Merge branch 'main' into litellm_8864-feature-vertex-anyOf-support

This commit is contained in:
NickGrab 2025-03-28 10:25:04 -07:00 committed by GitHub
commit b72fbdde74
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
220 changed files with 8566 additions and 1345 deletions

View file

@ -3,6 +3,18 @@ orbs:
codecov: codecov/codecov@4.0.1
node: circleci/node@5.1.0 # Add this line to declare the node orb
commands:
setup_google_dns:
steps:
- run:
name: "Configure Google DNS"
command: |
# Backup original resolv.conf
sudo cp /etc/resolv.conf /etc/resolv.conf.backup
# Add both local and Google DNS servers
echo "nameserver 127.0.0.11" | sudo tee /etc/resolv.conf
echo "nameserver 8.8.8.8" | sudo tee -a /etc/resolv.conf
echo "nameserver 8.8.4.4" | sudo tee -a /etc/resolv.conf
jobs:
local_testing:
@ -15,7 +27,7 @@ jobs:
steps:
- checkout
- setup_google_dns
- run:
name: Show git commit hash
command: |
@ -66,7 +78,7 @@ jobs:
pip install python-multipart
pip install google-cloud-aiplatform
pip install prometheus-client==0.20.0
pip install "pydantic==2.7.1"
pip install "pydantic==2.10.2"
pip install "diskcache==5.6.1"
pip install "Pillow==10.3.0"
pip install "jsonschema==4.22.0"
@ -134,7 +146,7 @@ jobs:
steps:
- checkout
- setup_google_dns
- run:
name: Show git commit hash
command: |
@ -185,7 +197,7 @@ jobs:
pip install python-multipart
pip install google-cloud-aiplatform
pip install prometheus-client==0.20.0
pip install "pydantic==2.7.1"
pip install "pydantic==2.10.2"
pip install "diskcache==5.6.1"
pip install "Pillow==10.3.0"
pip install "jsonschema==4.22.0"
@ -234,7 +246,13 @@ jobs:
steps:
- checkout
- setup_google_dns
- run:
name: DNS lookup for Redis host
command: |
sudo apt-get update
sudo apt-get install -y dnsutils
dig redis-19899.c239.us-east-1-2.ec2.redns.redis-cloud.com +short
- run:
name: Show git commit hash
command: |
@ -285,7 +303,7 @@ jobs:
pip install python-multipart
pip install google-cloud-aiplatform
pip install prometheus-client==0.20.0
pip install "pydantic==2.7.1"
pip install "pydantic==2.10.2"
pip install "diskcache==5.6.1"
pip install "Pillow==10.3.0"
pip install "jsonschema==4.22.0"
@ -334,6 +352,7 @@ jobs:
steps:
- checkout
- setup_google_dns
- run:
name: Install Dependencies
command: |
@ -388,6 +407,7 @@ jobs:
steps:
- checkout
- setup_google_dns
- run:
name: Install Dependencies
command: |
@ -429,6 +449,7 @@ jobs:
working_directory: ~/project
steps:
- checkout
- setup_google_dns
- run:
name: Show git commit hash
command: |
@ -479,7 +500,13 @@ jobs:
working_directory: ~/project
steps:
- checkout
- run:
name: Install PostgreSQL
command: |
sudo apt-get update
sudo apt-get install postgresql postgresql-contrib
echo 'export PATH=/usr/lib/postgresql/*/bin:$PATH' >> $BASH_ENV
- setup_google_dns
- run:
name: Show git commit hash
command: |
@ -530,10 +557,11 @@ jobs:
pip install python-multipart
pip install google-cloud-aiplatform
pip install prometheus-client==0.20.0
pip install "pydantic==2.7.1"
pip install "pydantic==2.10.2"
pip install "diskcache==5.6.1"
pip install "Pillow==10.3.0"
pip install "jsonschema==4.22.0"
pip install "pytest-postgresql==7.0.1"
- save_cache:
paths:
- ./venv
@ -569,7 +597,7 @@ jobs:
- litellm_proxy_unit_tests_coverage
litellm_assistants_api_testing: # Runs all tests with the "assistants" keyword
docker:
- image: cimg/python:3.11
- image: cimg/python:3.13.1
auth:
username: ${DOCKERHUB_USERNAME}
password: ${DOCKERHUB_PASSWORD}
@ -577,6 +605,7 @@ jobs:
steps:
- checkout
- setup_google_dns
- run:
name: Install Dependencies
command: |
@ -618,6 +647,7 @@ jobs:
steps:
- checkout
- setup_google_dns
- run:
name: Install Dependencies
command: |
@ -625,7 +655,13 @@ jobs:
python -m pip install -r requirements.txt
pip install "pytest==7.3.1"
pip install "pytest-retry==1.6.3"
pip install "pytest-cov==5.0.0"
pip install "pytest-asyncio==0.21.1"
pip install "respx==0.21.1"
- run:
name: Show current pydantic version
command: |
python -m pip show pydantic
# Run pytest and generate JUnit XML report
- run:
name: Run tests
@ -648,6 +684,7 @@ jobs:
steps:
- checkout
- setup_google_dns
- run:
name: Install Dependencies
command: |
@ -690,6 +727,7 @@ jobs:
steps:
- checkout
- setup_google_dns
- run:
name: Install Dependencies
command: |
@ -700,8 +738,8 @@ jobs:
pip install "pytest-cov==5.0.0"
pip install "pytest-asyncio==0.21.1"
pip install "respx==0.21.1"
pip install "pydantic==2.7.2"
pip install "mcp==1.4.1"
pip install "pydantic==2.10.2"
pip install "mcp==1.5.0"
# Run pytest and generate JUnit XML report
- run:
name: Run tests
@ -734,6 +772,7 @@ jobs:
steps:
- checkout
- setup_google_dns
- run:
name: Install Dependencies
command: |
@ -776,6 +815,7 @@ jobs:
steps:
- checkout
- setup_google_dns
- run:
name: Install Dependencies
command: |
@ -788,8 +828,8 @@ jobs:
pip install "pytest-asyncio==0.21.1"
pip install "respx==0.21.1"
pip install "hypercorn==0.17.3"
pip install "pydantic==2.7.2"
pip install "mcp==1.4.1"
pip install "pydantic==2.10.2"
pip install "mcp==1.5.0"
# Run pytest and generate JUnit XML report
- run:
name: Run tests
@ -822,6 +862,7 @@ jobs:
steps:
- checkout
- setup_google_dns
- run:
name: Install Dependencies
command: |
@ -866,10 +907,12 @@ jobs:
steps:
- checkout
- setup_google_dns
- run:
name: Install Dependencies
command: |
python -m pip install --upgrade pip
pip install numpydoc
python -m pip install -r requirements.txt
pip install "respx==0.21.1"
pip install "pytest==7.3.1"
@ -878,7 +921,6 @@ jobs:
pip install "pytest-cov==5.0.0"
pip install "google-generativeai==0.3.2"
pip install "google-cloud-aiplatform==1.43.0"
pip install numpydoc
# Run pytest and generate JUnit XML report
- run:
name: Run tests
@ -912,6 +954,7 @@ jobs:
steps:
- checkout
- setup_google_dns
- run:
name: Install Dependencies
command: |
@ -954,6 +997,7 @@ jobs:
steps:
- checkout
- setup_google_dns
- run:
name: Install Dependencies
command: |
@ -996,6 +1040,7 @@ jobs:
steps:
- checkout
- setup_google_dns
- run:
name: Install Dependencies
command: |
@ -1042,6 +1087,7 @@ jobs:
steps:
- checkout
- setup_google_dns
- run:
name: Install Dependencies
command: |
@ -1054,8 +1100,8 @@ jobs:
pip install click
pip install "boto3==1.34.34"
pip install jinja2
pip install tokenizers=="0.20.0"
pip install uvloop==0.21.0
pip install "tokenizers==0.20.0"
pip install "uvloop==0.21.0"
pip install jsonschema
- run:
name: Run tests
@ -1074,6 +1120,7 @@ jobs:
steps:
- checkout
- setup_google_dns
- run:
name: Install Dependencies
command: |
@ -1098,6 +1145,7 @@ jobs:
steps:
- checkout
- setup_google_dns
# Install Helm
- run:
name: Install Helm
@ -1167,6 +1215,7 @@ jobs:
steps:
- checkout
- setup_google_dns
- run:
name: Install Dependencies
command: |
@ -1203,6 +1252,7 @@ jobs:
working_directory: ~/project
steps:
- checkout
- setup_google_dns
- run:
name: Install Python 3.9
command: |
@ -1277,6 +1327,7 @@ jobs:
working_directory: ~/project
steps:
- checkout
- setup_google_dns
- run:
name: Install Docker CLI (In case it's not already installed)
command: |
@ -1412,6 +1463,7 @@ jobs:
working_directory: ~/project
steps:
- checkout
- setup_google_dns
- run:
name: Install Docker CLI (In case it's not already installed)
command: |
@ -1448,6 +1500,7 @@ jobs:
pip install "boto3==1.34.34"
pip install "aioboto3==12.3.0"
pip install langchain
pip install "langchain_mcp_adapters==0.0.5"
pip install "langfuse>=2.0.0"
pip install "logfire==0.29.0"
pip install numpydoc
@ -1535,6 +1588,7 @@ jobs:
working_directory: ~/project
steps:
- checkout
- setup_google_dns
- run:
name: Install Docker CLI (In case it's not already installed)
command: |
@ -1697,6 +1751,7 @@ jobs:
working_directory: ~/project
steps:
- checkout
- setup_google_dns
- run:
name: Install Docker CLI (In case it's not already installed)
command: |
@ -1808,6 +1863,7 @@ jobs:
working_directory: ~/project
steps:
- checkout
- setup_google_dns
- run:
name: Install Docker CLI (In case it's not already installed)
command: |
@ -1847,7 +1903,7 @@ jobs:
command: |
docker run -d \
-p 4000:4000 \
-e DATABASE_URL=$PROXY_DATABASE_URL \
-e DATABASE_URL=$CLEAN_STORE_MODEL_IN_DB_DATABASE_URL \
-e STORE_MODEL_IN_DB="True" \
-e LITELLM_MASTER_KEY="sk-1234" \
-e LITELLM_LICENSE=$LITELLM_LICENSE \
@ -1890,6 +1946,7 @@ jobs:
working_directory: ~/project
steps:
- checkout
- setup_google_dns
# Remove Docker CLI installation since it's already available in machine executor
- run:
name: Install Python 3.13
@ -1987,6 +2044,7 @@ jobs:
working_directory: ~/project
steps:
- checkout
- setup_google_dns
- run:
name: Install Docker CLI (In case it's not already installed)
command: |
@ -2014,7 +2072,7 @@ jobs:
pip install "openai==1.68.2"
pip install "assemblyai==0.37.0"
python -m pip install --upgrade pip
pip install "pydantic==2.7.1"
pip install "pydantic==2.10.2"
pip install "pytest==7.3.1"
pip install "pytest-mock==3.12.0"
pip install "pytest-asyncio==0.21.1"
@ -2031,6 +2089,9 @@ jobs:
pip install "PyGithub==1.59.1"
pip install "google-cloud-aiplatform==1.59.0"
pip install "anthropic==0.49.0"
pip install "langchain_mcp_adapters==0.0.5"
pip install "langchain_openai==0.2.1"
pip install "langgraph==0.3.18"
# Run pytest and generate JUnit XML report
- run:
name: Build Docker image
@ -2243,6 +2304,7 @@ jobs:
working_directory: ~/project
steps:
- checkout
- setup_google_dns
- run:
name: Build UI
command: |
@ -2289,7 +2351,7 @@ jobs:
pip install aiohttp
pip install "openai==1.68.2"
python -m pip install --upgrade pip
pip install "pydantic==2.7.1"
pip install "pydantic==2.10.2"
pip install "pytest==7.3.1"
pip install "pytest-mock==3.12.0"
pip install "pytest-asyncio==0.21.1"
@ -2357,6 +2419,7 @@ jobs:
working_directory: ~/project
steps:
- checkout
- setup_google_dns
- run:
name: Build Docker image
command: |
@ -2379,6 +2442,7 @@ jobs:
working_directory: ~/project
steps:
- checkout
- setup_google_dns
- run:
name: Build Docker image
command: |

View file

@ -4,10 +4,12 @@ python-dotenv
tiktoken
importlib_metadata
cohere
redis
redis==5.2.1
redisvl==0.4.1
anthropic
orjson==3.9.15
pydantic==2.7.1
pydantic==2.10.2
google-cloud-aiplatform==1.43.0
fastapi-sso==0.10.0
uvloop==0.21.0
mcp==1.5.0 # for MCP server

206
.github/workflows/publish-migrations.yml vendored Normal file
View file

@ -0,0 +1,206 @@
name: Publish Prisma Migrations
permissions:
contents: write
pull-requests: write
on:
push:
paths:
- 'schema.prisma' # Check root schema.prisma
branches:
- main
jobs:
publish-migrations:
runs-on: ubuntu-latest
services:
postgres:
image: postgres:14
env:
POSTGRES_DB: temp_db
POSTGRES_USER: postgres
POSTGRES_PASSWORD: postgres
ports:
- 5432:5432
options: >-
--health-cmd pg_isready
--health-interval 10s
--health-timeout 5s
--health-retries 5
# Add shadow database service
postgres_shadow:
image: postgres:14
env:
POSTGRES_DB: shadow_db
POSTGRES_USER: postgres
POSTGRES_PASSWORD: postgres
ports:
- 5433:5432
options: >-
--health-cmd pg_isready
--health-interval 10s
--health-timeout 5s
--health-retries 5
steps:
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: '3.x'
- name: Install Dependencies
run: |
pip install prisma
pip install python-dotenv
- name: Generate Initial Migration if None Exists
env:
DATABASE_URL: "postgresql://postgres:postgres@localhost:5432/temp_db"
DIRECT_URL: "postgresql://postgres:postgres@localhost:5432/temp_db"
SHADOW_DATABASE_URL: "postgresql://postgres:postgres@localhost:5433/shadow_db"
run: |
mkdir -p deploy/migrations
echo 'provider = "postgresql"' > deploy/migrations/migration_lock.toml
if [ -z "$(ls -A deploy/migrations/2* 2>/dev/null)" ]; then
echo "No existing migrations found, creating baseline..."
VERSION=$(date +%Y%m%d%H%M%S)
mkdir -p deploy/migrations/${VERSION}_initial
echo "Generating initial migration..."
# Save raw output for debugging
prisma migrate diff \
--from-empty \
--to-schema-datamodel schema.prisma \
--shadow-database-url "${SHADOW_DATABASE_URL}" \
--script > deploy/migrations/${VERSION}_initial/raw_migration.sql
echo "Raw migration file content:"
cat deploy/migrations/${VERSION}_initial/raw_migration.sql
echo "Cleaning migration file..."
# Clean the file
sed '/^Installing/d' deploy/migrations/${VERSION}_initial/raw_migration.sql > deploy/migrations/${VERSION}_initial/migration.sql
# Verify the migration file
if [ ! -s deploy/migrations/${VERSION}_initial/migration.sql ]; then
echo "ERROR: Migration file is empty after cleaning"
echo "Original content was:"
cat deploy/migrations/${VERSION}_initial/raw_migration.sql
exit 1
fi
echo "Final migration file content:"
cat deploy/migrations/${VERSION}_initial/migration.sql
# Verify it starts with SQL
if ! head -n 1 deploy/migrations/${VERSION}_initial/migration.sql | grep -q "^--\|^CREATE\|^ALTER"; then
echo "ERROR: Migration file does not start with SQL command or comment"
echo "First line is:"
head -n 1 deploy/migrations/${VERSION}_initial/migration.sql
echo "Full content is:"
cat deploy/migrations/${VERSION}_initial/migration.sql
exit 1
fi
echo "Initial migration generated at $(date -u)" > deploy/migrations/${VERSION}_initial/README.md
fi
- name: Compare and Generate Migration
if: success()
env:
DATABASE_URL: "postgresql://postgres:postgres@localhost:5432/temp_db"
DIRECT_URL: "postgresql://postgres:postgres@localhost:5432/temp_db"
SHADOW_DATABASE_URL: "postgresql://postgres:postgres@localhost:5433/shadow_db"
run: |
# Create temporary migration workspace
mkdir -p temp_migrations
# Copy existing migrations (will not fail if directory is empty)
cp -r deploy/migrations/* temp_migrations/ 2>/dev/null || true
VERSION=$(date +%Y%m%d%H%M%S)
# Generate diff against existing migrations or empty state
prisma migrate diff \
--from-migrations temp_migrations \
--to-schema-datamodel schema.prisma \
--shadow-database-url "${SHADOW_DATABASE_URL}" \
--script > temp_migrations/migration_${VERSION}.sql
# Check if there are actual changes
if [ -s temp_migrations/migration_${VERSION}.sql ]; then
echo "Changes detected, creating new migration"
mkdir -p deploy/migrations/${VERSION}_schema_update
mv temp_migrations/migration_${VERSION}.sql deploy/migrations/${VERSION}_schema_update/migration.sql
echo "Migration generated at $(date -u)" > deploy/migrations/${VERSION}_schema_update/README.md
else
echo "No schema changes detected"
exit 0
fi
- name: Verify Migration
if: success()
env:
DATABASE_URL: "postgresql://postgres:postgres@localhost:5432/temp_db"
DIRECT_URL: "postgresql://postgres:postgres@localhost:5432/temp_db"
SHADOW_DATABASE_URL: "postgresql://postgres:postgres@localhost:5433/shadow_db"
run: |
# Create test database
psql "${SHADOW_DATABASE_URL}" -c 'CREATE DATABASE migration_test;'
# Apply all migrations in order to verify
for migration in deploy/migrations/*/migration.sql; do
echo "Applying migration: $migration"
psql "${SHADOW_DATABASE_URL}" -f $migration
done
# Add this step before create-pull-request to debug permissions
- name: Check Token Permissions
run: |
echo "Checking token permissions..."
curl -H "Authorization: token ${{ secrets.GITHUB_TOKEN }}" \
-H "Accept: application/vnd.github.v3+json" \
https://api.github.com/repos/BerriAI/litellm/collaborators
echo "\nChecking if token can create PRs..."
curl -H "Authorization: token ${{ secrets.GITHUB_TOKEN }}" \
-H "Accept: application/vnd.github.v3+json" \
https://api.github.com/repos/BerriAI/litellm
# Add this debug step before git push
- name: Debug Changed Files
run: |
echo "Files staged for commit:"
git diff --name-status --staged
echo "\nAll changed files:"
git status
- name: Create Pull Request
if: success()
uses: peter-evans/create-pull-request@v5
with:
token: ${{ secrets.GITHUB_TOKEN }}
commit-message: "chore: update prisma migrations"
title: "Update Prisma Migrations"
body: |
Auto-generated migration based on schema.prisma changes.
Generated files:
- deploy/migrations/${VERSION}_schema_update/migration.sql
- deploy/migrations/${VERSION}_schema_update/README.md
branch: feat/prisma-migration-${{ env.VERSION }}
base: main
delete-branch: true
- name: Generate and Save Migrations
run: |
# Only add migration files
git add deploy/migrations/
git status # Debug what's being committed
git commit -m "chore: update prisma migrations"

