adding support for aleph alpha

This commit is contained in:
Krrish Dholakia 2023-09-02 13:15:41 -07:00
parent adcf3dfe74
commit 83b8af8567
9 changed files with 351 additions and 91 deletions

View file

@ -28,6 +28,7 @@ vertex_project: Optional[str] = None
vertex_location: Optional[str] = None vertex_location: Optional[str] = None
togetherai_api_key: Optional[str] = None togetherai_api_key: Optional[str] = None
baseten_key: Optional[str] = None baseten_key: Optional[str] = None
aleph_alpha_key: Optional[str] = None
use_client = False use_client = False
logging = True logging = True
caching = False # deprecated son caching = False # deprecated son
@ -225,6 +226,15 @@ together_ai_models = [
"togethercomputer/llama-2-7b", "togethercomputer/llama-2-7b",
] ]
aleph_alpha_models = [
"luminous-base",
"luminous-base-control",
"luminous-extended",
"luminous-extended-control",
"luminous-supreme",
"luminous-supreme-control"
]
baseten_models = ["qvv0xeq", "q841o8w", "31dxrj3"] # FALCON 7B # WizardLM # Mosaic ML baseten_models = ["qvv0xeq", "q841o8w", "31dxrj3"] # FALCON 7B # WizardLM # Mosaic ML
model_list = ( model_list = (
@ -240,6 +250,7 @@ model_list = (
+ ai21_models + ai21_models
+ together_ai_models + together_ai_models
+ baseten_models + baseten_models
+ aleph_alpha_models
) )
provider_list = [ provider_list = [

138
litellm/llms/aleph_alpha.py Normal file
View file

@ -0,0 +1,138 @@
import os, json
from enum import Enum
import requests
import time
from typing import Callable
from litellm.utils import ModelResponse
class AlephAlphaError(Exception):
def __init__(self, status_code, message):
self.status_code = status_code
self.message = message
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs
class AlephAlphaLLM:
def __init__(
self, encoding, default_max_tokens_to_sample, logging_obj, api_key=None
):
self.encoding = encoding
self.default_max_tokens_to_sample = default_max_tokens_to_sample
self.completion_url = "https://api.aleph-alpha.com/complete"
self.api_key = api_key
self.logging_obj = logging_obj
self.validate_environment(api_key=api_key)
def validate_environment(
self, api_key
): # set up the environment required to run the model
# set the api key
if self.api_key == None:
raise ValueError(
"Missing Aleph Alpha API Key - A call is being made to Aleph Alpha but no key is set either in the environment variables or via params"
)
self.api_key = api_key
self.headers = {
"accept": "application/json",
"content-type": "application/json",
"Authorization": "Bearer " + self.api_key,
}
def completion(
self,
model: str,
messages: list,
model_response: ModelResponse,
print_verbose: Callable,
optional_params=None,
litellm_params=None,
logger_fn=None,
): # logic for parsing in - calling - parsing out model completion calls
model = model
prompt = ""
if "control" in model: # follow the ###Instruction / ###Response format
for idx, message in enumerate(messages):
if "role" in message:
if idx == 0: # set first message as instruction (required), let later user messages be input
prompt += f"###Instruction: {message['content']}"
else:
if message["role"] == "system":
prompt += (
f"###Instruction: {message['content']}"
)
elif message["role"] == "user":
prompt += (
f"###Input: {message['content']}"
)
else:
prompt += (
f"###Response: {message['content']}"
)
else:
prompt += f"{message['content']}"
else:
prompt = " ".join(message["content"] for message in messages)
data = {
"model": model,
"prompt": prompt,
"maximum_tokens": optional_params["maximum_tokens"] if "maximum_tokens" in optional_params else self.default_max_tokens_to_sample, # required input
**optional_params,
}
## LOGGING
self.logging_obj.pre_call(
input=prompt,
api_key=self.api_key,
additional_args={"complete_input_dict": data},
)
## COMPLETION CALL
response = requests.post(
self.completion_url, headers=self.headers, data=json.dumps(data), stream=optional_params["stream"] if "stream" in optional_params else False
)
if "stream" in optional_params and optional_params["stream"] == True:
return response.iter_lines()
else:
## LOGGING
self.logging_obj.post_call(
input=prompt,
api_key=self.api_key,
original_response=response.text,
additional_args={"complete_input_dict": data},
)
print_verbose(f"raw model_response: {response.text}")
## RESPONSE OBJECT
completion_response = response.json()
if "error" in completion_response:
raise AlephAlphaError(
message=completion_response["error"],
status_code=response.status_code,
)
else:
try:
model_response["choices"][0]["message"]["content"] = completion_response["completions"][0]["completion"]
except:
raise AlephAlphaError(message=json.dumps(completion_response), status_code=response.status_code)
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
prompt_tokens = len(
self.encoding.encode(prompt)
)
completion_tokens = len(
self.encoding.encode(model_response["choices"][0]["message"]["content"])
)
model_response["created"] = time.time()
model_response["model"] = model
model_response["usage"] = {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens,
}
return model_response
def embedding(
self,
): # logic for parsing in - calling - parsing out model embedding calls
pass

