mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 10:44:24 +00:00
adding support for meta-llama-2
This commit is contained in:
parent
b5875cc4bd
commit
6aff47083b
12 changed files with 220 additions and 43 deletions
94
litellm/llms/huggingface_restapi.py
Normal file
94
litellm/llms/huggingface_restapi.py
Normal file
|
@ -0,0 +1,94 @@
|
|||
## Uses the huggingface text generation inference API
|
||||
import os, json
|
||||
from enum import Enum
|
||||
import requests
|
||||
from litellm import logging
|
||||
import time
|
||||
from typing import Callable
|
||||
|
||||
class HuggingfaceError(Exception):
|
||||
def __init__(self, status_code, message):
|
||||
self.status_code = status_code
|
||||
self.message = message
|
||||
super().__init__(self.message) # Call the base class constructor with the parameters it needs
|
||||
|
||||
class HuggingfaceRestAPILLM():
|
||||
def __init__(self, encoding, api_key=None) -> None:
|
||||
self.encoding = encoding
|
||||
self.validate_environment(api_key=api_key)
|
||||
|
||||
def validate_environment(self, api_key): # set up the environment required to run the model
|
||||
self.headers = {
|
||||
"content-type": "application/json",
|
||||
}
|
||||
# get the api key if it exists in the environment or is passed in, but don't require it
|
||||
self.api_key = os.getenv("HF_TOKEN") if "HF_TOKEN" in os.environ else api_key
|
||||
if self.api_key != None:
|
||||
self.headers["Authorization"] = f"Bearer {self.api_key}"
|
||||
|
||||
def completion(self, model: str, messages: list, custom_api_base: str, model_response: dict, print_verbose: Callable, optional_params=None, litellm_params=None, logger_fn=None): # logic for parsing in - calling - parsing out model completion calls
|
||||
if custom_api_base:
|
||||
completion_url = custom_api_base
|
||||
elif "HF_API_BASE" in os.environ:
|
||||
completion_url = os.getenv("HF_API_BASE")
|
||||
else:
|
||||
completion_url = f"https://api-inference.huggingface.co/models/{model}"
|
||||
prompt = ""
|
||||
if "meta-llama" in model and "chat" in model: # use the required special tokens for meta-llama - https://huggingface.co/blog/llama2#how-to-prompt-llama-2
|
||||
prompt = "<s>"
|
||||
for message in messages:
|
||||
if message["role"] == "system":
|
||||
prompt += "[INST] <<SYS>>" + message["content"]
|
||||
elif message["role"] == "assistant":
|
||||
prompt += message["content"] + "</s><s>[INST]"
|
||||
elif message["role"] == "user":
|
||||
prompt += message["content"] + "[/INST]"
|
||||
else:
|
||||
for message in messages:
|
||||
prompt += f"{message['content']}"
|
||||
### MAP INPUT PARAMS
|
||||
# max tokens
|
||||
if "max_tokens" in optional_params:
|
||||
value = optional_params.pop("max_tokens")
|
||||
optional_params["max_new_tokens"] = value
|
||||
data = {
|
||||
"inputs": prompt,
|
||||
# "parameters": optional_params
|
||||
}
|
||||
## LOGGING
|
||||
logging(model=model, input=prompt, additional_args={"litellm_params": litellm_params, "optional_params": optional_params}, logger_fn=logger_fn)
|
||||
## COMPLETION CALL
|
||||
response = requests.post(completion_url, headers=self.headers, data=json.dumps(data))
|
||||
if "stream" in optional_params and optional_params["stream"] == True:
|
||||
return response.iter_lines()
|
||||
else:
|
||||
## LOGGING
|
||||
logging(model=model, input=prompt, additional_args={"litellm_params": litellm_params, "optional_params": optional_params, "original_response": response.text}, logger_fn=logger_fn)
|
||||
print_verbose(f"raw model_response: {response.text}")
|
||||
## RESPONSE OBJECT
|
||||
completion_response = response.json()
|
||||
print(f"response: {completion_response}")
|
||||
if isinstance(completion_response, dict) and "error" in completion_response:
|
||||
print(f"completion error: {completion_response['error']}")
|
||||
print(f"response.status_code: {response.status_code}")
|
||||
raise HuggingfaceError(message=completion_response["error"], status_code=response.status_code)
|
||||
else:
|
||||
model_response["choices"][0]["message"]["content"] = completion_response[0]["generated_text"]
|
||||
|
||||
## CALCULATING USAGE
|
||||
prompt_tokens = len(self.encoding.encode(prompt)) ##[TODO] use the llama2 tokenizer here
|
||||
completion_tokens = len(self.encoding.encode(model_response["choices"][0]["message"]["content"])) ##[TODO] use the llama2 tokenizer here
|
||||
|
||||
|
||||
model_response["created"] = time.time()
|
||||
model_response["model"] = model
|
||||
model_response["usage"] = {
|
||||
"prompt_tokens": prompt_tokens,
|
||||
"completion_tokens": completion_tokens,
|
||||
"total_tokens": prompt_tokens + completion_tokens
|
||||
}
|
||||
return model_response
|
||||
pass
|
||||
|
||||
def embedding(): # logic for parsing in - calling - parsing out model embedding calls
|
||||
pass
|
Loading…
Add table
Add a link
Reference in a new issue