1
.gitignore vendored
View file

@ -1,3 +1,4 @@
.python-version
.venv
.env
.newenv

View file

@ -37,9 +37,6 @@ RUN pip install dist/*.whl
# install dependencies as wheels
RUN pip wheel --no-cache-dir --wheel-dir=/wheels/ -r requirements.txt
# install semantic-cache [Experimental]- we need this here and not in requirements.txt because redisvl pins to pydantic 1.0
RUN pip install redisvl==0.0.7 --no-deps
# ensure pyjwt is used, not jwt
RUN pip uninstall jwt -y
RUN pip uninstall PyJWT -y

View file

@ -16,9 +16,6 @@
<a href="https://pypi.org/project/litellm/" target="_blank">
<img src="https://img.shields.io/pypi/v/litellm.svg" alt="PyPI Version">
</a>
<a href="https://dl.circleci.com/status-badge/redirect/gh/BerriAI/litellm/tree/main" target="_blank">
<img src="https://dl.circleci.com/status-badge/img/gh/BerriAI/litellm/tree/main.svg?style=svg" alt="CircleCI">
</a>
<a href="https://www.ycombinator.com/companies/berriai">
<img src="https://img.shields.io/badge/Y%20Combinator-W23-orange?style=flat-square" alt="Y Combinator W23">
</a>

60
ci_cd/baseline_db.py Normal file
View file

@ -0,0 +1,60 @@
import subprocess
from pathlib import Path
from datetime import datetime
def create_baseline():
"""Create baseline migration in deploy/migrations"""
try:
# Get paths
root_dir = Path(__file__).parent.parent
deploy_dir = root_dir / "deploy"
migrations_dir = deploy_dir / "migrations"
schema_path = root_dir / "schema.prisma"
# Create migrations directory
migrations_dir.mkdir(parents=True, exist_ok=True)
# Create migration_lock.toml if it doesn't exist
lock_file = migrations_dir / "migration_lock.toml"
if not lock_file.exists():
lock_file.write_text('provider = "postgresql"\n')
# Create timestamp-based migration directory
timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
migration_dir = migrations_dir / f"{timestamp}_baseline"
migration_dir.mkdir(parents=True, exist_ok=True)
# Generate migration SQL
result = subprocess.run(
[
"prisma",
"migrate",
"diff",
"--from-empty",
"--to-schema-datamodel",
str(schema_path),
"--script",
],
capture_output=True,
text=True,
check=True,
)
# Write the SQL to migration.sql
migration_file = migration_dir / "migration.sql"
migration_file.write_text(result.stdout)
print(f"Created baseline migration in {migration_dir}")
return True
except subprocess.CalledProcessError as e:
print(f"Error running prisma command: {e.stderr}")
return False
except Exception as e:
print(f"Error creating baseline migration: {str(e)}")
return False
if __name__ == "__main__":
create_baseline()

96
ci_cd/run_migration.py Normal file
View file

@ -0,0 +1,96 @@
import os
import subprocess
from pathlib import Path
from datetime import datetime
import testing.postgresql
import shutil
def create_migration(migration_name: str = None):
"""
Create a new migration SQL file in deploy/migrations directory by comparing
current database state with schema
Args:
migration_name (str): Name for the migration
"""
try:
# Get paths
root_dir = Path(__file__).parent.parent
deploy_dir = root_dir / "deploy"
migrations_dir = deploy_dir / "migrations"
schema_path = root_dir / "schema.prisma"
# Create temporary PostgreSQL database
with testing.postgresql.Postgresql() as postgresql:
db_url = postgresql.url()
# Create temporary migrations directory next to schema.prisma
temp_migrations_dir = schema_path.parent / "migrations"
try:
# Copy existing migrations to temp directory
if temp_migrations_dir.exists():
shutil.rmtree(temp_migrations_dir)
shutil.copytree(migrations_dir, temp_migrations_dir)
# Apply existing migrations to temp database
os.environ["DATABASE_URL"] = db_url
subprocess.run(
["prisma", "migrate", "deploy", "--schema", str(schema_path)],
check=True,
)
# Generate diff between current database and schema
result = subprocess.run(
[
"prisma",
"migrate",
"diff",
"--from-url",
db_url,
"--to-schema-datamodel",
str(schema_path),
"--script",
],
capture_output=True,
text=True,
check=True,
)
if result.stdout.strip():
# Generate timestamp and create migration directory
timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
migration_name = migration_name or "unnamed_migration"
migration_dir = migrations_dir / f"{timestamp}_{migration_name}"
migration_dir.mkdir(parents=True, exist_ok=True)
# Write the SQL to migration.sql
migration_file = migration_dir / "migration.sql"
migration_file.write_text(result.stdout)
print(f"Created migration in {migration_dir}")
return True
else:
print("No schema changes detected. Migration not needed.")
return False
finally:
# Clean up: remove temporary migrations directory
if temp_migrations_dir.exists():
shutil.rmtree(temp_migrations_dir)
except subprocess.CalledProcessError as e:
print(f"Error generating migration: {e.stderr}")
return False
except Exception as e:
print(f"Error creating migration: {str(e)}")
return False
if __name__ == "__main__":
# If running directly, can optionally pass migration name as argument
import sys
migration_name = sys.argv[1] if len(sys.argv) > 1 else None
create_migration(migration_name)