View file

@ -24,6 +24,7 @@ from .llms.huggingface_restapi import HuggingfaceRestAPILLM
from .llms.baseten import BasetenLLM from .llms.baseten import BasetenLLM
from .llms.ai21 import AI21LLM from .llms.ai21 import AI21LLM
from .llms.together_ai import TogetherAILLM from .llms.together_ai import TogetherAILLM
from .llms.aleph_alpha import AlephAlphaLLM
import tiktoken import tiktoken
from concurrent.futures import ThreadPoolExecutor from concurrent.futures import ThreadPoolExecutor
@ -428,6 +429,33 @@ def completion(
litellm_params=litellm_params, litellm_params=litellm_params,
logger_fn=logger_fn, logger_fn=logger_fn,
) )
if "stream" in optional_params and optional_params["stream"] == True:
# don't try to access stream object,
response = CustomStreamWrapper(model_response, model, logging_obj=logging)
return response
response = model_response
elif model in litellm.aleph_alpha_models:
aleph_alpha_key = (
api_key or litellm.aleph_alpha_key or os.environ.get("ALEPH_ALPHA_API_KEY")
)
aleph_alpha_client = AlephAlphaLLM(
encoding=encoding,
default_max_tokens_to_sample=litellm.max_tokens,
api_key=aleph_alpha_key,
logging_obj=logging # model call logging done inside the class as we make need to modify I/O to fit aleph alpha's requirements
)
model_response = aleph_alpha_client.completion(
model=model,
messages=messages,
model_response=model_response,
print_verbose=print_verbose,
optional_params=optional_params,
litellm_params=litellm_params,
logger_fn=logger_fn,
)
if "stream" in optional_params and optional_params["stream"] == True: if "stream" in optional_params and optional_params["stream"] == True:
# don't try to access stream object, # don't try to access stream object,
response = CustomStreamWrapper(model_response, model, logging_obj=logging) response = CustomStreamWrapper(model_response, model, logging_obj=logging)

View file

@ -54,6 +54,27 @@ def test_completion_claude():
except Exception as e: except Exception as e:
pytest.fail(f"Error occurred: {e}") pytest.fail(f"Error occurred: {e}")
# def test_completion_aleph_alpha():
# try:
# response = completion(
# model="luminous-base", messages=messages, logger_fn=logger_fn
# )
# # Add any assertions here to check the response
# print(response)
# except Exception as e:
# pytest.fail(f"Error occurred: {e}")
# def test_completion_aleph_alpha_control_models():
# try:
# response = completion(
# model="luminous-base-control", messages=messages, logger_fn=logger_fn
# )
# # Add any assertions here to check the response
# print(response)
# except Exception as e:
# pytest.fail(f"Error occurred: {e}")
def test_completion_with_litellm_call_id(): def test_completion_with_litellm_call_id():
try: try:
litellm.use_client = False litellm.use_client = False

