mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 03:04:13 +00:00
adding support for aleph alpha
This commit is contained in:
parent
adcf3dfe74
commit
83b8af8567
9 changed files with 351 additions and 91 deletions
138
litellm/llms/aleph_alpha.py
Normal file
138
litellm/llms/aleph_alpha.py
Normal file
|
@ -0,0 +1,138 @@
|
|||
import os, json
|
||||
from enum import Enum
|
||||
import requests
|
||||
import time
|
||||
from typing import Callable
|
||||
from litellm.utils import ModelResponse
|
||||
|
||||
class AlephAlphaError(Exception):
|
||||
def __init__(self, status_code, message):
|
||||
self.status_code = status_code
|
||||
self.message = message
|
||||
super().__init__(
|
||||
self.message
|
||||
) # Call the base class constructor with the parameters it needs
|
||||
|
||||
|
||||
class AlephAlphaLLM:
|
||||
def __init__(
|
||||
self, encoding, default_max_tokens_to_sample, logging_obj, api_key=None
|
||||
):
|
||||
self.encoding = encoding
|
||||
self.default_max_tokens_to_sample = default_max_tokens_to_sample
|
||||
self.completion_url = "https://api.aleph-alpha.com/complete"
|
||||
self.api_key = api_key
|
||||
self.logging_obj = logging_obj
|
||||
self.validate_environment(api_key=api_key)
|
||||
|
||||
def validate_environment(
|
||||
self, api_key
|
||||
): # set up the environment required to run the model
|
||||
# set the api key
|
||||
if self.api_key == None:
|
||||
raise ValueError(
|
||||
"Missing Aleph Alpha API Key - A call is being made to Aleph Alpha but no key is set either in the environment variables or via params"
|
||||
)
|
||||
self.api_key = api_key
|
||||
self.headers = {
|
||||
"accept": "application/json",
|
||||
"content-type": "application/json",
|
||||
"Authorization": "Bearer " + self.api_key,
|
||||
}
|
||||
|
||||
def completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: list,
|
||||
model_response: ModelResponse,
|
||||
print_verbose: Callable,
|
||||
optional_params=None,
|
||||
litellm_params=None,
|
||||
logger_fn=None,
|
||||
): # logic for parsing in - calling - parsing out model completion calls
|
||||
model = model
|
||||
prompt = ""
|
||||
if "control" in model: # follow the ###Instruction / ###Response format
|
||||
for idx, message in enumerate(messages):
|
||||
if "role" in message:
|
||||
if idx == 0: # set first message as instruction (required), let later user messages be input
|
||||
prompt += f"###Instruction: {message['content']}"
|
||||
else:
|
||||
if message["role"] == "system":
|
||||
prompt += (
|
||||
f"###Instruction: {message['content']}"
|
||||
)
|
||||
elif message["role"] == "user":
|
||||
prompt += (
|
||||
f"###Input: {message['content']}"
|
||||
)
|
||||
else:
|
||||
prompt += (
|
||||
f"###Response: {message['content']}"
|
||||
)
|
||||
else:
|
||||
prompt += f"{message['content']}"
|
||||
else:
|
||||
prompt = " ".join(message["content"] for message in messages)
|
||||
data = {
|
||||
"model": model,
|
||||
"prompt": prompt,
|
||||
"maximum_tokens": optional_params["maximum_tokens"] if "maximum_tokens" in optional_params else self.default_max_tokens_to_sample, # required input
|
||||
**optional_params,
|
||||
}
|
||||
|
||||
## LOGGING
|
||||
self.logging_obj.pre_call(
|
||||
input=prompt,
|
||||
api_key=self.api_key,
|
||||
additional_args={"complete_input_dict": data},
|
||||
)
|
||||
## COMPLETION CALL
|
||||
response = requests.post(
|
||||
self.completion_url, headers=self.headers, data=json.dumps(data), stream=optional_params["stream"] if "stream" in optional_params else False
|
||||
)
|
||||
if "stream" in optional_params and optional_params["stream"] == True:
|
||||
return response.iter_lines()
|
||||
else:
|
||||
## LOGGING
|
||||
self.logging_obj.post_call(
|
||||
input=prompt,
|
||||
api_key=self.api_key,
|
||||
original_response=response.text,
|
||||
additional_args={"complete_input_dict": data},
|
||||
)
|
||||
print_verbose(f"raw model_response: {response.text}")
|
||||
## RESPONSE OBJECT
|
||||
completion_response = response.json()
|
||||
if "error" in completion_response:
|
||||
raise AlephAlphaError(
|
||||
message=completion_response["error"],
|
||||
status_code=response.status_code,
|
||||
)
|
||||
else:
|
||||
try:
|
||||
model_response["choices"][0]["message"]["content"] = completion_response["completions"][0]["completion"]
|
||||
except:
|
||||
raise AlephAlphaError(message=json.dumps(completion_response), status_code=response.status_code)
|
||||
|
||||
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
|
||||
prompt_tokens = len(
|
||||
self.encoding.encode(prompt)
|
||||
)
|
||||
completion_tokens = len(
|
||||
self.encoding.encode(model_response["choices"][0]["message"]["content"])
|
||||
)
|
||||
|
||||
model_response["created"] = time.time()
|
||||
model_response["model"] = model
|
||||
model_response["usage"] = {
|
||||
"prompt_tokens": prompt_tokens,
|
||||
"completion_tokens": completion_tokens,
|
||||
"total_tokens": prompt_tokens + completion_tokens,
|
||||
}
|
||||
return model_response
|
||||
|
||||
def embedding(
|
||||
self,
|
||||
): # logic for parsing in - calling - parsing out model embedding calls
|
||||
pass
|
Loading…
Add table
Add a link
Reference in a new issue