View file

@ -0,0 +1,360 @@
-- CreateTable
CREATE TABLE "LiteLLM_BudgetTable" (
"budget_id" TEXT NOT NULL,
"max_budget" DOUBLE PRECISION,
"soft_budget" DOUBLE PRECISION,
"max_parallel_requests" INTEGER,
"tpm_limit" BIGINT,
"rpm_limit" BIGINT,
"model_max_budget" JSONB,
"budget_duration" TEXT,
"budget_reset_at" TIMESTAMP(3),
"created_at" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"created_by" TEXT NOT NULL,
"updated_at" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"updated_by" TEXT NOT NULL,
CONSTRAINT "LiteLLM_BudgetTable_pkey" PRIMARY KEY ("budget_id")
);
-- CreateTable
CREATE TABLE "LiteLLM_CredentialsTable" (
"credential_id" TEXT NOT NULL,
"credential_name" TEXT NOT NULL,
"credential_values" JSONB NOT NULL,
"credential_info" JSONB,
"created_at" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"created_by" TEXT NOT NULL,
"updated_at" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"updated_by" TEXT NOT NULL,
CONSTRAINT "LiteLLM_CredentialsTable_pkey" PRIMARY KEY ("credential_id")
);
-- CreateTable
CREATE TABLE "LiteLLM_ProxyModelTable" (
"model_id" TEXT NOT NULL,
"model_name" TEXT NOT NULL,
"litellm_params" JSONB NOT NULL,
"model_info" JSONB,
"created_at" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"created_by" TEXT NOT NULL,
"updated_at" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"updated_by" TEXT NOT NULL,
CONSTRAINT "LiteLLM_ProxyModelTable_pkey" PRIMARY KEY ("model_id")
);
-- CreateTable
CREATE TABLE "LiteLLM_OrganizationTable" (
"organization_id" TEXT NOT NULL,
"organization_alias" TEXT NOT NULL,
"budget_id" TEXT NOT NULL,
"metadata" JSONB NOT NULL DEFAULT '{}',
"models" TEXT[],
"spend" DOUBLE PRECISION NOT NULL DEFAULT 0.0,
"model_spend" JSONB NOT NULL DEFAULT '{}',
"created_at" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"created_by" TEXT NOT NULL,
"updated_at" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"updated_by" TEXT NOT NULL,
CONSTRAINT "LiteLLM_OrganizationTable_pkey" PRIMARY KEY ("organization_id")
);
-- CreateTable
CREATE TABLE "LiteLLM_ModelTable" (
"id" SERIAL NOT NULL,
"aliases" JSONB,
"created_at" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"created_by" TEXT NOT NULL,
"updated_at" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"updated_by" TEXT NOT NULL,
CONSTRAINT "LiteLLM_ModelTable_pkey" PRIMARY KEY ("id")
);
-- CreateTable
CREATE TABLE "LiteLLM_TeamTable" (
"team_id" TEXT NOT NULL,
"team_alias" TEXT,
"organization_id" TEXT,
"admins" TEXT[],
"members" TEXT[],
"members_with_roles" JSONB NOT NULL DEFAULT '{}',
"metadata" JSONB NOT NULL DEFAULT '{}',
"max_budget" DOUBLE PRECISION,
"spend" DOUBLE PRECISION NOT NULL DEFAULT 0.0,
"models" TEXT[],
"max_parallel_requests" INTEGER,
"tpm_limit" BIGINT,
"rpm_limit" BIGINT,
"budget_duration" TEXT,
"budget_reset_at" TIMESTAMP(3),
"blocked" BOOLEAN NOT NULL DEFAULT false,
"created_at" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"updated_at" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"model_spend" JSONB NOT NULL DEFAULT '{}',
"model_max_budget" JSONB NOT NULL DEFAULT '{}',
"model_id" INTEGER,
CONSTRAINT "LiteLLM_TeamTable_pkey" PRIMARY KEY ("team_id")
);
-- CreateTable
CREATE TABLE "LiteLLM_UserTable" (
"user_id" TEXT NOT NULL,
"user_alias" TEXT,
"team_id" TEXT,
"sso_user_id" TEXT,
"organization_id" TEXT,
"password" TEXT,
"teams" TEXT[] DEFAULT ARRAY[]::TEXT[],
"user_role" TEXT,
"max_budget" DOUBLE PRECISION,
"spend" DOUBLE PRECISION NOT NULL DEFAULT 0.0,
"user_email" TEXT,
"models" TEXT[],
"metadata" JSONB NOT NULL DEFAULT '{}',
"max_parallel_requests" INTEGER,
"tpm_limit" BIGINT,
"rpm_limit" BIGINT,
"budget_duration" TEXT,
"budget_reset_at" TIMESTAMP(3),
"allowed_cache_controls" TEXT[] DEFAULT ARRAY[]::TEXT[],
"model_spend" JSONB NOT NULL DEFAULT '{}',
"model_max_budget" JSONB NOT NULL DEFAULT '{}',
"created_at" TIMESTAMP(3) DEFAULT CURRENT_TIMESTAMP,
"updated_at" TIMESTAMP(3) DEFAULT CURRENT_TIMESTAMP,
CONSTRAINT "LiteLLM_UserTable_pkey" PRIMARY KEY ("user_id")
);
-- CreateTable
CREATE TABLE "LiteLLM_VerificationToken" (
"token" TEXT NOT NULL,
"key_name" TEXT,
"key_alias" TEXT,
"soft_budget_cooldown" BOOLEAN NOT NULL DEFAULT false,
"spend" DOUBLE PRECISION NOT NULL DEFAULT 0.0,
"expires" TIMESTAMP(3),
"models" TEXT[],
"aliases" JSONB NOT NULL DEFAULT '{}',
"config" JSONB NOT NULL DEFAULT '{}',
"user_id" TEXT,
"team_id" TEXT,
"permissions" JSONB NOT NULL DEFAULT '{}',
"max_parallel_requests" INTEGER,
"metadata" JSONB NOT NULL DEFAULT '{}',
"blocked" BOOLEAN,
"tpm_limit" BIGINT,
"rpm_limit" BIGINT,
"max_budget" DOUBLE PRECISION,
"budget_duration" TEXT,
"budget_reset_at" TIMESTAMP(3),
"allowed_cache_controls" TEXT[] DEFAULT ARRAY[]::TEXT[],
"model_spend" JSONB NOT NULL DEFAULT '{}',
"model_max_budget" JSONB NOT NULL DEFAULT '{}',
"budget_id" TEXT,
"organization_id" TEXT,
"created_at" TIMESTAMP(3) DEFAULT CURRENT_TIMESTAMP,
"created_by" TEXT,
"updated_at" TIMESTAMP(3) DEFAULT CURRENT_TIMESTAMP,
"updated_by" TEXT,
CONSTRAINT "LiteLLM_VerificationToken_pkey" PRIMARY KEY ("token")
);
-- CreateTable
CREATE TABLE "LiteLLM_EndUserTable" (
"user_id" TEXT NOT NULL,
"alias" TEXT,
"spend" DOUBLE PRECISION NOT NULL DEFAULT 0.0,
"allowed_model_region" TEXT,
"default_model" TEXT,
"budget_id" TEXT,
"blocked" BOOLEAN NOT NULL DEFAULT false,
CONSTRAINT "LiteLLM_EndUserTable_pkey" PRIMARY KEY ("user_id")
);
-- CreateTable
CREATE TABLE "LiteLLM_Config" (
"param_name" TEXT NOT NULL,
"param_value" JSONB,
CONSTRAINT "LiteLLM_Config_pkey" PRIMARY KEY ("param_name")
);
-- CreateTable
CREATE TABLE "LiteLLM_SpendLogs" (
"request_id" TEXT NOT NULL,
"call_type" TEXT NOT NULL,
"api_key" TEXT NOT NULL DEFAULT '',
"spend" DOUBLE PRECISION NOT NULL DEFAULT 0.0,
"total_tokens" INTEGER NOT NULL DEFAULT 0,
"prompt_tokens" INTEGER NOT NULL DEFAULT 0,
"completion_tokens" INTEGER NOT NULL DEFAULT 0,
"startTime" TIMESTAMP(3) NOT NULL,
"endTime" TIMESTAMP(3) NOT NULL,
"completionStartTime" TIMESTAMP(3),
"model" TEXT NOT NULL DEFAULT '',
"model_id" TEXT DEFAULT '',
"model_group" TEXT DEFAULT '',
"custom_llm_provider" TEXT DEFAULT '',
"api_base" TEXT DEFAULT '',
"user" TEXT DEFAULT '',
"metadata" JSONB DEFAULT '{}',
"cache_hit" TEXT DEFAULT '',
"cache_key" TEXT DEFAULT '',
"request_tags" JSONB DEFAULT '[]',
"team_id" TEXT,
"end_user" TEXT,
"requester_ip_address" TEXT,
"messages" JSONB DEFAULT '{}',
"response" JSONB DEFAULT '{}',
CONSTRAINT "LiteLLM_SpendLogs_pkey" PRIMARY KEY ("request_id")
);
-- CreateTable
CREATE TABLE "LiteLLM_ErrorLogs" (
"request_id" TEXT NOT NULL,
"startTime" TIMESTAMP(3) NOT NULL,
"endTime" TIMESTAMP(3) NOT NULL,
"api_base" TEXT NOT NULL DEFAULT '',
"model_group" TEXT NOT NULL DEFAULT '',
"litellm_model_name" TEXT NOT NULL DEFAULT '',
"model_id" TEXT NOT NULL DEFAULT '',
"request_kwargs" JSONB NOT NULL DEFAULT '{}',
"exception_type" TEXT NOT NULL DEFAULT '',
"exception_string" TEXT NOT NULL DEFAULT '',
"status_code" TEXT NOT NULL DEFAULT '',
CONSTRAINT "LiteLLM_ErrorLogs_pkey" PRIMARY KEY ("request_id")
);
-- CreateTable
CREATE TABLE "LiteLLM_UserNotifications" (
"request_id" TEXT NOT NULL,
"user_id" TEXT NOT NULL,
"models" TEXT[],
"justification" TEXT NOT NULL,
"status" TEXT NOT NULL,
CONSTRAINT "LiteLLM_UserNotifications_pkey" PRIMARY KEY ("request_id")
);
-- CreateTable
CREATE TABLE "LiteLLM_TeamMembership" (
"user_id" TEXT NOT NULL,
"team_id" TEXT NOT NULL,
"spend" DOUBLE PRECISION NOT NULL DEFAULT 0.0,
"budget_id" TEXT,
CONSTRAINT "LiteLLM_TeamMembership_pkey" PRIMARY KEY ("user_id","team_id")
);
-- CreateTable
CREATE TABLE "LiteLLM_OrganizationMembership" (
"user_id" TEXT NOT NULL,
"organization_id" TEXT NOT NULL,
"user_role" TEXT,
"spend" DOUBLE PRECISION DEFAULT 0.0,
"budget_id" TEXT,
"created_at" TIMESTAMP(3) DEFAULT CURRENT_TIMESTAMP,
"updated_at" TIMESTAMP(3) DEFAULT CURRENT_TIMESTAMP,
CONSTRAINT "LiteLLM_OrganizationMembership_pkey" PRIMARY KEY ("user_id","organization_id")
);
-- CreateTable
CREATE TABLE "LiteLLM_InvitationLink" (
"id" TEXT NOT NULL,
"user_id" TEXT NOT NULL,
"is_accepted" BOOLEAN NOT NULL DEFAULT false,
"accepted_at" TIMESTAMP(3),
"expires_at" TIMESTAMP(3) NOT NULL,
"created_at" TIMESTAMP(3) NOT NULL,
"created_by" TEXT NOT NULL,
"updated_at" TIMESTAMP(3) NOT NULL,
"updated_by" TEXT NOT NULL,
CONSTRAINT "LiteLLM_InvitationLink_pkey" PRIMARY KEY ("id")
);
-- CreateTable
CREATE TABLE "LiteLLM_AuditLog" (
"id" TEXT NOT NULL,
"updated_at" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"changed_by" TEXT NOT NULL DEFAULT '',
"changed_by_api_key" TEXT NOT NULL DEFAULT '',
"action" TEXT NOT NULL,
"table_name" TEXT NOT NULL,
"object_id" TEXT NOT NULL,
"before_value" JSONB,
"updated_values" JSONB,
CONSTRAINT "LiteLLM_AuditLog_pkey" PRIMARY KEY ("id")
);
-- CreateIndex
CREATE UNIQUE INDEX "LiteLLM_CredentialsTable_credential_name_key" ON "LiteLLM_CredentialsTable"("credential_name");
-- CreateIndex
CREATE UNIQUE INDEX "LiteLLM_TeamTable_model_id_key" ON "LiteLLM_TeamTable"("model_id");
-- CreateIndex
CREATE UNIQUE INDEX "LiteLLM_UserTable_sso_user_id_key" ON "LiteLLM_UserTable"("sso_user_id");
-- CreateIndex
CREATE INDEX "LiteLLM_SpendLogs_startTime_idx" ON "LiteLLM_SpendLogs"("startTime");
-- CreateIndex
CREATE INDEX "LiteLLM_SpendLogs_end_user_idx" ON "LiteLLM_SpendLogs"("end_user");
-- CreateIndex
CREATE UNIQUE INDEX "LiteLLM_OrganizationMembership_user_id_organization_id_key" ON "LiteLLM_OrganizationMembership"("user_id", "organization_id");
-- AddForeignKey
ALTER TABLE "LiteLLM_OrganizationTable" ADD CONSTRAINT "LiteLLM_OrganizationTable_budget_id_fkey" FOREIGN KEY ("budget_id") REFERENCES "LiteLLM_BudgetTable"("budget_id") ON DELETE RESTRICT ON UPDATE CASCADE;
-- AddForeignKey
ALTER TABLE "LiteLLM_TeamTable" ADD CONSTRAINT "LiteLLM_TeamTable_organization_id_fkey" FOREIGN KEY ("organization_id") REFERENCES "LiteLLM_OrganizationTable"("organization_id") ON DELETE SET NULL ON UPDATE CASCADE;
-- AddForeignKey
ALTER TABLE "LiteLLM_TeamTable" ADD CONSTRAINT "LiteLLM_TeamTable_model_id_fkey" FOREIGN KEY ("model_id") REFERENCES "LiteLLM_ModelTable"("id") ON DELETE SET NULL ON UPDATE CASCADE;
-- AddForeignKey
ALTER TABLE "LiteLLM_UserTable" ADD CONSTRAINT "LiteLLM_UserTable_organization_id_fkey" FOREIGN KEY ("organization_id") REFERENCES "LiteLLM_OrganizationTable"("organization_id") ON DELETE SET NULL ON UPDATE CASCADE;
-- AddForeignKey
ALTER TABLE "LiteLLM_VerificationToken" ADD CONSTRAINT "LiteLLM_VerificationToken_budget_id_fkey" FOREIGN KEY ("budget_id") REFERENCES "LiteLLM_BudgetTable"("budget_id") ON DELETE SET NULL ON UPDATE CASCADE;
-- AddForeignKey
ALTER TABLE "LiteLLM_VerificationToken" ADD CONSTRAINT "LiteLLM_VerificationToken_organization_id_fkey" FOREIGN KEY ("organization_id") REFERENCES "LiteLLM_OrganizationTable"("organization_id") ON DELETE SET NULL ON UPDATE CASCADE;
-- AddForeignKey
ALTER TABLE "LiteLLM_EndUserTable" ADD CONSTRAINT "LiteLLM_EndUserTable_budget_id_fkey" FOREIGN KEY ("budget_id") REFERENCES "LiteLLM_BudgetTable"("budget_id") ON DELETE SET NULL ON UPDATE CASCADE;
-- AddForeignKey
ALTER TABLE "LiteLLM_TeamMembership" ADD CONSTRAINT "LiteLLM_TeamMembership_budget_id_fkey" FOREIGN KEY ("budget_id") REFERENCES "LiteLLM_BudgetTable"("budget_id") ON DELETE SET NULL ON UPDATE CASCADE;
-- AddForeignKey
ALTER TABLE "LiteLLM_OrganizationMembership" ADD CONSTRAINT "LiteLLM_OrganizationMembership_user_id_fkey" FOREIGN KEY ("user_id") REFERENCES "LiteLLM_UserTable"("user_id") ON DELETE RESTRICT ON UPDATE CASCADE;
-- AddForeignKey
ALTER TABLE "LiteLLM_OrganizationMembership" ADD CONSTRAINT "LiteLLM_OrganizationMembership_organization_id_fkey" FOREIGN KEY ("organization_id") REFERENCES "LiteLLM_OrganizationTable"("organization_id") ON DELETE RESTRICT ON UPDATE CASCADE;
-- AddForeignKey
ALTER TABLE "LiteLLM_OrganizationMembership" ADD CONSTRAINT "LiteLLM_OrganizationMembership_budget_id_fkey" FOREIGN KEY ("budget_id") REFERENCES "LiteLLM_BudgetTable"("budget_id") ON DELETE SET NULL ON UPDATE CASCADE;
-- AddForeignKey
ALTER TABLE "LiteLLM_InvitationLink" ADD CONSTRAINT "LiteLLM_InvitationLink_user_id_fkey" FOREIGN KEY ("user_id") REFERENCES "LiteLLM_UserTable"("user_id") ON DELETE RESTRICT ON UPDATE CASCADE;
-- AddForeignKey
ALTER TABLE "LiteLLM_InvitationLink" ADD CONSTRAINT "LiteLLM_InvitationLink_created_by_fkey" FOREIGN KEY ("created_by") REFERENCES "LiteLLM_UserTable"("user_id") ON DELETE RESTRICT ON UPDATE CASCADE;
-- AddForeignKey
ALTER TABLE "LiteLLM_InvitationLink" ADD CONSTRAINT "LiteLLM_InvitationLink_updated_by_fkey" FOREIGN KEY ("updated_by") REFERENCES "LiteLLM_UserTable"("user_id") ON DELETE RESTRICT ON UPDATE CASCADE;

View file

@ -0,0 +1,33 @@
-- CreateTable
CREATE TABLE "LiteLLM_DailyUserSpend" (
"id" TEXT NOT NULL,
"user_id" TEXT NOT NULL,
"date" TEXT NOT NULL,
"api_key" TEXT NOT NULL,
"model" TEXT NOT NULL,
"model_group" TEXT,
"custom_llm_provider" TEXT,
"prompt_tokens" INTEGER NOT NULL DEFAULT 0,
"completion_tokens" INTEGER NOT NULL DEFAULT 0,
"spend" DOUBLE PRECISION NOT NULL DEFAULT 0.0,
"created_at" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"updated_at" TIMESTAMP(3) NOT NULL,
CONSTRAINT "LiteLLM_DailyUserSpend_pkey" PRIMARY KEY ("id")
);
-- CreateIndex
CREATE INDEX "LiteLLM_DailyUserSpend_date_idx" ON "LiteLLM_DailyUserSpend"("date");
-- CreateIndex
CREATE INDEX "LiteLLM_DailyUserSpend_user_id_idx" ON "LiteLLM_DailyUserSpend"("user_id");
-- CreateIndex
CREATE INDEX "LiteLLM_DailyUserSpend_api_key_idx" ON "LiteLLM_DailyUserSpend"("api_key");
-- CreateIndex
CREATE INDEX "LiteLLM_DailyUserSpend_model_idx" ON "LiteLLM_DailyUserSpend"("model");
-- CreateIndex
CREATE UNIQUE INDEX "LiteLLM_DailyUserSpend_user_id_date_api_key_model_custom_ll_key" ON "LiteLLM_DailyUserSpend"("user_id", "date", "api_key", "model", "custom_llm_provider");

View file

@ -0,0 +1,3 @@
-- AlterTable
ALTER TABLE "LiteLLM_DailyUserSpend" ADD COLUMN "api_requests" INTEGER NOT NULL DEFAULT 0;

View file

@ -0,0 +1 @@
provider = "postgresql"

View file

@ -66,5 +66,3 @@ volumes:
postgres_data:
name: litellm_postgres_data # Named volume for Postgres data persistence
# ...rest of your docker-compose config if any

View file

@ -59,9 +59,6 @@ COPY --from=builder /wheels/ /wheels/
# Install the built wheel using pip; again using a wildcard if it's the only file
RUN pip install *.whl /wheels/* --no-index --find-links=/wheels/ && rm -f *.whl && rm -rf /wheels
# install semantic-cache [Experimental]- we need this here and not in requirements.txt because redisvl pins to pydantic 1.0
RUN pip install redisvl==0.0.7 --no-deps
# ensure pyjwt is used, not jwt
RUN pip uninstall jwt -y
RUN pip uninstall PyJWT -y

View file

@ -14,7 +14,7 @@ SHELL ["/bin/bash", "-o", "pipefail", "-c"]
# Install build dependencies
RUN apt-get clean && apt-get update && \
apt-get install -y gcc python3-dev && \
apt-get install -y gcc g++ python3-dev && \
rm -rf /var/lib/apt/lists/*
RUN pip install --no-cache-dir --upgrade pip && \
@ -56,10 +56,8 @@ COPY --from=builder /wheels/ /wheels/
# Install the built wheel using pip; again using a wildcard if it's the only file
RUN pip install *.whl /wheels/* --no-index --find-links=/wheels/ && rm -f *.whl && rm -rf /wheels
# install semantic-cache [Experimental]- we need this here and not in requirements.txt because redisvl pins to pydantic 1.0
# ensure pyjwt is used, not jwt
RUN pip install redisvl==0.0.7 --no-deps --no-cache-dir && \
pip uninstall jwt -y && \
RUN pip uninstall jwt -y && \
pip uninstall PyJWT -y && \
pip install PyJWT==2.9.0 --no-cache-dir