View file

@ -45,59 +45,62 @@ messages = [{"content": user_message, "role": "user"}]
# pass # pass
# test on openai completion call # test on openai completion call
try: def test_openai_text_completion_call():
response = completion( try:
model="text-davinci-003", messages=messages, stream=True, logger_fn=logger_fn response = completion(
) model="text-davinci-003", messages=messages, stream=True, logger_fn=logger_fn
complete_response = "" )
start_time = time.time() complete_response = ""
for chunk in response: start_time = time.time()
chunk_time = time.time() for chunk in response:
print(f"chunk: {chunk}") chunk_time = time.time()
complete_response += chunk["choices"][0]["delta"]["content"] print(f"chunk: {chunk}")
if complete_response == "": complete_response += chunk["choices"][0]["delta"]["content"]
raise Exception("Empty response received") if complete_response == "":
except: raise Exception("Empty response received")
print(f"error occurred: {traceback.format_exc()}") except:
pass print(f"error occurred: {traceback.format_exc()}")
pass
# # test on ai21 completion call # # test on ai21 completion call
try: def ai21_completion_call():
response = completion( try:
model="j2-ultra", messages=messages, stream=True, logger_fn=logger_fn response = completion(
) model="j2-ultra", messages=messages, stream=True, logger_fn=logger_fn
print(f"response: {response}") )
complete_response = "" print(f"response: {response}")
start_time = time.time() complete_response = ""
for chunk in response: start_time = time.time()
chunk_time = time.time() for chunk in response:
print(f"time since initial request: {chunk_time - start_time:.5f}") chunk_time = time.time()
print(chunk["choices"][0]["delta"]) print(f"time since initial request: {chunk_time - start_time:.5f}")
complete_response += chunk["choices"][0]["delta"]["content"] print(chunk["choices"][0]["delta"])
if complete_response == "": complete_response += chunk["choices"][0]["delta"]["content"]
raise Exception("Empty response received") if complete_response == "":
except: raise Exception("Empty response received")
print(f"error occurred: {traceback.format_exc()}") except:
pass print(f"error occurred: {traceback.format_exc()}")
pass
# test on openai completion call # test on openai completion call
try: def test_openai_chat_completion_call():
response = completion( try:
model="gpt-3.5-turbo", messages=messages, stream=True, logger_fn=logger_fn response = completion(
) model="gpt-3.5-turbo", messages=messages, stream=True, logger_fn=logger_fn
complete_response = "" )
start_time = time.time() complete_response = ""
for chunk in response: start_time = time.time()
chunk_time = time.time() for chunk in response:
print(f"time since initial request: {chunk_time - start_time:.5f}") chunk_time = time.time()
print(chunk["choices"][0]["delta"]) print(f"time since initial request: {chunk_time - start_time:.5f}")
complete_response += chunk["choices"][0]["delta"]["content"] print(chunk["choices"][0]["delta"])
if complete_response == "": complete_response += chunk["choices"][0]["delta"]["content"]
raise Exception("Empty response received") if complete_response == "":
except: raise Exception("Empty response received")
print(f"error occurred: {traceback.format_exc()}") except:
pass print(f"error occurred: {traceback.format_exc()}")
pass
# # test on azure completion call # # test on azure completion call
@ -138,50 +141,79 @@ except:
# pass # pass
# test on together ai completion call - replit-code-3b # test on together ai completion call - replit-code-3b
try: def test_together_ai_completion_call_replit():
start_time = time.time() try:
response = completion( start_time = time.time()
model="Replit-Code-3B", messages=messages, logger_fn=logger_fn, stream=True response = completion(
) model="Replit-Code-3B", messages=messages, logger_fn=logger_fn, stream=True
complete_response = ""
print(f"returned response object: {response}")
for chunk in response:
chunk_time = time.time()
print(f"time since initial request: {chunk_time - start_time:.2f}")
print(chunk["choices"][0]["delta"])
complete_response += (
chunk["choices"][0]["delta"]["content"]
if len(chunk["choices"][0]["delta"].keys()) > 0
else ""
) )
if complete_response == "": complete_response = ""
raise Exception("Empty response received") print(f"returned response object: {response}")
except: for chunk in response:
print(f"error occurred: {traceback.format_exc()}") chunk_time = time.time()
pass print(f"time since initial request: {chunk_time - start_time:.2f}")
print(chunk["choices"][0]["delta"])
complete_response += (
chunk["choices"][0]["delta"]["content"]
if len(chunk["choices"][0]["delta"].keys()) > 0
else ""
)
if complete_response == "":
raise Exception("Empty response received")
except:
print(f"error occurred: {traceback.format_exc()}")
pass
# # test on together ai completion call - starcoder # # test on together ai completion call - starcoder
try: def test_together_ai_completion_call_starcoder():
start_time = time.time() try:
response = completion( start_time = time.time()
model="together_ai/bigcode/starcoder", response = completion(
messages=messages, model="together_ai/bigcode/starcoder",
logger_fn=logger_fn, messages=messages,
stream=True, logger_fn=logger_fn,
) stream=True,
complete_response = ""
print(f"returned response object: {response}")
for chunk in response:
chunk_time = time.time()
complete_response += (
chunk["choices"][0]["delta"]["content"]
if len(chunk["choices"][0]["delta"].keys()) > 0
else ""
) )
if len(complete_response) > 0: complete_response = ""
print(complete_response) print(f"returned response object: {response}")
if complete_response == "": for chunk in response:
raise Exception("Empty response received") chunk_time = time.time()
except: complete_response += (
print(f"error occurred: {traceback.format_exc()}") chunk["choices"][0]["delta"]["content"]
pass if len(chunk["choices"][0]["delta"].keys()) > 0
else ""
)
if len(complete_response) > 0:
print(complete_response)
if complete_response == "":
raise Exception("Empty response received")
except:
print(f"error occurred: {traceback.format_exc()}")
pass
# test on aleph alpha completion call
# def test_aleph_alpha_call():
# try:
# start_time = time.time()
# response = completion(
# model="luminous-base",
# messages=messages,
# logger_fn=logger_fn,
# stream=True,
# )
# complete_response = ""
# print(f"returned response object: {response}")
# for chunk in response:
# chunk_time = time.time()
# complete_response += (
# chunk["choices"][0]["delta"]["content"]
# if len(chunk["choices"][0]["delta"].keys()) > 0
# else ""
# )
# if len(complete_response) > 0:
# print(complete_response)
# if complete_response == "":
# raise Exception("Empty response received")
# except:
# print(f"error occurred: {traceback.format_exc()}")
# pass

