.com>

* fix(litellm_pre_call_utils.py): support 'us' region routing + fix header forwarding to filter on `x-` headers

* docs(customer_routing.md): fix region-based routing example

* feat(azure.py): handle empty arguments function call - azure

Closes https://github.com/BerriAI/litellm/issues/6241

* feat(guardrails_ai.py): support guardrails ai integration

Adds support for on-prem guardrails via guardrails ai

* fix(proxy/utils.py): prevent sql injection attack

Fixes https://huntr.com/bounties/a4f6d357-5b44-4e00-9cac-f1cc351211d2

* fix: fix linting errors

* fix(litellm_pre_call_utils.py): don't log litellm api key in proxy server request headers

* fix(litellm_pre_call_utils.py): don't forward stainless headers

* docs(guardrails_ai.md): add guardrails ai quick start to docs

* test: handle flaky test

---------

Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: yujonglee <yujonglee.dev@gmail.com>
Co-authored-by: Marcus Elwin <marcus@elwin.com>
This commit is contained in:
Krish Dholakia 2024-10-16 07:32:06 -07:00 committed by GitHub
parent fc5b75d171
commit 54ebdbf7ce
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
32 changed files with 982 additions and 314 deletions

View file

@ -0,0 +1,250 @@
import types
from typing import List, Optional, Type, Union
import litellm
from ....exceptions import UnsupportedParamsError
from ....types.llms.openai import (
AllMessageValues,
ChatCompletionToolChoiceFunctionParam,
ChatCompletionToolChoiceObjectParam,
ChatCompletionToolParam,
ChatCompletionToolParamFunctionChunk,
)
from ...prompt_templates.factory import convert_to_azure_openai_messages
class AzureOpenAIConfig:
"""
Reference: https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#chat-completions
The class `AzureOpenAIConfig` provides configuration for the OpenAI's Chat API interface, for use with Azure. It inherits from `OpenAIConfig`. Below are the parameters::
- `frequency_penalty` (number or null): Defaults to 0. Allows a value between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, thereby minimizing repetition.
- `function_call` (string or object): This optional parameter controls how the model calls functions.
- `functions` (array): An optional parameter. It is a list of functions for which the model may generate JSON inputs.
- `logit_bias` (map): This optional parameter modifies the likelihood of specified tokens appearing in the completion.
- `max_tokens` (integer or null): This optional parameter helps to set the maximum number of tokens to generate in the chat completion.
- `n` (integer or null): This optional parameter helps to set how many chat completion choices to generate for each input message.
- `presence_penalty` (number or null): Defaults to 0. It penalizes new tokens based on if they appear in the text so far, hence increasing the model's likelihood to talk about new topics.
- `stop` (string / array / null): Specifies up to 4 sequences where the API will stop generating further tokens.
- `temperature` (number or null): Defines the sampling temperature to use, varying between 0 and 2.
- `top_p` (number or null): An alternative to sampling with temperature, used for nucleus sampling.
"""
def __init__(
self,
frequency_penalty: Optional[int] = None,
function_call: Optional[Union[str, dict]] = None,
functions: Optional[list] = None,
logit_bias: Optional[dict] = None,
max_tokens: Optional[int] = None,
n: Optional[int] = None,
presence_penalty: Optional[int] = None,
stop: Optional[Union[str, list]] = None,
temperature: Optional[int] = None,
top_p: Optional[int] = None,
) -> None:
locals_ = locals().copy()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
def get_supported_openai_params(self):
return [
"temperature",
"n",
"stream",
"stream_options",
"stop",
"max_tokens",
"max_completion_tokens",
"tools",
"tool_choice",
"presence_penalty",
"frequency_penalty",
"logit_bias",
"user",
"function_call",
"functions",
"tools",
"tool_choice",
"top_p",
"logprobs",
"top_logprobs",
"response_format",
"seed",
"extra_headers",
]
def map_openai_params(
self,
non_default_params: dict,
optional_params: dict,
model: str,
api_version: str, # Y-M-D-{optional}
drop_params,
) -> dict:
supported_openai_params = self.get_supported_openai_params()
api_version_times = api_version.split("-")
api_version_year = api_version_times[0]
api_version_month = api_version_times[1]
api_version_day = api_version_times[2]