View file

@ -26,7 +26,7 @@ Install redis
pip install redis
```
For the hosted version you can setup your own Redis DB here: https://app.redislabs.com/
For the hosted version you can setup your own Redis DB here: https://redis.io/try-free/
```python
import litellm
@ -37,11 +37,11 @@ litellm.cache = Cache(type="redis", host=<host>, port=<port>, password=<password
# Make completion calls
response1 = completion(
model="gpt-3.5-turbo",
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Tell me a joke."}]
)
response2 = completion(
model="gpt-3.5-turbo",
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Tell me a joke."}]
)
@ -91,12 +91,12 @@ response2 = completion(
<TabItem value="redis-sem" label="redis-semantic cache">
Install redis
Install redisvl client
```shell
pip install redisvl==0.0.7
pip install redisvl==0.4.1
```
For the hosted version you can setup your own Redis DB here: https://app.redislabs.com/
For the hosted version you can setup your own Redis DB here: https://redis.io/try-free/
```python
import litellm
@ -114,6 +114,7 @@ litellm.cache = Cache(
port=os.environ["REDIS_PORT"],
password=os.environ["REDIS_PASSWORD"],
similarity_threshold=0.8, # similarity threshold for cache hits, 0 == no similarity, 1 = exact matches, 0.5 == 50% similarity
ttl=120,
redis_semantic_cache_embedding_model="text-embedding-ada-002", # this model is passed to litellm.embedding(), any litellm.embedding() model is supported here
)
response1 = completion(
@ -471,11 +472,13 @@ def __init__(
password: Optional[str] = None,
namespace: Optional[str] = None,
default_in_redis_ttl: Optional[float] = None,
similarity_threshold: Optional[float] = None,
redis_semantic_cache_use_async=False,
redis_semantic_cache_embedding_model="text-embedding-ada-002",
redis_flush_size=None,
# redis semantic cache params
similarity_threshold: Optional[float] = None,
redis_semantic_cache_embedding_model: str = "text-embedding-ada-002",
redis_semantic_cache_index_name: Optional[str] = None,
# s3 Bucket, boto3 configuration
s3_bucket_name: Optional[str] = None,
s3_region_name: Optional[str] = None,

View file

@ -272,14 +272,7 @@ async with stdio_client(server_params) as (read, write):
</TabItem>
</Tabs>
## Upcoming Features
:::info
**This feature is not live as yet** this is a beta interface. Expect this to be live on litellm `v1.63.15` and above.
:::
## Advanced Usage
### Expose MCP tools on LiteLLM Proxy Server

View file

@ -1776,6 +1776,7 @@ response = completion(
)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
1. Setup config.yaml
@ -1820,11 +1821,13 @@ curl -X POST 'http://0.0.0.0:4000/chat/completions' \
```
</TabItem>
</Tabs>
### SSO Login (AWS Profile)
- Set `AWS_PROFILE` environment variable
- Make bedrock completion call
```python
import os
from litellm import completion
@ -1917,12 +1920,46 @@ model_list:
</Tabs>
Text to Image :
```bash
curl -L -X POST 'http://0.0.0.0:4000/v1/images/generations' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer $LITELLM_VIRTUAL_KEY' \
-d '{
"model": "amazon.nova-canvas-v1:0",
"prompt": "A cute baby sea otter"
}'
```
Color Guided Generation:
```bash
curl -L -X POST 'http://0.0.0.0:4000/v1/images/generations' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer $LITELLM_VIRTUAL_KEY' \
-d '{
"model": "amazon.nova-canvas-v1:0",
"prompt": "A cute baby sea otter",
"taskType": "COLOR_GUIDED_GENERATION",
"colorGuidedGenerationParams":{"colors":["#FFFFFF"]}
}'
```
| Model Name | Function Call |
|-------------------------|---------------------------------------------|
| Stable Diffusion 3 - v0 | `image_generation(model="bedrock/stability.stability.sd3-large-v1:0", prompt=prompt)` |
| Stable Diffusion - v0 | `image_generation(model="bedrock/stability.stable-diffusion-xl-v0", prompt=prompt)` |
| Stable Diffusion - v1 | `image_generation(model="bedrock/stability.stable-diffusion-xl-v1", prompt=prompt)` |
| Amazon Nova Canvas - v0 | `image_generation(model="bedrock/amazon.nova-canvas-v1:0", prompt=prompt)` |
### Passing an external BedrockRuntime.Client as a parameter - Completion()
This is a deprecated flow. Boto3 is not async. And boto3.client does not let us make the http call through httpx. Pass in your aws params through the method above 👆. [See Auth Code](https://github.com/BerriAI/litellm/blob/55a20c7cce99a93d36a82bf3ae90ba3baf9a7f89/litellm/llms/bedrock_httpx.py#L284) [Add new auth flow](https://github.com/BerriAI/litellm/issues)
:::warning
This is a deprecated flow. Boto3 is not async. And boto3.client does not let us make the http call through httpx. Pass in your aws params through the method above 👆. [See Auth Code](https://github.com/BerriAI/litellm/blob/55a20c7cce99a93d36a82bf3ae90ba3baf9a7f89/litellm/llms/bedrock_httpx.py#L284) [Add new auth flow](https://github.com/BerriAI/litellm/issues)
Experimental - 2024-Jun-23:

View file

@ -325,6 +325,74 @@ curl -X POST 'http://0.0.0.0:4000/chat/completions' \
| fine tuned `gpt-3.5-turbo-0613` | `response = completion(model="ft:gpt-3.5-turbo-0613", messages=messages)` |
## OpenAI Audio Transcription
LiteLLM supports OpenAI Audio Transcription endpoint.
Supported models:
| Model Name | Function Call |
|---------------------------|-----------------------------------------------------------------|
| `whisper-1` | `response = completion(model="whisper-1", file=audio_file)` |
| `gpt-4o-transcribe` | `response = completion(model="gpt-4o-transcribe", file=audio_file)` |
| `gpt-4o-mini-transcribe` | `response = completion(model="gpt-4o-mini-transcribe", file=audio_file)` |
<Tabs>
<TabItem value="sdk" label="SDK">
```python
from litellm import transcription
import os
# set api keys
os.environ["OPENAI_API_KEY"] = ""
audio_file = open("/path/to/audio.mp3", "rb")
response = transcription(model="gpt-4o-transcribe", file=audio_file)
print(f"response: {response}")
```
</TabItem>
<TabItem value="proxy" label="PROXY">
1. Setup config.yaml
```yaml
model_list:
- model_name: gpt-4o-transcribe
litellm_params:
model: gpt-4o-transcribe
api_key: os.environ/OPENAI_API_KEY
model_info:
mode: audio_transcription
general_settings:
master_key: sk-1234
```
2. Start the proxy
```bash
litellm --config config.yaml
```
3. Test it!
```bash
curl --location 'http://0.0.0.0:8000/v1/audio/transcriptions' \
--header 'Authorization: Bearer sk-1234' \
--form 'file=@"/Users/krrishdholakia/Downloads/gettysburg.wav"' \
--form 'model="gpt-4o-transcribe"'
```
</TabItem>
</Tabs>
## Advanced
### Getting OpenAI API Response Headers

View file

@ -1369,6 +1369,103 @@ curl --location 'http://0.0.0.0:4000/chat/completions' \
</Tabs>
## Gemini Pro
| Model Name | Function Call |
|------------------|--------------------------------------|
| gemini-pro | `completion('gemini-pro', messages)`, `completion('vertex_ai/gemini-pro', messages)` |
## Fine-tuned Models
You can call fine-tuned Vertex AI Gemini models through LiteLLM
| Property | Details |
|----------|---------|
| Provider Route | `vertex_ai/gemini/{MODEL_ID}` |
| Vertex Documentation | [Vertex AI - Fine-tuned Gemini Models](https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini-use-supervised-tuning#test_the_tuned_model_with_a_prompt)|
| Supported Operations | `/chat/completions`, `/completions`, `/embeddings`, `/images` |
To use a model that follows the `/gemini` request/response format, simply set the model parameter as
```python title="Model parameter for calling fine-tuned gemini models"
model="vertex_ai/gemini/<your-finetuned-model>"
```
<Tabs>
<TabItem value="sdk" label="LiteLLM Python SDK">
```python showLineNumbers title="Example"
import litellm
import os
## set ENV variables
os.environ["VERTEXAI_PROJECT"] = "hardy-device-38811"
os.environ["VERTEXAI_LOCATION"] = "us-central1"
response = litellm.completion(
model="vertex_ai/gemini/<your-finetuned-model>", # e.g. vertex_ai/gemini/4965075652664360960
messages=[{ "content": "Hello, how are you?","role": "user"}],
)
```
</TabItem>
<TabItem value="proxy" label="LiteLLM Proxy">
1. Add Vertex Credentials to your env
```bash title="Authenticate to Vertex AI"
!gcloud auth application-default login
```
2. Setup config.yaml
```yaml showLineNumbers title="Add to litellm config"
- model_name: finetuned-gemini
litellm_params:
model: vertex_ai/gemini/<ENDPOINT_ID>
vertex_project: <PROJECT_ID>
vertex_location: <LOCATION>
```
3. Test it!
<Tabs>
<TabItem value="openai" label="OpenAI Python SDK">
```python showLineNumbers title="Example request"
from openai import OpenAI
client = OpenAI(
api_key="your-litellm-key",
base_url="http://0.0.0.0:4000"
)
response = client.chat.completions.create(
model="finetuned-gemini",
messages=[
{"role": "user", "content": "hi"}
]
)
print(response)
```
</TabItem>
<TabItem value="curl" label="curl">
```bash showLineNumbers title="Example request"
curl --location 'https://0.0.0.0:4000/v1/chat/completions' \
--header 'Content-Type: application/json' \
--header 'Authorization: <LITELLM_KEY>' \
--data '{"model": "finetuned-gemini" ,"messages":[{"role": "user", "content":[{"type": "text", "text": "hi"}]}]}'
```
</TabItem>
</Tabs>
</TabItem>
</Tabs>
## Model Garden
:::tip
@ -1479,67 +1576,6 @@ response = completion(
</Tabs>
## Gemini Pro
| Model Name | Function Call |
|------------------|--------------------------------------|
| gemini-pro | `completion('gemini-pro', messages)`, `completion('vertex_ai/gemini-pro', messages)` |
## Fine-tuned Models
Fine tuned models on vertex have a numerical model/endpoint id.
<Tabs>
<TabItem value="sdk" label="SDK">
```python
from litellm import completion
import os
## set ENV variables
os.environ["VERTEXAI_PROJECT"] = "hardy-device-38811"
os.environ["VERTEXAI_LOCATION"] = "us-central1"
response = completion(
model="vertex_ai/<your-finetuned-model>", # e.g. vertex_ai/4965075652664360960
messages=[{ "content": "Hello, how are you?","role": "user"}],
base_model="vertex_ai/gemini-1.5-pro" # the base model - used for routing
)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
1. Add Vertex Credentials to your env
```bash
!gcloud auth application-default login
```
2. Setup config.yaml
```yaml
- model_name: finetuned-gemini
litellm_params:
model: vertex_ai/<ENDPOINT_ID>
vertex_project: <PROJECT_ID>
vertex_location: <LOCATION>
model_info:
base_model: vertex_ai/gemini-1.5-pro # IMPORTANT
```
3. Test it!
```bash
curl --location 'https://0.0.0.0:4000/v1/chat/completions' \
--header 'Content-Type: application/json' \
--header 'Authorization: <LITELLM_KEY>' \
--data '{"model": "finetuned-gemini" ,"messages":[{"role": "user", "content":[{"type": "text", "text": "hi"}]}]}'
```
</TabItem>
</Tabs>
## Gemini Pro Vision
| Model Name | Function Call |

View file

@ -147,6 +147,11 @@ Some SSO providers require a specific redirect url for login and logout. You can
- Login: `<your-proxy-base-url>/sso/key/generate`
- Logout: `<your-proxy-base-url>`
Here's the env var to set the logout url on the proxy
```bash
PROXY_LOGOUT_URL="https://www.google.com"
```
#### Step 3. Set `PROXY_BASE_URL` in your .env
Set this in your .env (so the proxy can set the correct redirect url)

View file

@ -160,7 +160,7 @@ general_settings:
| database_url | string | The URL for the database connection [Set up Virtual Keys](virtual_keys) |
| database_connection_pool_limit | integer | The limit for database connection pool [Setting DB Connection Pool limit](#configure-db-pool-limits--connection-timeouts) |
| database_connection_timeout | integer | The timeout for database connections in seconds [Setting DB Connection Pool limit, timeout](#configure-db-pool-limits--connection-timeouts) |
| allow_requests_on_db_unavailable | boolean | If true, allows requests to succeed even if DB is unreachable. **Only use this if running LiteLLM in your VPC** This will allow requests to work even when LiteLLM cannot connect to the DB to verify a Virtual Key |
| allow_requests_on_db_unavailable | boolean | If true, allows requests to succeed even if DB is unreachable. **Only use this if running LiteLLM in your VPC** This will allow requests to work even when LiteLLM cannot connect to the DB to verify a Virtual Key [Doc on graceful db unavailability](prod#5-if-running-litellm-on-vpc-gracefully-handle-db-unavailability) |
| custom_auth | string | Write your own custom authentication logic [Doc Custom Auth](virtual_keys#custom-auth) |
| max_parallel_requests | integer | The max parallel requests allowed per deployment |
| global_max_parallel_requests | integer | The max parallel requests allowed on the proxy overall |
@ -479,7 +479,7 @@ router_settings:
| PROXY_ADMIN_ID | Admin identifier for proxy server
| PROXY_BASE_URL | Base URL for proxy service
| PROXY_LOGOUT_URL | URL for logging out of the proxy service
| PROXY_MASTER_KEY | Master key for proxy authentication
| LITELLM_MASTER_KEY | Master key for proxy authentication
| QDRANT_API_BASE | Base URL for Qdrant API
| QDRANT_API_KEY | API key for Qdrant service
| QDRANT_URL | Connection URL for Qdrant database

View file

@ -94,15 +94,31 @@ This disables the load_dotenv() functionality, which will automatically load you
## 5. If running LiteLLM on VPC, gracefully handle DB unavailability
This will allow LiteLLM to continue to process requests even if the DB is unavailable. This is better handling for DB unavailability.
When running LiteLLM on a VPC (and inaccessible from the public internet), you can enable graceful degradation so that request processing continues even if the database is temporarily unavailable.
**WARNING: Only do this if you're running LiteLLM on VPC, that cannot be accessed from the public internet.**
```yaml
#### Configuration
```yaml showLineNumbers title="litellm config.yaml"
general_settings:
allow_requests_on_db_unavailable: True
```
#### Expected Behavior
When `allow_requests_on_db_unavailable` is set to `true`, LiteLLM will handle errors as follows:
| Type of Error | Expected Behavior | Details |
|---------------|-------------------|----------------|
| Prisma Errors | ✅ Request will be allowed | Covers issues like DB connection resets or rejections from the DB via Prisma, the ORM used by LiteLLM. |
| Httpx Errors | ✅ Request will be allowed | Occurs when the database is unreachable, allowing the request to proceed despite the DB outage. |
| Pod Startup Behavior | ✅ Pods start regardless | LiteLLM Pods will start even if the database is down or unreachable, ensuring higher uptime guarantees for deployments. |
| Health/Readiness Check | ✅ Always returns 200 OK | The /health/readiness endpoint returns a 200 OK status to ensure that pods remain operational even when the database is unavailable.
| LiteLLM Budget Errors or Model Errors | ❌ Request will be blocked | Triggered when the DB is reachable but the authentication token is invalid, lacks access, or exceeds budget limits. |
## 6. Disable spend_logs & error_logs if not using the LiteLLM UI
By default, LiteLLM writes several types of logs to the database:
@ -182,94 +198,4 @@ You should only see the following level of details in logs on the proxy server
# INFO: 192.168.2.205:11774 - "POST /chat/completions HTTP/1.1" 200 OK
# INFO: 192.168.2.205:34717 - "POST /chat/completions HTTP/1.1" 200 OK
# INFO: 192.168.2.205:29734 - "POST /chat/completions HTTP/1.1" 200 OK
```
### Machine Specifications to Deploy LiteLLM
| Service | Spec | CPUs | Memory | Architecture | Version|
| --- | --- | --- | --- | --- | --- |
| Server | `t2.small`. | `1vCPUs` | `8GB` | `x86` |
| Redis Cache | - | - | - | - | 7.0+ Redis Engine|
### Reference Kubernetes Deployment YAML
Reference Kubernetes `deployment.yaml` that was load tested by us
```yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: litellm-deployment
spec:
replicas: 3
selector:
matchLabels:
app: litellm
template:
metadata:
labels:
app: litellm
spec:
containers:
- name: litellm-container
image: ghcr.io/berriai/litellm:main-latest
imagePullPolicy: Always
env:
- name: AZURE_API_KEY
value: "d6******"
- name: AZURE_API_BASE
value: "https://ope******"
- name: LITELLM_MASTER_KEY
value: "sk-1234"
- name: DATABASE_URL
value: "po**********"
args:
- "--config"
- "/app/proxy_config.yaml" # Update the path to mount the config file
volumeMounts: # Define volume mount for proxy_config.yaml
- name: config-volume
mountPath: /app
readOnly: true
livenessProbe:
httpGet:
path: /health/liveliness
port: 4000
initialDelaySeconds: 120
periodSeconds: 15
successThreshold: 1
failureThreshold: 3
timeoutSeconds: 10
readinessProbe:
httpGet:
path: /health/readiness
port: 4000
initialDelaySeconds: 120
periodSeconds: 15
successThreshold: 1
failureThreshold: 3
timeoutSeconds: 10
volumes: # Define volume to mount proxy_config.yaml
- name: config-volume
configMap:
name: litellm-config
```
Reference Kubernetes `service.yaml` that was load tested by us
```yaml
apiVersion: v1
kind: Service
metadata:
name: litellm-service
spec:
selector:
app: litellm
ports:
- protocol: TCP
port: 4000
targetPort: 4000
type: LoadBalancer
```
```

View file

@ -188,7 +188,13 @@ Currently implemented for:
- OpenAI (if OPENAI_API_KEY is set)
- Fireworks AI (if FIREWORKS_AI_API_KEY is set)
- LiteLLM Proxy (if LITELLM_PROXY_API_KEY is set)
- Gemini (if GEMINI_API_KEY is set)
- XAI (if XAI_API_KEY is set)
- Anthropic (if ANTHROPIC_API_KEY is set)
You can also specify a custom provider to check:
**All providers**:
```python
from litellm import get_valid_models
@ -196,6 +202,14 @@ valid_models = get_valid_models(check_provider_endpoint=True)
print(valid_models)
```
**Specific provider**:
```python
from litellm import get_valid_models
valid_models = get_valid_models(check_provider_endpoint=True, custom_llm_provider="openai")
print(valid_models)
```
### `validate_environment(model: str)`
This helper tells you if you have all the required environment variables for a model, and if not - what's missing.

Binary file not shown.

After

Width:  |  Height:  |  Size: 70 KiB

View file

@ -24,6 +24,7 @@ This release brings:
- LLM Translation Improvements (MCP Support and Bedrock Application Profiles)
- Perf improvements for Usage-based Routing
- Streaming guardrail support via websockets
- Azure OpenAI client perf fix (from previous release)
## Docker Run LiteLLM Proxy
@ -31,7 +32,7 @@ This release brings:
docker run
-e STORE_MODEL_IN_DB=True
-p 4000:4000
ghcr.io/berriai/litellm:main-v1.63.14-stable
ghcr.io/berriai/litellm:main-v1.63.14-stable.patch1
```
## Demo Instance