View file

@ -780,6 +780,25 @@ def get_optional_params( # use the openai defaults
if presence_penalty != 0: if presence_penalty != 0:
optional_params["repetition_penalty"] = presence_penalty optional_params["repetition_penalty"] = presence_penalty
optional_params["details"] = True optional_params["details"] = True
elif model in litellm.aleph_alpha_models:
if max_tokens != float("inf"):
optional_params["maximum_tokens"] = max_tokens
if stream:
optional_params["stream"] = stream
if temperature != 1:
optional_params["temperature"] = temperature
if top_k != 40:
optional_params["top_k"] = top_k
if top_p != 1:
optional_params["top_p"] = top_p
if presence_penalty != 0:
optional_params["presence_penalty"] = presence_penalty
if frequency_penalty != 0:
optional_params["frequency_penalty"] = frequency_penalty
if n != 1:
optional_params["n"] = n
if stop != None:
optional_params["stop_sequences"] = stop
else: # assume passing in params for openai/azure openai else: # assume passing in params for openai/azure openai
if functions != []: if functions != []:
optional_params["functions"] = functions optional_params["functions"] = functions
@ -1766,6 +1785,14 @@ class CustomStreamWrapper:
except: except:
raise ValueError(f"Unable to parse response. Original response: {chunk}") raise ValueError(f"Unable to parse response. Original response: {chunk}")
def handle_aleph_alpha_chunk(self, chunk):
chunk = chunk.decode("utf-8")
data_json = json.loads(chunk)
try:
return data_json["completions"][0]["completion"]
except:
raise ValueError(f"Unable to parse response. Original response: {chunk}")
def handle_openai_text_completion_chunk(self, chunk): def handle_openai_text_completion_chunk(self, chunk):
try: try:
return chunk["choices"][0]["text"] return chunk["choices"][0]["text"]
@ -1832,6 +1859,9 @@ class CustomStreamWrapper:
elif self.custom_llm_provider and self.custom_llm_provider == "ai21": #ai21 doesn't provide streaming elif self.custom_llm_provider and self.custom_llm_provider == "ai21": #ai21 doesn't provide streaming
chunk = next(self.completion_stream) chunk = next(self.completion_stream)
completion_obj["content"] = self.handle_ai21_chunk(chunk) completion_obj["content"] = self.handle_ai21_chunk(chunk)
elif self.model in litellm.aleph_alpha_models: #ai21 doesn't provide streaming
chunk = next(self.completion_stream)
completion_obj["content"] = self.handle_aleph_alpha_chunk(chunk)
elif self.model in litellm.open_ai_text_completion_models: elif self.model in litellm.open_ai_text_completion_models:
chunk = next(self.completion_stream) chunk = next(self.completion_stream)
completion_obj["content"] = self.handle_openai_text_completion_chunk(chunk) completion_obj["content"] = self.handle_openai_text_completion_chunk(chunk)