for param, value in non_default_params.items():
if param == "tool_choice":
"""
This parameter requires API version 2023-12-01-preview or later
tool_choice='required' is not supported as of 2024-05-01-preview
"""
## check if api version supports this param ##
if (
api_version_year < "2023"
or (api_version_year == "2023" and api_version_month < "12")
or (
api_version_year == "2023"
and api_version_month == "12"
and api_version_day < "01"
)
):
if litellm.drop_params is True or (
drop_params is not None and drop_params is True
):
pass
else:
raise UnsupportedParamsError(
status_code=400,
message=f"""Azure does not support 'tool_choice', for api_version={api_version}. Bump your API version to '2023-12-01-preview' or later. This parameter requires 'api_version="2023-12-01-preview"' or later. Azure API Reference: https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#chat-completions""",
)
elif value == "required" and (
api_version_year == "2024" and api_version_month <= "05"
): ## check if tool_choice value is supported ##
if litellm.drop_params is True or (
drop_params is not None and drop_params is True
):
pass
else:
raise UnsupportedParamsError(
status_code=400,
message=f"Azure does not support '{value}' as a {param} param, for api_version={api_version}. To drop 'tool_choice=required' for calls with this Azure API version, set `litellm.drop_params=True` or for proxy:\n\n`litellm_settings:\n drop_params: true`\nAzure API Reference: https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#chat-completions",
)
else:
optional_params["tool_choice"] = value
elif param == "response_format" and isinstance(value, dict):
json_schema: Optional[dict] = None
schema_name: str = ""
if "response_schema" in value:
json_schema = value["response_schema"]
schema_name = "json_tool_call"
elif "json_schema" in value:
json_schema = value["json_schema"]["schema"]
schema_name = value["json_schema"]["name"]
"""
Follow similar approach to anthropic - translate to a single tool call.
When using tools in this way: - https://docs.anthropic.com/en/docs/build-with-claude/tool-use#json-mode
- You usually want to provide a single tool
- You should set tool_choice (see Forcing tool use) to instruct the model to explicitly use that tool
- Remember that the model will pass the input to the tool, so the name of the tool and description should be from the models perspective.
"""
if json_schema is not None and (
(api_version_year <= "2024" and api_version_month < "08")
or "gpt-4o" not in model
): # azure api version "2024-08-01-preview" onwards supports 'json_schema' only for gpt-4o
_tool_choice = ChatCompletionToolChoiceObjectParam(
type="function",
function=ChatCompletionToolChoiceFunctionParam(
name=schema_name
),
)
_tool = ChatCompletionToolParam(
type="function",
function=ChatCompletionToolParamFunctionChunk(
name=schema_name, parameters=json_schema
),
)
optional_params["tools"] = [_tool]
optional_params["tool_choice"] = _tool_choice
optional_params["json_mode"] = True
else:
optional_params["response_format"] = value
elif param == "max_completion_tokens":
# TODO - Azure OpenAI will probably add support for this, we should pass it through when Azure adds support
optional_params["max_tokens"] = value
elif param in supported_openai_params:
optional_params[param] = value
return optional_params
@classmethod
def transform_request(
cls, model: str, messages: List[AllMessageValues], optional_params: dict
) -> dict:
messages = convert_to_azure_openai_messages(messages)
return {
"model": model,
"messages": messages,
**optional_params,
}
def get_mapped_special_auth_params(self) -> dict:
return {"token": "azure_ad_token"}
def map_special_auth_params(self, non_default_params: dict, optional_params: dict):
for param, value in non_default_params.items():
if param == "token":
optional_params["azure_ad_token"] = value
return optional_params
def get_eu_regions(self) -> List[str]:
"""
Source: https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models#gpt-4-and-gpt-4-turbo-model-availability
"""
return ["europe", "sweden", "switzerland", "france", "uk"]
def get_us_regions(self) -> List[str]:
"""
Source: https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models#gpt-4-and-gpt-4-turbo-model-availability
"""
return [
"us",
"eastus",
"eastus2",
"eastus2euap",
"eastus3",
"southcentralus",
"westus",
"westus2",
"westus3",
"westus4",
]