View file

@ -0,0 +1,34 @@
---
title: v1.65.0 - Team Model Add - update
slug: v1.65.0
date: 2025-03-28T10:00:00
authors:
- name: Krrish Dholakia
title: CEO, LiteLLM
url: https://www.linkedin.com/in/krish-d/
image_url: https://media.licdn.com/dms/image/v2/D4D03AQGrlsJ3aqpHmQ/profile-displayphoto-shrink_400_400/B4DZSAzgP7HYAg-/0/1737327772964?e=1743638400&v=beta&t=39KOXMUFedvukiWWVPHf3qI45fuQD7lNglICwN31DrI
- name: Ishaan Jaffer
title: CTO, LiteLLM
url: https://www.linkedin.com/in/reffajnaahsi/
image_url: https://pbs.twimg.com/profile_images/1613813310264340481/lz54oEiB_400x400.jpg
tags: [management endpoints, team models, ui]
hide_table_of_contents: false
---
import Image from '@theme/IdealImage';
v1.65.0 updates the `/model/new` endpoint to prevent non-team admins from creating team models.
This means that only proxy admins or team admins can create team models.
## Additional Changes
- Allows team admins to call `/model/update` to update team models.
- Allows team admins to call `/model/delete` to delete team models.
- Introduces new `user_models_only` param to `/v2/model/info` - only return models added by this user.
These changes enable team admins to add and manage models for their team on the LiteLLM UI + API.
<Image img={require('../../img/release_notes/team_model_add.png')} />

View file

@ -304,6 +304,7 @@ const sidebars = {
"image_variations",
]
},
"mcp",
{
type: "category",
label: "/audio",

View file

@ -2,7 +2,7 @@
import warnings
warnings.filterwarnings("ignore", message=".*conflict with protected namespace.*")
### INIT VARIABLES ##########
### INIT VARIABLES ###########
import threading
import os
from typing import Callable, List, Optional, Dict, Union, Any, Literal, get_args
@ -122,6 +122,9 @@ langsmith_batch_size: Optional[int] = None
prometheus_initialize_budget_metrics: Optional[bool] = False
argilla_batch_size: Optional[int] = None
datadog_use_v1: Optional[bool] = False # if you want to use v1 datadog logged payload
gcs_pub_sub_use_v1: Optional[bool] = (
False # if you want to use v1 gcs pubsub logged payload
)
argilla_transformation_object: Optional[Dict[str, Any]] = None
_async_input_callback: List[Union[str, Callable, CustomLogger]] = (
[]
@ -810,6 +813,7 @@ from .llms.oobabooga.chat.transformation import OobaboogaConfig
from .llms.maritalk import MaritalkConfig
from .llms.openrouter.chat.transformation import OpenrouterConfig
from .llms.anthropic.chat.transformation import AnthropicConfig
from .llms.anthropic.common_utils import AnthropicModelInfo
from .llms.groq.stt.transformation import GroqSTTConfig
from .llms.anthropic.completion.transformation import AnthropicTextConfig
from .llms.triton.completion.transformation import TritonConfig
@ -845,6 +849,7 @@ from .llms.vertex_ai.gemini.vertex_and_google_ai_studio_gemini import (
VertexGeminiConfig,
VertexGeminiConfig as VertexAIConfig,
)
from .llms.gemini.common_utils import GeminiModelInfo
from .llms.gemini.chat.transformation import (
GoogleAIStudioGeminiConfig,
GoogleAIStudioGeminiConfig as GeminiConfig, # aliased to maintain backwards compatibility
@ -947,6 +952,12 @@ openaiOSeriesConfig = OpenAIOSeriesConfig()
from .llms.openai.chat.gpt_transformation import (
OpenAIGPTConfig,
)
from .llms.openai.transcriptions.whisper_transformation import (
OpenAIWhisperAudioTranscriptionConfig,
)
from .llms.openai.transcriptions.gpt_transformation import (
OpenAIGPTAudioTranscriptionConfig,
)
openAIGPTConfig = OpenAIGPTConfig()
from .llms.openai.chat.gpt_audio_transformation import (
@ -975,6 +986,7 @@ from .llms.fireworks_ai.embed.fireworks_ai_transformation import (
from .llms.friendliai.chat.transformation import FriendliaiChatConfig
from .llms.jina_ai.embedding.transformation import JinaAIEmbeddingConfig
from .llms.xai.chat.transformation import XAIChatConfig
from .llms.xai.common_utils import XAIModelInfo
from .llms.volcengine import VolcEngineConfig
from .llms.codestral.completion.transformation import CodestralTextCompletionConfig
from .llms.azure.azure import (

View file

@ -88,16 +88,16 @@ class Cache:
s3_aws_session_token: Optional[str] = None,
s3_config: Optional[Any] = None,
s3_path: Optional[str] = None,
redis_semantic_cache_use_async=False,
redis_semantic_cache_embedding_model="text-embedding-ada-002",
redis_semantic_cache_embedding_model: str = "text-embedding-ada-002",
redis_semantic_cache_index_name: Optional[str] = None,
redis_flush_size: Optional[int] = None,
redis_startup_nodes: Optional[List] = None,
disk_cache_dir=None,
disk_cache_dir: Optional[str] = None,
qdrant_api_base: Optional[str] = None,
qdrant_api_key: Optional[str] = None,
qdrant_collection_name: Optional[str] = None,
qdrant_quantization_config: Optional[str] = None,
qdrant_semantic_cache_embedding_model="text-embedding-ada-002",
qdrant_semantic_cache_embedding_model: str = "text-embedding-ada-002",
**kwargs,
):
"""
@ -170,8 +170,8 @@ class Cache:
port=port,
password=password,
similarity_threshold=similarity_threshold,
use_async=redis_semantic_cache_use_async,
embedding_model=redis_semantic_cache_embedding_model,
index_name=redis_semantic_cache_index_name,
**kwargs,
)
elif type == LiteLLMCacheType.QDRANT_SEMANTIC:

