mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 10:44:24 +00:00
138 lines
5.3 KiB
Python
138 lines
5.3 KiB
Python
import os, json
|
|
from enum import Enum
|
|
import requests
|
|
import time
|
|
from typing import Callable
|
|
from litellm.utils import ModelResponse
|
|
|
|
class AlephAlphaError(Exception):
|
|
def __init__(self, status_code, message):
|
|
self.status_code = status_code
|
|
self.message = message
|
|
super().__init__(
|
|
self.message
|
|
) # Call the base class constructor with the parameters it needs
|
|
|
|
|
|
class AlephAlphaLLM:
|
|
def __init__(
|
|
self, encoding, default_max_tokens_to_sample, logging_obj, api_key=None
|
|
):
|
|
self.encoding = encoding
|
|
self.default_max_tokens_to_sample = default_max_tokens_to_sample
|
|
self.completion_url = "https://api.aleph-alpha.com/complete"
|
|
self.api_key = api_key
|
|
self.logging_obj = logging_obj
|
|
self.validate_environment(api_key=api_key)
|
|
|
|
def validate_environment(
|
|
self, api_key
|
|
): # set up the environment required to run the model
|
|
# set the api key
|
|
if self.api_key == None:
|
|
raise ValueError(
|
|
"Missing Aleph Alpha API Key - A call is being made to Aleph Alpha but no key is set either in the environment variables or via params"
|
|
)
|
|
self.api_key = api_key
|
|
self.headers = {
|
|
"accept": "application/json",
|
|
"content-type": "application/json",
|
|
"Authorization": "Bearer " + self.api_key,
|
|
}
|
|
|
|
def completion(
|
|
self,
|
|
model: str,
|
|
messages: list,
|
|
model_response: ModelResponse,
|
|
print_verbose: Callable,
|
|
optional_params=None,
|
|
litellm_params=None,
|
|
logger_fn=None,
|
|
): # logic for parsing in - calling - parsing out model completion calls
|
|
model = model
|
|
prompt = ""
|
|
if "control" in model: # follow the ###Instruction / ###Response format
|
|
for idx, message in enumerate(messages):
|
|
if "role" in message:
|
|
if idx == 0: # set first message as instruction (required), let later user messages be input
|
|
prompt += f"###Instruction: {message['content']}"
|
|
else:
|
|
if message["role"] == "system":
|
|
prompt += (
|
|
f"###Instruction: {message['content']}"
|
|
)
|
|
elif message["role"] == "user":
|
|
prompt += (
|
|
f"###Input: {message['content']}"
|
|
)
|
|
else:
|
|
prompt += (
|
|
f"###Response: {message['content']}"
|
|
)
|
|
else:
|
|
prompt += f"{message['content']}"
|
|
else:
|
|
prompt = " ".join(message["content"] for message in messages)
|
|
data = {
|
|
"model": model,
|
|
"prompt": prompt,
|
|
"maximum_tokens": optional_params["maximum_tokens"] if "maximum_tokens" in optional_params else self.default_max_tokens_to_sample, # required input
|
|
**optional_params,
|
|
}
|
|
|
|
## LOGGING
|
|
self.logging_obj.pre_call(
|
|
input=prompt,
|
|
api_key=self.api_key,
|
|
additional_args={"complete_input_dict": data},
|
|
)
|
|
## COMPLETION CALL
|
|
response = requests.post(
|
|
self.completion_url, headers=self.headers, data=json.dumps(data), stream=optional_params["stream"] if "stream" in optional_params else False
|
|
)
|
|
if "stream" in optional_params and optional_params["stream"] == True:
|
|
return response.iter_lines()
|
|
else:
|
|
## LOGGING
|
|
self.logging_obj.post_call(
|
|
input=prompt,
|
|
api_key=self.api_key,
|
|
original_response=response.text,
|
|
additional_args={"complete_input_dict": data},
|
|
)
|
|
print_verbose(f"raw model_response: {response.text}")
|
|
## RESPONSE OBJECT
|
|
completion_response = response.json()
|
|
if "error" in completion_response:
|
|
raise AlephAlphaError(
|
|
message=completion_response["error"],
|
|
status_code=response.status_code,
|
|
)
|
|
else:
|
|
try:
|
|
model_response["choices"][0]["message"]["content"] = completion_response["completions"][0]["completion"]
|
|
except:
|
|
raise AlephAlphaError(message=json.dumps(completion_response), status_code=response.status_code)
|
|
|
|
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
|
|
prompt_tokens = len(
|
|
self.encoding.encode(prompt)
|
|
)
|
|
completion_tokens = len(
|
|
self.encoding.encode(model_response["choices"][0]["message"]["content"])
|
|
)
|
|
|
|
model_response["created"] = time.time()
|
|
model_response["model"] = model
|
|
model_response["usage"] = {
|
|
"prompt_tokens": prompt_tokens,
|
|
"completion_tokens": completion_tokens,
|
|
"total_tokens": prompt_tokens + completion_tokens,
|
|
}
|
|
return model_response
|
|
|
|
def embedding(
|
|
self,
|
|
): # logic for parsing in - calling - parsing out model embedding calls
|
|
pass
|