View file

@ -1,337 +1,437 @@
"""
Redis Semantic Cache implementation
Redis Semantic Cache implementation for LiteLLM
Has 4 methods:
- set_cache
- get_cache
- async_set_cache
- async_get_cache
The RedisSemanticCache provides semantic caching functionality using Redis as a backend.
This cache stores responses based on the semantic similarity of prompts rather than
exact matching, allowing for more flexible caching of LLM responses.
This implementation uses RedisVL's SemanticCache to find semantically similar prompts
and their cached responses.
"""
import ast
import asyncio
import json
from typing import Any
import os
from typing import Any, Dict, List, Optional, Tuple
import litellm
from litellm._logging import print_verbose
from litellm.litellm_core_utils.prompt_templates.common_utils import get_str_from_messages
from .base_cache import BaseCache
class RedisSemanticCache(BaseCache):
"""
Redis-backed semantic cache for LLM responses.
This cache uses vector similarity to find semantically similar prompts that have been
previously sent to the LLM, allowing for cache hits even when prompts are not identical
but carry similar meaning.
"""
DEFAULT_REDIS_INDEX_NAME: str = "litellm_semantic_cache_index"
def __init__(
self,
host=None,
port=None,
password=None,
redis_url=None,
similarity_threshold=None,
use_async=False,
embedding_model="text-embedding-ada-002",
host: Optional[str] = None,
port: Optional[str] = None,
password: Optional[str] = None,
redis_url: Optional[str] = None,
similarity_threshold: Optional[float] = None,
embedding_model: str = "text-embedding-ada-002",
index_name: Optional[str] = None,
**kwargs,
):
from redisvl.index import SearchIndex
print_verbose(
"redis semantic-cache initializing INDEX - litellm_semantic_cache_index"
)
if similarity_threshold is None:
raise Exception("similarity_threshold must be provided, passed None")
self.similarity_threshold = similarity_threshold
self.embedding_model = embedding_model
schema = {
"index": {
"name": "litellm_semantic_cache_index",
"prefix": "litellm",
"storage_type": "hash",
},
"fields": {
"text": [{"name": "response"}],
"vector": [
{
"name": "litellm_embedding",
"dims": 1536,
"distance_metric": "cosine",
"algorithm": "flat",
"datatype": "float32",
}
],
},
}
if redis_url is None:
# if no url passed, check if host, port and password are passed, if not raise an Exception
if host is None or port is None or password is None:
# try checking env for host, port and password
import os
host = os.getenv("REDIS_HOST")
port = os.getenv("REDIS_PORT")
password = os.getenv("REDIS_PASSWORD")
if host is None or port is None or password is None:
raise Exception("Redis host, port, and password must be provided")
redis_url = "redis://:" + password + "@" + host + ":" + port
print_verbose(f"redis semantic-cache redis_url: {redis_url}")
if use_async is False:
self.index = SearchIndex.from_dict(schema)
self.index.connect(redis_url=redis_url)
try:
self.index.create(overwrite=False) # don't overwrite existing index
except Exception as e:
print_verbose(f"Got exception creating semantic cache index: {str(e)}")
elif use_async is True:
schema["index"]["name"] = "litellm_semantic_cache_index_async"
self.index = SearchIndex.from_dict(schema)
self.index.connect(redis_url=redis_url, use_async=True)
#
def _get_cache_logic(self, cached_response: Any):
"""
Common 'get_cache_logic' across sync + async redis client implementations
Initialize the Redis Semantic Cache.
Args:
host: Redis host address
port: Redis port
password: Redis password
redis_url: Full Redis URL (alternative to separate host/port/password)
similarity_threshold: Threshold for semantic similarity (0.0 to 1.0)
where 1.0 requires exact matches and 0.0 accepts any match
embedding_model: Model to use for generating embeddings
index_name: Name for the Redis index
ttl: Default time-to-live for cache entries in seconds
**kwargs: Additional arguments passed to the Redis client
Raises:
Exception: If similarity_threshold is not provided or required Redis
connection information is missing
"""
from redisvl.extensions.llmcache import SemanticCache
from redisvl.utils.vectorize import CustomTextVectorizer
if index_name is None:
index_name = self.DEFAULT_REDIS_INDEX_NAME
print_verbose(f"Redis semantic-cache initializing index - {index_name}")
# Validate similarity threshold
if similarity_threshold is None:
raise ValueError("similarity_threshold must be provided, passed None")
# Store configuration
self.similarity_threshold = similarity_threshold
# Convert similarity threshold [0,1] to distance threshold [0,2]
# For cosine distance: 0 = most similar, 2 = least similar
# While similarity: 1 = most similar, 0 = least similar
self.distance_threshold = 1 - similarity_threshold
self.embedding_model = embedding_model
# Set up Redis connection
if redis_url is None:
try:
# Attempt to use provided parameters or fallback to environment variables
host = host or os.environ['REDIS_HOST']
port = port or os.environ['REDIS_PORT']
password = password or os.environ['REDIS_PASSWORD']
except KeyError as e:
# Raise a more informative exception if any of the required keys are missing
missing_var = e.args[0]
raise ValueError(f"Missing required Redis configuration: {missing_var}. "
f"Provide {missing_var} or redis_url.") from e
redis_url = f"redis://:{password}@{host}:{port}"
print_verbose(f"Redis semantic-cache redis_url: {redis_url}")
# Initialize the Redis vectorizer and cache
cache_vectorizer = CustomTextVectorizer(self._get_embedding)
self.llmcache = SemanticCache(
name=index_name,
redis_url=redis_url,
vectorizer=cache_vectorizer,
distance_threshold=self.distance_threshold,
overwrite=False,
)
def _get_ttl(self, **kwargs) -> Optional[int]:
"""
Get the TTL (time-to-live) value for cache entries.
Args:
**kwargs: Keyword arguments that may contain a custom TTL
Returns:
Optional[int]: The TTL value in seconds, or None if no TTL should be applied
"""
ttl = kwargs.get("ttl")
if ttl is not None:
ttl = int(ttl)
return ttl
def _get_embedding(self, prompt: str) -> List[float]:
"""
Generate an embedding vector for the given prompt using the configured embedding model.
Args:
prompt: The text to generate an embedding for
Returns:
List[float]: The embedding vector
"""
# Create an embedding from prompt
embedding_response = litellm.embedding(
model=self.embedding_model,
input=prompt,
cache={"no-store": True, "no-cache": True},
)
embedding = embedding_response["data"][0]["embedding"]
return embedding
def _get_cache_logic(self, cached_response: Any) -> Any:
"""
Process the cached response to prepare it for use.
Args:
cached_response: The raw cached response
Returns:
The processed cache response, or None if input was None
"""
if cached_response is None:
return cached_response
# check if cached_response is bytes
# Convert bytes to string if needed
if isinstance(cached_response, bytes):
cached_response = cached_response.decode("utf-8")
# Convert string representation to Python object
try:
cached_response = json.loads(
cached_response
) # Convert string to dictionary
except Exception:
cached_response = ast.literal_eval(cached_response)
cached_response = json.loads(cached_response)
except json.JSONDecodeError:
try:
cached_response = ast.literal_eval(cached_response)
except (ValueError, SyntaxError) as e:
print_verbose(f"Error parsing cached response: {str(e)}")
return None
return cached_response
def set_cache(self, key, value, **kwargs):
import numpy as np
print_verbose(f"redis semantic-cache set_cache, kwargs: {kwargs}")
# get the prompt
messages = kwargs["messages"]
prompt = "".join(message["content"] for message in messages)
# create an embedding for prompt
embedding_response = litellm.embedding(
model=self.embedding_model,
input=prompt,
cache={"no-store": True, "no-cache": True},
)
# get the embedding
embedding = embedding_response["data"][0]["embedding"]
# make the embedding a numpy array, convert to bytes
embedding_bytes = np.array(embedding, dtype=np.float32).tobytes()
value = str(value)
assert isinstance(value, str)
new_data = [
{"response": value, "prompt": prompt, "litellm_embedding": embedding_bytes}
]
# Add more data
self.index.load(new_data)
return
def get_cache(self, key, **kwargs):
print_verbose(f"sync redis semantic-cache get_cache, kwargs: {kwargs}")
from redisvl.query import VectorQuery
# query
# get the messages
messages = kwargs["messages"]
prompt = "".join(message["content"] for message in messages)
# convert to embedding
embedding_response = litellm.embedding(
model=self.embedding_model,
input=prompt,
cache={"no-store": True, "no-cache": True},
)
# get the embedding
embedding = embedding_response["data"][0]["embedding"]
query = VectorQuery(
vector=embedding,
vector_field_name="litellm_embedding",
return_fields=["response", "prompt", "vector_distance"],
num_results=1,
)
results = self.index.query(query)
if results is None:
return None
if isinstance(results, list):
if len(results) == 0:
return None
vector_distance = results[0]["vector_distance"]
vector_distance = float(vector_distance)
similarity = 1 - vector_distance
cached_prompt = results[0]["prompt"]
# check similarity, if more than self.similarity_threshold, return results
print_verbose(
f"semantic cache: similarity threshold: {self.similarity_threshold}, similarity: {similarity}, prompt: {prompt}, closest_cached_prompt: {cached_prompt}"
)
if similarity > self.similarity_threshold:
# cache hit !
cached_value = results[0]["response"]
print_verbose(
f"got a cache hit, similarity: {similarity}, Current prompt: {prompt}, cached_prompt: {cached_prompt}"
)
return self._get_cache_logic(cached_response=cached_value)
else:
# cache miss !
return None
pass
async def async_set_cache(self, key, value, **kwargs):
import numpy as np
from litellm.proxy.proxy_server import llm_model_list, llm_router
def set_cache(self, key: str, value: Any, **kwargs) -> None:
"""
Store a value in the semantic cache.
Args:
key: The cache key (not directly used in semantic caching)
value: The response value to cache
**kwargs: Additional arguments including 'messages' for the prompt
and optional 'ttl' for time-to-live
"""
print_verbose(f"Redis semantic-cache set_cache, kwargs: {kwargs}")
try:
await self.index.acreate(overwrite=False) # don't overwrite existing index
# Extract the prompt from messages
messages = kwargs.get("messages", [])
if not messages:
print_verbose("No messages provided for semantic caching")
return
prompt = get_str_from_messages(messages)
value_str = str(value)
# Get TTL and store in Redis semantic cache
ttl = self._get_ttl(**kwargs)
if ttl is not None:
self.llmcache.store(prompt, value_str, ttl=int(ttl))
else:
self.llmcache.store(prompt, value_str)
except Exception as e:
print_verbose(f"Got exception creating semantic cache index: {str(e)}")
print_verbose(f"async redis semantic-cache set_cache, kwargs: {kwargs}")
print_verbose(f"Error setting {value_str} in the Redis semantic cache: {str(e)}")
# get the prompt
messages = kwargs["messages"]
prompt = "".join(message["content"] for message in messages)
# create an embedding for prompt
router_model_names = (
[m["model_name"] for m in llm_model_list]
if llm_model_list is not None
else []
)
if llm_router is not None and self.embedding_model in router_model_names:
user_api_key = kwargs.get("metadata", {}).get("user_api_key", "")
embedding_response = await llm_router.aembedding(
model=self.embedding_model,
input=prompt,
cache={"no-store": True, "no-cache": True},
metadata={
"user_api_key": user_api_key,
"semantic-cache-embedding": True,
"trace_id": kwargs.get("metadata", {}).get("trace_id", None),
},
)
else:
# convert to embedding
embedding_response = await litellm.aembedding(
model=self.embedding_model,
input=prompt,
cache={"no-store": True, "no-cache": True},
)
def get_cache(self, key: str, **kwargs) -> Any:
"""
Retrieve a semantically similar cached response.
Args:
key: The cache key (not directly used in semantic caching)
**kwargs: Additional arguments including 'messages' for the prompt
Returns:
The cached response if a semantically similar prompt is found, else None
"""
print_verbose(f"Redis semantic-cache get_cache, kwargs: {kwargs}")
# get the embedding
embedding = embedding_response["data"][0]["embedding"]
try:
# Extract the prompt from messages
messages = kwargs.get("messages", [])
if not messages:
print_verbose("No messages provided for semantic cache lookup")
return None
prompt = get_str_from_messages(messages)
# Check the cache for semantically similar prompts
results = self.llmcache.check(prompt=prompt)
# make the embedding a numpy array, convert to bytes
embedding_bytes = np.array(embedding, dtype=np.float32).tobytes()
value = str(value)
assert isinstance(value, str)
new_data = [
{"response": value, "prompt": prompt, "litellm_embedding": embedding_bytes}
]
# Add more data
await self.index.aload(new_data)
return
async def async_get_cache(self, key, **kwargs):
print_verbose(f"async redis semantic-cache get_cache, kwargs: {kwargs}")
from redisvl.query import VectorQuery
from litellm.proxy.proxy_server import llm_model_list, llm_router
# query
# get the messages
messages = kwargs["messages"]
prompt = "".join(message["content"] for message in messages)
router_model_names = (
[m["model_name"] for m in llm_model_list]
if llm_model_list is not None
else []
)
if llm_router is not None and self.embedding_model in router_model_names:
user_api_key = kwargs.get("metadata", {}).get("user_api_key", "")
embedding_response = await llm_router.aembedding(
model=self.embedding_model,
input=prompt,
cache={"no-store": True, "no-cache": True},
metadata={
"user_api_key": user_api_key,
"semantic-cache-embedding": True,
"trace_id": kwargs.get("metadata", {}).get("trace_id", None),
},
)
else:
# convert to embedding
embedding_response = await litellm.aembedding(
model=self.embedding_model,
input=prompt,
cache={"no-store": True, "no-cache": True},
)
# get the embedding
embedding = embedding_response["data"][0]["embedding"]
query = VectorQuery(
vector=embedding,
vector_field_name="litellm_embedding",
return_fields=["response", "prompt", "vector_distance"],
)
results = await self.index.aquery(query)
if results is None:
kwargs.setdefault("metadata", {})["semantic-similarity"] = 0.0
return None
if isinstance(results, list):
if len(results) == 0:
kwargs.setdefault("metadata", {})["semantic-similarity"] = 0.0
# Return None if no similar prompts found
if not results:
return None
vector_distance = results[0]["vector_distance"]
vector_distance = float(vector_distance)
similarity = 1 - vector_distance
cached_prompt = results[0]["prompt"]
# Process the best matching result
cache_hit = results[0]
vector_distance = float(cache_hit["vector_distance"])
# Convert vector distance back to similarity score
# For cosine distance: 0 = most similar, 2 = least similar
# While similarity: 1 = most similar, 0 = least similar
similarity = 1 - vector_distance
cached_prompt = cache_hit["prompt"]
cached_response = cache_hit["response"]
# check similarity, if more than self.similarity_threshold, return results
print_verbose(
f"semantic cache: similarity threshold: {self.similarity_threshold}, similarity: {similarity}, prompt: {prompt}, closest_cached_prompt: {cached_prompt}"
)
# update kwargs["metadata"] with similarity, don't rewrite the original metadata
kwargs.setdefault("metadata", {})["semantic-similarity"] = similarity
if similarity > self.similarity_threshold:
# cache hit !
cached_value = results[0]["response"]
print_verbose(
f"got a cache hit, similarity: {similarity}, Current prompt: {prompt}, cached_prompt: {cached_prompt}"
f"Cache hit: similarity threshold: {self.similarity_threshold}, "
f"actual similarity: {similarity}, "
f"current prompt: {prompt}, "
f"cached prompt: {cached_prompt}"
)
return self._get_cache_logic(cached_response=cached_value)
else:
# cache miss !
return None
pass
return self._get_cache_logic(cached_response=cached_response)
except Exception as e:
print_verbose(f"Error retrieving from Redis semantic cache: {str(e)}")
async def _get_async_embedding(self, prompt: str, **kwargs) -> List[float]:
"""
Asynchronously generate an embedding for the given prompt.
Args:
prompt: The text to generate an embedding for
**kwargs: Additional arguments that may contain metadata
Returns:
List[float]: The embedding vector
"""
from litellm.proxy.proxy_server import llm_model_list, llm_router
async def _index_info(self):
return await self.index.ainfo()
# Route the embedding request through the proxy if appropriate
router_model_names = (
[m["model_name"] for m in llm_model_list]
if llm_model_list is not None
else []
)
try:
if llm_router is not None and self.embedding_model in router_model_names:
# Use the router for embedding generation
user_api_key = kwargs.get("metadata", {}).get("user_api_key", "")
embedding_response = await llm_router.aembedding(
model=self.embedding_model,
input=prompt,
cache={"no-store": True, "no-cache": True},
metadata={
"user_api_key": user_api_key,
"semantic-cache-embedding": True,
"trace_id": kwargs.get("metadata", {}).get("trace_id", None),
},
)
else:
# Generate embedding directly
embedding_response = await litellm.aembedding(
model=self.embedding_model,
input=prompt,
cache={"no-store": True, "no-cache": True},
)
async def async_set_cache_pipeline(self, cache_list, **kwargs):
tasks = []
for val in cache_list:
tasks.append(self.async_set_cache(val[0], val[1], **kwargs))
await asyncio.gather(*tasks)
# Extract and return the embedding vector
return embedding_response["data"][0]["embedding"]
except Exception as e:
print_verbose(f"Error generating async embedding: {str(e)}")
raise ValueError(f"Failed to generate embedding: {str(e)}") from e
async def async_set_cache(self, key: str, value: Any, **kwargs) -> None:
"""
Asynchronously store a value in the semantic cache.
Args:
key: The cache key (not directly used in semantic caching)
value: The response value to cache
**kwargs: Additional arguments including 'messages' for the prompt
and optional 'ttl' for time-to-live
"""
print_verbose(f"Async Redis semantic-cache set_cache, kwargs: {kwargs}")
try:
# Extract the prompt from messages
messages = kwargs.get("messages", [])
if not messages:
print_verbose("No messages provided for semantic caching")
return
prompt = get_str_from_messages(messages)
value_str = str(value)
# Generate embedding for the value (response) to cache
prompt_embedding = await self._get_async_embedding(prompt, **kwargs)
# Get TTL and store in Redis semantic cache
ttl = self._get_ttl(**kwargs)
if ttl is not None:
await self.llmcache.astore(
prompt,
value_str,
vector=prompt_embedding, # Pass through custom embedding
ttl=ttl
)
else:
await self.llmcache.astore(
prompt,
value_str,
vector=prompt_embedding # Pass through custom embedding
)
except Exception as e:
print_verbose(f"Error in async_set_cache: {str(e)}")
async def async_get_cache(self, key: str, **kwargs) -> Any:
"""
Asynchronously retrieve a semantically similar cached response.
Args:
key: The cache key (not directly used in semantic caching)
**kwargs: Additional arguments including 'messages' for the prompt
Returns:
The cached response if a semantically similar prompt is found, else None
"""
print_verbose(f"Async Redis semantic-cache get_cache, kwargs: {kwargs}")
try:
# Extract the prompt from messages
messages = kwargs.get("messages", [])
if not messages:
print_verbose("No messages provided for semantic cache lookup")
kwargs.setdefault("metadata", {})["semantic-similarity"] = 0.0
return None
prompt = get_str_from_messages(messages)
# Generate embedding for the prompt
prompt_embedding = await self._get_async_embedding(prompt, **kwargs)
# Check the cache for semantically similar prompts
results = await self.llmcache.acheck(
prompt=prompt,
vector=prompt_embedding
)
# handle results / cache hit
if not results:
kwargs.setdefault("metadata", {})["semantic-similarity"] = 0.0 # TODO why here but not above??
return None
cache_hit = results[0]
vector_distance = float(cache_hit["vector_distance"])
# Convert vector distance back to similarity
# For cosine distance: 0 = most similar, 2 = least similar
# While similarity: 1 = most similar, 0 = least similar
similarity = 1 - vector_distance
cached_prompt = cache_hit["prompt"]
cached_response = cache_hit["response"]
# update kwargs["metadata"] with similarity, don't rewrite the original metadata
kwargs.setdefault("metadata", {})["semantic-similarity"] = similarity
print_verbose(
f"Cache hit: similarity threshold: {self.similarity_threshold}, "
f"actual similarity: {similarity}, "
f"current prompt: {prompt}, "
f"cached prompt: {cached_prompt}"
)
return self._get_cache_logic(cached_response=cached_response)
except Exception as e:
print_verbose(f"Error in async_get_cache: {str(e)}")
kwargs.setdefault("metadata", {})["semantic-similarity"] = 0.0
async def _index_info(self) -> Dict[str, Any]:
"""
Get information about the Redis index.
Returns:
Dict[str, Any]: Information about the Redis index
"""
aindex = await self.llmcache._get_async_index()
return await aindex.info()
async def async_set_cache_pipeline(self, cache_list: List[Tuple[str, Any]], **kwargs) -> None:
"""
Asynchronously store multiple values in the semantic cache.
Args:
cache_list: List of (key, value) tuples to cache
**kwargs: Additional arguments
"""
try:
tasks = []
for val in cache_list:
tasks.append(self.async_set_cache(val[0], val[1], **kwargs))
await asyncio.gather(*tasks)
except Exception as e:
print_verbose(f"Error in async_set_cache_pipeline: {str(e)}")

View file

@ -275,15 +275,13 @@ def cost_per_token( # noqa: PLR0915
custom_llm_provider=custom_llm_provider,
prompt_characters=prompt_characters,
completion_characters=completion_characters,
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
usage=usage_block,
)
elif cost_router == "cost_per_token":
return google_cost_per_token(
model=model_without_prefix,
custom_llm_provider=custom_llm_provider,
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
usage=usage_block,
)
elif custom_llm_provider == "anthropic":
return anthropic_cost_per_token(model=model, usage=usage_block)
@ -828,11 +826,14 @@ def get_response_cost_from_hidden_params(
_hidden_params_dict = hidden_params
additional_headers = _hidden_params_dict.get("additional_headers", {})
if additional_headers and "x-litellm-response-cost" in additional_headers:
response_cost = additional_headers["x-litellm-response-cost"]
if (
additional_headers
and "llm_provider-x-litellm-response-cost" in additional_headers
):
response_cost = additional_headers["llm_provider-x-litellm-response-cost"]
if response_cost is None:
return None
return float(additional_headers["x-litellm-response-cost"])
return float(additional_headers["llm_provider-x-litellm-response-cost"])
return None

View file

@ -10,13 +10,16 @@ import asyncio
import json
import os
import traceback
from typing import TYPE_CHECKING, Any, Dict, List, Optional
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union
from litellm.types.utils import StandardLoggingPayload
if TYPE_CHECKING:
from litellm.proxy._types import SpendLogsPayload
else:
SpendLogsPayload = Any
import litellm
from litellm._logging import verbose_logger
from litellm.integrations.custom_batch_logger import CustomBatchLogger
from litellm.llms.custom_httpx.http_handler import (
@ -61,7 +64,7 @@ class GcsPubSubLogger(CustomBatchLogger):
self.flush_lock = asyncio.Lock()
super().__init__(**kwargs, flush_lock=self.flush_lock)
asyncio.create_task(self.periodic_flush())
self.log_queue: List[SpendLogsPayload] = []
self.log_queue: List[Union[SpendLogsPayload, StandardLoggingPayload]] = []
async def construct_request_headers(self) -> Dict[str, str]:
"""Construct authorization headers using Vertex AI auth"""
@ -115,13 +118,20 @@ class GcsPubSubLogger(CustomBatchLogger):
verbose_logger.debug(
"PubSub: Logging - Enters logging function for model %s", kwargs
)
spend_logs_payload = get_logging_payload(
kwargs=kwargs,
response_obj=response_obj,
start_time=start_time,
end_time=end_time,
)
self.log_queue.append(spend_logs_payload)
standard_logging_payload = kwargs.get("standard_logging_object", None)
# Backwards compatibility with old logging payload
if litellm.gcs_pub_sub_use_v1 is True:
spend_logs_payload = get_logging_payload(
kwargs=kwargs,
response_obj=response_obj,
start_time=start_time,
end_time=end_time,
)
self.log_queue.append(spend_logs_payload)
else:
# New logging payload, StandardLoggingPayload
self.log_queue.append(standard_logging_payload)
if len(self.log_queue) >= self.batch_size:
await self.async_send_batch()
@ -155,7 +165,7 @@ class GcsPubSubLogger(CustomBatchLogger):
self.log_queue.clear()
async def publish_message(
self, message: SpendLogsPayload
self, message: Union[SpendLogsPayload, StandardLoggingPayload]
) -> Optional[Dict[str, Any]]:
"""
Publish message to Google Cloud Pub/Sub using REST API

View file

@ -79,6 +79,22 @@ def get_supported_openai_params( # noqa: PLR0915
elif custom_llm_provider == "maritalk":
return litellm.MaritalkConfig().get_supported_openai_params(model=model)
elif custom_llm_provider == "openai":
if request_type == "transcription":
transcription_provider_config = (
litellm.ProviderConfigManager.get_provider_audio_transcription_config(
model=model, provider=LlmProviders.OPENAI
)
)
if isinstance(
transcription_provider_config, litellm.OpenAIGPTAudioTranscriptionConfig
):
return transcription_provider_config.get_supported_openai_params(
model=model
)
else:
raise ValueError(
f"Unsupported provider config: {transcription_provider_config} for model: {model}"
)
return litellm.OpenAIConfig().get_supported_openai_params(model=model)
elif custom_llm_provider == "azure":
if litellm.AzureOpenAIO1Config().is_o_series_model(model=model):

View file

@ -518,6 +518,16 @@ class Logging(LiteLLMLoggingBaseClass):
}
return data
def _get_masked_api_base(self, api_base: str) -> str:
if "key=" in api_base:
# Find the position of "key=" in the string
key_index = api_base.find("key=") + 4
# Mask the last 5 characters after "key="
masked_api_base = api_base[:key_index] + "*" * 5 + api_base[-4:]
else:
masked_api_base = api_base
return str(masked_api_base)
def _pre_call(self, input, api_key, model=None, additional_args={}):
"""
Common helper function across the sync + async pre-call function
@ -531,6 +541,9 @@ class Logging(LiteLLMLoggingBaseClass):
model
): # if model name was changes pre-call, overwrite the initial model call name with the new one
self.model_call_details["model"] = model
self.model_call_details["litellm_params"]["api_base"] = (
self._get_masked_api_base(additional_args.get("api_base", ""))
)
def pre_call(self, input, api_key, model=None, additional_args={}): # noqa: PLR0915
@ -714,15 +727,6 @@ class Logging(LiteLLMLoggingBaseClass):
headers = {}
data = additional_args.get("complete_input_dict", {})
api_base = str(additional_args.get("api_base", ""))
if "key=" in api_base:
# Find the position of "key=" in the string
key_index = api_base.find("key=") + 4
# Mask the last 5 characters after "key="
masked_api_base = api_base[:key_index] + "*" * 5 + api_base[-4:]
else:
masked_api_base = api_base
self.model_call_details["litellm_params"]["api_base"] = masked_api_base
curl_command = self._get_request_curl_command(
api_base=api_base,
headers=headers,
@ -737,11 +741,12 @@ class Logging(LiteLLMLoggingBaseClass):
def _get_request_curl_command(
self, api_base: str, headers: Optional[dict], additional_args: dict, data: dict
) -> str:
masked_api_base = self._get_masked_api_base(api_base)
if headers is None:
headers = {}
curl_command = "\n\nPOST Request Sent from LiteLLM:\n"
curl_command += "curl -X POST \\\n"
curl_command += f"{api_base} \\\n"
curl_command += f"{masked_api_base} \\\n"
masked_headers = self._get_masked_headers(headers)
formatted_headers = " ".join(
[f"-H '{k}: {v}'" for k, v in masked_headers.items()]

View file

@ -1,7 +1,7 @@
# What is this?
## Helper utilities for cost_per_token()
from typing import Optional, Tuple
from typing import Optional, Tuple, cast
import litellm
from litellm import verbose_logger
@ -143,26 +143,50 @@ def generic_cost_per_token(
### Cost of processing (non-cache hit + cache hit) + Cost of cache-writing (cache writing)
prompt_cost = 0.0
### PROCESSING COST
non_cache_hit_tokens = usage.prompt_tokens
text_tokens = usage.prompt_tokens
cache_hit_tokens = 0
if usage.prompt_tokens_details and usage.prompt_tokens_details.cached_tokens:
cache_hit_tokens = usage.prompt_tokens_details.cached_tokens
non_cache_hit_tokens = non_cache_hit_tokens - cache_hit_tokens
audio_tokens = 0
if usage.prompt_tokens_details:
cache_hit_tokens = (
cast(
Optional[int], getattr(usage.prompt_tokens_details, "cached_tokens", 0)
)
or 0
)
text_tokens = (
cast(
Optional[int], getattr(usage.prompt_tokens_details, "text_tokens", None)
)
or 0 # default to prompt tokens, if this field is not set
)
audio_tokens = (
cast(Optional[int], getattr(usage.prompt_tokens_details, "audio_tokens", 0))
or 0
)
## EDGE CASE - text tokens not set inside PromptTokensDetails
if text_tokens == 0:
text_tokens = usage.prompt_tokens - cache_hit_tokens - audio_tokens
prompt_base_cost = _get_prompt_token_base_cost(model_info=model_info, usage=usage)
prompt_cost = float(non_cache_hit_tokens) * prompt_base_cost
prompt_cost = float(text_tokens) * prompt_base_cost
_cache_read_input_token_cost = model_info.get("cache_read_input_token_cost")
### CACHE READ COST
if (
_cache_read_input_token_cost is not None
and usage.prompt_tokens_details
and usage.prompt_tokens_details.cached_tokens
and cache_hit_tokens is not None
and cache_hit_tokens > 0
):
prompt_cost += (
float(usage.prompt_tokens_details.cached_tokens)
* _cache_read_input_token_cost
)
prompt_cost += float(cache_hit_tokens) * _cache_read_input_token_cost
### AUDIO COST
audio_token_cost = model_info.get("input_cost_per_audio_token")
if audio_token_cost is not None and audio_tokens is not None and audio_tokens > 0:
prompt_cost += float(audio_tokens) * audio_token_cost
### CACHE WRITING COST
_cache_creation_input_token_cost = model_info.get("cache_creation_input_token_cost")
@ -175,6 +199,37 @@ def generic_cost_per_token(
completion_base_cost = _get_completion_token_base_cost(
model_info=model_info, usage=usage
)
completion_cost = usage["completion_tokens"] * completion_base_cost
text_tokens = usage.completion_tokens
audio_tokens = 0
if usage.completion_tokens_details is not None:
audio_tokens = (
cast(
Optional[int],
getattr(usage.completion_tokens_details, "audio_tokens", 0),
)
or 0
)
text_tokens = (
cast(
Optional[int],
getattr(usage.completion_tokens_details, "text_tokens", None),
)
or usage.completion_tokens # default to completion tokens, if this field is not set
)
## TEXT COST
completion_cost = float(text_tokens) * completion_base_cost
_output_cost_per_audio_token: Optional[float] = model_info.get(
"output_cost_per_audio_token"
)
## AUDIO COST
if (
_output_cost_per_audio_token is not None
and audio_tokens is not None
and audio_tokens > 0
):
completion_cost += float(audio_tokens) * _output_cost_per_audio_token
return prompt_cost, completion_cost

View file

@ -138,13 +138,22 @@ class ModelParamHelper:
TranscriptionCreateParamsNonStreaming,
TranscriptionCreateParamsStreaming,
)
non_streaming_kwargs = set(getattr(TranscriptionCreateParamsNonStreaming, "__annotations__", {}).keys())
streaming_kwargs = set(getattr(TranscriptionCreateParamsStreaming, "__annotations__", {}).keys())
non_streaming_kwargs = set(
getattr(
TranscriptionCreateParamsNonStreaming, "__annotations__", {}
).keys()
)
streaming_kwargs = set(
getattr(
TranscriptionCreateParamsStreaming, "__annotations__", {}
).keys()
)
all_transcription_kwargs = non_streaming_kwargs.union(streaming_kwargs)
return all_transcription_kwargs
except Exception as e:
verbose_logger.warning("Error getting transcription kwargs %s", str(e))
verbose_logger.debug("Error getting transcription kwargs %s", str(e))
return set()
@staticmethod

View file

@ -2,11 +2,14 @@
This file contains common utils for anthropic calls.
"""
from typing import Optional, Union
from typing import List, Optional, Union
import httpx
import litellm
from litellm.llms.base_llm.base_utils import BaseLLMModelInfo
from litellm.llms.base_llm.chat.transformation import BaseLLMException
from litellm.secret_managers.main import get_secret_str
class AnthropicError(BaseLLMException):
@ -19,6 +22,54 @@ class AnthropicError(BaseLLMException):
super().__init__(status_code=status_code, message=message, headers=headers)
class AnthropicModelInfo(BaseLLMModelInfo):
@staticmethod
def get_api_base(api_base: Optional[str] = None) -> Optional[str]:
return (
api_base
or get_secret_str("ANTHROPIC_API_BASE")
or "https://api.anthropic.com"
)
@staticmethod
def get_api_key(api_key: Optional[str] = None) -> Optional[str]:
return api_key or get_secret_str("ANTHROPIC_API_KEY")
@staticmethod
def get_base_model(model: Optional[str] = None) -> Optional[str]:
return model.replace("anthropic/", "") if model else None
def get_models(
self, api_key: Optional[str] = None, api_base: Optional[str] = None
) -> List[str]:
api_base = AnthropicModelInfo.get_api_base(api_base)
api_key = AnthropicModelInfo.get_api_key(api_key)
if api_base is None or api_key is None:
raise ValueError(
"ANTHROPIC_API_BASE or ANTHROPIC_API_KEY is not set. Please set the environment variable, to query Anthropic's `/models` endpoint."
)
response = litellm.module_level_client.get(
url=f"{api_base}/v1/models",
headers={"x-api-key": api_key, "anthropic-version": "2023-06-01"},
)
try:
response.raise_for_status()
except httpx.HTTPStatusError:
raise Exception(
f"Failed to fetch models from Anthropic. Status code: {response.status_code}, Response: {response.text}"
)
models = response.json()["data"]
litellm_model_names = []
for model in models:
stripped_model_name = model["id"]
litellm_model_name = "anthropic/" + stripped_model_name
litellm_model_names.append(litellm_model_name)
return litellm_model_names
def process_anthropic_headers(headers: Union[httpx.Headers, dict]) -> dict:
openai_headers = {}
if "anthropic-ratelimit-requests-limit" in headers:

View file

@ -1,5 +1,5 @@
from abc import ABC, abstractmethod
from typing import TYPE_CHECKING, Any, List, Optional
from typing import TYPE_CHECKING, Any, List, Optional, Union
import httpx
@ -8,7 +8,7 @@ from litellm.types.llms.openai import (
AllMessageValues,
OpenAIAudioTranscriptionOptionalParams,
)
from litellm.types.utils import ModelResponse
from litellm.types.utils import FileTypes, ModelResponse
if TYPE_CHECKING:
from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj
@ -42,6 +42,18 @@ class BaseAudioTranscriptionConfig(BaseConfig, ABC):
"""
return api_base or ""
@abstractmethod
def transform_audio_transcription_request(
self,
model: str,
audio_file: FileTypes,
optional_params: dict,
litellm_params: dict,
) -> Union[dict, bytes]:
raise NotImplementedError(
"AudioTranscriptionConfig needs a request transformation for audio transcription models"
)
def transform_request(
self,
model: str,

View file

@ -19,11 +19,19 @@ class BaseLLMModelInfo(ABC):
self,
model: str,
) -> Optional[ProviderSpecificModelInfo]:
"""
Default values all models of this provider support.
"""
return None
@abstractmethod
def get_models(self) -> List[str]:
pass
def get_models(
self, api_key: Optional[str] = None, api_base: Optional[str] = None
) -> List[str]:
"""
Returns a list of models supported by this provider.
"""
return []
@staticmethod
@abstractmethod

View file

@ -1274,13 +1274,6 @@ class AWSEventStreamDecoder:
def converse_chunk_parser(self, chunk_data: dict) -> ModelResponseStream:
try:
verbose_logger.debug("\n\nRaw Chunk: {}\n\n".format(chunk_data))
chunk_data["usage"] = {
"inputTokens": 3,
"outputTokens": 392,
"totalTokens": 2191,
"cacheReadInputTokens": 1796,
"cacheWriteInputTokens": 0,
}
text = ""
tool_use: Optional[ChatCompletionToolCallChunk] = None
finish_reason = ""

View file

@ -5,7 +5,8 @@ from openai.types.image import Image
from litellm.types.llms.bedrock import (
AmazonNovaCanvasTextToImageRequest, AmazonNovaCanvasTextToImageResponse,
AmazonNovaCanvasTextToImageParams, AmazonNovaCanvasRequestBase,
AmazonNovaCanvasTextToImageParams, AmazonNovaCanvasRequestBase, AmazonNovaCanvasColorGuidedGenerationParams,
AmazonNovaCanvasColorGuidedRequest,
)
from litellm.types.utils import ImageResponse
@ -69,6 +70,13 @@ class AmazonNovaCanvasConfig:
text_to_image_params = AmazonNovaCanvasTextToImageParams(**text_to_image_params)
return AmazonNovaCanvasTextToImageRequest(textToImageParams=text_to_image_params, taskType=task_type,
imageGenerationConfig=image_generation_config)
if task_type == "COLOR_GUIDED_GENERATION":
color_guided_generation_params = image_generation_config.pop("colorGuidedGenerationParams", {})
color_guided_generation_params = {"text": text, **color_guided_generation_params}
color_guided_generation_params = AmazonNovaCanvasColorGuidedGenerationParams(**color_guided_generation_params)
return AmazonNovaCanvasColorGuidedRequest(taskType=task_type,
colorGuidedGenerationParams=color_guided_generation_params,
imageGenerationConfig=image_generation_config)
raise NotImplementedError(f"Task type {task_type} is not supported")
@classmethod

View file

@ -1,4 +1,3 @@
import io
import json
from typing import TYPE_CHECKING, Any, Coroutine, Dict, Optional, Tuple, Union
@ -8,6 +7,9 @@ import litellm
import litellm.litellm_core_utils
import litellm.types
import litellm.types.utils
from litellm.llms.base_llm.audio_transcription.transformation import (
BaseAudioTranscriptionConfig,
)
from litellm.llms.base_llm.chat.transformation import BaseConfig
from litellm.llms.base_llm.embedding.transformation import BaseEmbeddingConfig
from litellm.llms.base_llm.rerank.transformation import BaseRerankConfig
@ -852,54 +854,12 @@ class BaseLLMHTTPHandler:
request_data=request_data,
)
def handle_audio_file(self, audio_file: FileTypes) -> bytes:
"""
Processes the audio file input based on its type and returns the binary data.
Args:
audio_file: Can be a file path (str), a tuple (filename, file_content), or binary data (bytes).
Returns:
The binary data of the audio file.
"""
binary_data: bytes # Explicitly declare the type
# Handle the audio file based on type
if isinstance(audio_file, str):
# If it's a file path
with open(audio_file, "rb") as f:
binary_data = f.read() # `f.read()` always returns `bytes`
elif isinstance(audio_file, tuple):
# Handle tuple case
_, file_content = audio_file[:2]
if isinstance(file_content, str):
with open(file_content, "rb") as f:
binary_data = f.read() # `f.read()` always returns `bytes`
elif isinstance(file_content, bytes):
binary_data = file_content
else:
raise TypeError(
f"Unexpected type in tuple: {type(file_content)}. Expected str or bytes."
)
elif isinstance(audio_file, bytes):
# Assume it's already binary data
binary_data = audio_file
elif isinstance(audio_file, io.BufferedReader) or isinstance(
audio_file, io.BytesIO
):
# Handle file-like objects
binary_data = audio_file.read()
else:
raise TypeError(f"Unsupported type for audio_file: {type(audio_file)}")
return binary_data
def audio_transcriptions(
self,
model: str,
audio_file: FileTypes,
optional_params: dict,
litellm_params: dict,
model_response: TranscriptionResponse,
timeout: float,
max_retries: int,
@ -910,11 +870,8 @@ class BaseLLMHTTPHandler:
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
atranscription: bool = False,
headers: dict = {},
litellm_params: dict = {},
provider_config: Optional[BaseAudioTranscriptionConfig] = None,
) -> TranscriptionResponse:
provider_config = ProviderConfigManager.get_provider_audio_transcription_config(
model=model, provider=litellm.LlmProviders(custom_llm_provider)
)
if provider_config is None:
raise ValueError(
f"No provider config found for model: {model} and provider: {custom_llm_provider}"
@ -938,7 +895,18 @@ class BaseLLMHTTPHandler:
)
# Handle the audio file based on type
binary_data = self.handle_audio_file(audio_file)
data = provider_config.transform_audio_transcription_request(
model=model,
audio_file=audio_file,
optional_params=optional_params,
litellm_params=litellm_params,
)
binary_data: Optional[bytes] = None
json_data: Optional[dict] = None
if isinstance(data, bytes):
binary_data = data
else:
json_data = data
try:
# Make the POST request
@ -946,6 +914,7 @@ class BaseLLMHTTPHandler:
url=complete_url,
headers=headers,
content=binary_data,
json=json_data,
timeout=timeout,
)
except Exception as e:

View file

@ -2,6 +2,7 @@
Translates from OpenAI's `/v1/audio/transcriptions` to Deepgram's `/v1/listen`
"""
import io
from typing import List, Optional, Union
from httpx import Headers, Response
@ -12,7 +13,7 @@ from litellm.types.llms.openai import (
AllMessageValues,
OpenAIAudioTranscriptionOptionalParams,
)
from litellm.types.utils import TranscriptionResponse
from litellm.types.utils import FileTypes, TranscriptionResponse
from ...base_llm.audio_transcription.transformation import (
BaseAudioTranscriptionConfig,
@ -47,6 +48,55 @@ class DeepgramAudioTranscriptionConfig(BaseAudioTranscriptionConfig):
message=error_message, status_code=status_code, headers=headers
)
def transform_audio_transcription_request(
self,
model: str,
audio_file: FileTypes,
optional_params: dict,
litellm_params: dict,
) -> Union[dict, bytes]:
"""
Processes the audio file input based on its type and returns the binary data.
Args:
audio_file: Can be a file path (str), a tuple (filename, file_content), or binary data (bytes).
Returns:
The binary data of the audio file.
"""
binary_data: bytes # Explicitly declare the type
# Handle the audio file based on type
if isinstance(audio_file, str):
# If it's a file path
with open(audio_file, "rb") as f:
binary_data = f.read() # `f.read()` always returns `bytes`
elif isinstance(audio_file, tuple):
# Handle tuple case
_, file_content = audio_file[:2]
if isinstance(file_content, str):
with open(file_content, "rb") as f:
binary_data = f.read() # `f.read()` always returns `bytes`
elif isinstance(file_content, bytes):
binary_data = file_content
else:
raise TypeError(
f"Unexpected type in tuple: {type(file_content)}. Expected str or bytes."
)
elif isinstance(audio_file, bytes):
# Assume it's already binary data
binary_data = audio_file
elif isinstance(audio_file, io.BufferedReader) or isinstance(
audio_file, io.BytesIO
):
# Handle file-like objects
binary_data = audio_file.read()
else:
raise TypeError(f"Unsupported type for audio_file: {type(audio_file)}")
return binary_data
def transform_audio_transcription_response(
self,
model: str,

View file

@ -2,27 +2,16 @@ from typing import List
from litellm.types.llms.openai import OpenAIAudioTranscriptionOptionalParams
from ...base_llm.audio_transcription.transformation import BaseAudioTranscriptionConfig
from ...openai.transcriptions.whisper_transformation import (
OpenAIWhisperAudioTranscriptionConfig,
)
from ..common_utils import FireworksAIMixin
class FireworksAIAudioTranscriptionConfig(
FireworksAIMixin, BaseAudioTranscriptionConfig
FireworksAIMixin, OpenAIWhisperAudioTranscriptionConfig
):
def get_supported_openai_params(
self, model: str
) -> List[OpenAIAudioTranscriptionOptionalParams]:
return ["language", "prompt", "response_format", "timestamp_granularities"]
def map_openai_params(
self,
non_default_params: dict,
optional_params: dict,
model: str,
drop_params: bool,
) -> dict:
supported_params = self.get_supported_openai_params(model)
for k, v in non_default_params.items():
if k in supported_params:
optional_params[k] = v
return optional_params

View file

@ -0,0 +1,52 @@
from typing import List, Optional
import litellm
from litellm.llms.base_llm.base_utils import BaseLLMModelInfo
from litellm.secret_managers.main import get_secret_str
class GeminiModelInfo(BaseLLMModelInfo):
@staticmethod
def get_api_base(api_base: Optional[str] = None) -> Optional[str]:
return (
api_base
or get_secret_str("GEMINI_API_BASE")
or "https://generativelanguage.googleapis.com/v1beta"
)
@staticmethod
def get_api_key(api_key: Optional[str] = None) -> Optional[str]:
return api_key or (get_secret_str("GEMINI_API_KEY"))
@staticmethod
def get_base_model(model: str) -> Optional[str]:
return model.replace("gemini/", "")
def get_models(
self, api_key: Optional[str] = None, api_base: Optional[str] = None
) -> List[str]:
api_base = GeminiModelInfo.get_api_base(api_base)
api_key = GeminiModelInfo.get_api_key(api_key)
if api_base is None or api_key is None:
raise ValueError(
"GEMINI_API_BASE or GEMINI_API_KEY is not set. Please set the environment variable, to query Gemini's `/models` endpoint."
)
response = litellm.module_level_client.get(
url=f"{api_base}/models?key={api_key}",
)
if response.status_code != 200:
raise ValueError(
f"Failed to fetch models from Gemini. Status code: {response.status_code}, Response: {response.json()}"
)
models = response.json()["models"]
litellm_model_names = []
for model in models:
stripped_model_name = model["name"].strip("models/")
litellm_model_name = "gemini/" + stripped_model_name
litellm_model_names.append(litellm_model_name)
return litellm_model_names

View file

@ -80,6 +80,7 @@ class MistralConfig(OpenAIGPTConfig):
"temperature",
"top_p",
"max_tokens",
"max_completion_tokens",
"tools",
"tool_choice",
"seed",
@ -105,6 +106,10 @@ class MistralConfig(OpenAIGPTConfig):
for param, value in non_default_params.items():
if param == "max_tokens":
optional_params["max_tokens"] = value
if (
param == "max_completion_tokens"
): # max_completion_tokens should take priority
optional_params["max_tokens"] = value
if param == "tools":
optional_params["tools"] = value
if param == "stream" and value is True:

View file

@ -6,6 +6,7 @@ Helper util for handling openai-specific cost calculation
from typing import Literal, Optional, Tuple
from litellm._logging import verbose_logger
from litellm.litellm_core_utils.llm_cost_calc.utils import generic_cost_per_token
from litellm.types.utils import CallTypes, Usage
from litellm.utils import get_model_info
@ -28,52 +29,53 @@ def cost_per_token(model: str, usage: Usage) -> Tuple[float, float]:
Returns:
Tuple[float, float] - prompt_cost_in_usd, completion_cost_in_usd
"""
## GET MODEL INFO
model_info = get_model_info(model=model, custom_llm_provider="openai")
## CALCULATE INPUT COST
### Non-cached text tokens
non_cached_text_tokens = usage.prompt_tokens
cached_tokens: Optional[int] = None
if usage.prompt_tokens_details and usage.prompt_tokens_details.cached_tokens:
cached_tokens = usage.prompt_tokens_details.cached_tokens
non_cached_text_tokens = non_cached_text_tokens - cached_tokens
prompt_cost: float = non_cached_text_tokens * model_info["input_cost_per_token"]
## Prompt Caching cost calculation
if model_info.get("cache_read_input_token_cost") is not None and cached_tokens:
# Note: We read ._cache_read_input_tokens from the Usage - since cost_calculator.py standardizes the cache read tokens on usage._cache_read_input_tokens
prompt_cost += cached_tokens * (
model_info.get("cache_read_input_token_cost", 0) or 0
)
return generic_cost_per_token(
model=model, usage=usage, custom_llm_provider="openai"
)
# ### Non-cached text tokens
# non_cached_text_tokens = usage.prompt_tokens
# cached_tokens: Optional[int] = None
# if usage.prompt_tokens_details and usage.prompt_tokens_details.cached_tokens:
# cached_tokens = usage.prompt_tokens_details.cached_tokens
# non_cached_text_tokens = non_cached_text_tokens - cached_tokens
# prompt_cost: float = non_cached_text_tokens * model_info["input_cost_per_token"]
# ## Prompt Caching cost calculation
# if model_info.get("cache_read_input_token_cost") is not None and cached_tokens:
# # Note: We read ._cache_read_input_tokens from the Usage - since cost_calculator.py standardizes the cache read tokens on usage._cache_read_input_tokens
# prompt_cost += cached_tokens * (
# model_info.get("cache_read_input_token_cost", 0) or 0
# )
_audio_tokens: Optional[int] = (
usage.prompt_tokens_details.audio_tokens
if usage.prompt_tokens_details is not None
else None
)
_audio_cost_per_token: Optional[float] = model_info.get(
"input_cost_per_audio_token"
)
if _audio_tokens is not None and _audio_cost_per_token is not None:
audio_cost: float = _audio_tokens * _audio_cost_per_token
prompt_cost += audio_cost
# _audio_tokens: Optional[int] = (
# usage.prompt_tokens_details.audio_tokens
# if usage.prompt_tokens_details is not None
# else None
# )
# _audio_cost_per_token: Optional[float] = model_info.get(
# "input_cost_per_audio_token"
# )
# if _audio_tokens is not None and _audio_cost_per_token is not None:
# audio_cost: float = _audio_tokens * _audio_cost_per_token
# prompt_cost += audio_cost
## CALCULATE OUTPUT COST
completion_cost: float = (
usage["completion_tokens"] * model_info["output_cost_per_token"]
)
_output_cost_per_audio_token: Optional[float] = model_info.get(
"output_cost_per_audio_token"
)
_output_audio_tokens: Optional[int] = (
usage.completion_tokens_details.audio_tokens
if usage.completion_tokens_details is not None
else None
)
if _output_cost_per_audio_token is not None and _output_audio_tokens is not None:
audio_cost = _output_audio_tokens * _output_cost_per_audio_token
completion_cost += audio_cost
# ## CALCULATE OUTPUT COST
# completion_cost: float = (
# usage["completion_tokens"] * model_info["output_cost_per_token"]
# )
# _output_cost_per_audio_token: Optional[float] = model_info.get(
# "output_cost_per_audio_token"
# )
# _output_audio_tokens: Optional[int] = (
# usage.completion_tokens_details.audio_tokens
# if usage.completion_tokens_details is not None
# else None
# )
# if _output_cost_per_audio_token is not None and _output_audio_tokens is not None:
# audio_cost = _output_audio_tokens * _output_cost_per_audio_token
# completion_cost += audio_cost
return prompt_cost, completion_cost
# return prompt_cost, completion_cost
def cost_per_second(

View file

@ -0,0 +1,34 @@
from typing import List
from litellm.types.llms.openai import OpenAIAudioTranscriptionOptionalParams
from litellm.types.utils import FileTypes
from .whisper_transformation import OpenAIWhisperAudioTranscriptionConfig
class OpenAIGPTAudioTranscriptionConfig(OpenAIWhisperAudioTranscriptionConfig):
def get_supported_openai_params(
self, model: str
) -> List[OpenAIAudioTranscriptionOptionalParams]:
"""
Get the supported OpenAI params for the `gpt-4o-transcribe` models
"""
return [
"language",
"prompt",
"response_format",
"temperature",
"include",
]
def transform_audio_transcription_request(
self,
model: str,
audio_file: FileTypes,
optional_params: dict,
litellm_params: dict,
) -> dict:
"""
Transform the audio transcription request
"""
return {"model": model, "file": audio_file, **optional_params}

View file

@ -7,6 +7,9 @@ from pydantic import BaseModel
import litellm
from litellm.litellm_core_utils.audio_utils.utils import get_audio_file_name
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
from litellm.llms.base_llm.audio_transcription.transformation import (
BaseAudioTranscriptionConfig,
)
from litellm.types.utils import FileTypes
from litellm.utils import (
TranscriptionResponse,
@ -75,6 +78,7 @@ class OpenAIAudioTranscription(OpenAIChatCompletion):
model: str,
audio_file: FileTypes,
optional_params: dict,
litellm_params: dict,
model_response: TranscriptionResponse,
timeout: float,
max_retries: int,
@ -83,16 +87,24 @@ class OpenAIAudioTranscription(OpenAIChatCompletion):
api_base: Optional[str],
client=None,
atranscription: bool = False,
provider_config: Optional[BaseAudioTranscriptionConfig] = None,
) -> TranscriptionResponse:
data = {"model": model, "file": audio_file, **optional_params}
if "response_format" not in data or (
data["response_format"] == "text" or data["response_format"] == "json"
):
data["response_format"] = (
"verbose_json" # ensures 'duration' is received - used for cost calculation
"""
Handle audio transcription request
"""
if provider_config is not None:
data = provider_config.transform_audio_transcription_request(
model=model,
audio_file=audio_file,
optional_params=optional_params,
litellm_params=litellm_params,
)
if isinstance(data, bytes):
raise ValueError("OpenAI transformation route requires a dict")
else:
data = {"model": model, "file": audio_file, **optional_params}
if atranscription is True:
return self.async_audio_transcriptions( # type: ignore
audio_file=audio_file,

View file

@ -0,0 +1,97 @@
from typing import List, Optional, Union
from httpx import Headers
from litellm.llms.base_llm.audio_transcription.transformation import (
BaseAudioTranscriptionConfig,
)
from litellm.llms.base_llm.chat.transformation import BaseLLMException
from litellm.secret_managers.main import get_secret_str
from litellm.types.llms.openai import (
AllMessageValues,
OpenAIAudioTranscriptionOptionalParams,
)
from litellm.types.utils import FileTypes
from ..common_utils import OpenAIError
class OpenAIWhisperAudioTranscriptionConfig(BaseAudioTranscriptionConfig):
def get_supported_openai_params(
self, model: str
) -> List[OpenAIAudioTranscriptionOptionalParams]:
"""
Get the supported OpenAI params for the `whisper-1` models
"""
return [
"language",
"prompt",
"response_format",
"temperature",
"timestamp_granularities",
]
def map_openai_params(
self,
non_default_params: dict,
optional_params: dict,
model: str,
drop_params: bool,
) -> dict:
"""
Map the OpenAI params to the Whisper params
"""
supported_params = self.get_supported_openai_params(model)
for k, v in non_default_params.items():
if k in supported_params:
optional_params[k] = v
return optional_params
def validate_environment(
self,
headers: dict,
model: str,
messages: List[AllMessageValues],
optional_params: dict,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
) -> dict:
api_key = api_key or get_secret_str("OPENAI_API_KEY")
auth_header = {
"Authorization": f"Bearer {api_key}",
}
headers.update(auth_header)
return headers
def transform_audio_transcription_request(
self,
model: str,
audio_file: FileTypes,
optional_params: dict,
litellm_params: dict,
) -> dict:
"""
Transform the audio transcription request
"""
data = {"model": model, "file": audio_file, **optional_params}
if "response_format" not in data or (
data["response_format"] == "text" or data["response_format"] == "json"
):
data["response_format"] = (
"verbose_json" # ensures 'duration' is received - used for cost calculation
)
return data
def get_error_class(
self, error_message: str, status_code: int, headers: Union[dict, Headers]
) -> BaseLLMException:
return OpenAIError(
status_code=status_code,
message=error_message,
headers=headers,
)

View file

@ -11,7 +11,9 @@ class TopazException(BaseLLMException):
class TopazModelInfo(BaseLLMModelInfo):
def get_models(self) -> List[str]:
def get_models(
self, api_key: Optional[str] = None, api_base: Optional[str] = None
) -> List[str]:
return [
"topaz/Standard V2",
"topaz/Low Resolution V2",

View file

@ -3,6 +3,7 @@ from typing import Dict, List, Literal, Optional, Tuple, Union
import httpx
import litellm
from litellm import supports_response_schema, supports_system_messages, verbose_logger
from litellm.llms.base_llm.chat.transformation import BaseLLMException
from litellm.types.llms.vertex_ai import PartType
@ -28,6 +29,10 @@ def get_supports_system_message(
supports_system_message = supports_system_messages(
model=model, custom_llm_provider=_custom_llm_provider
)
# Vertex Models called in the `/gemini` request/response format also support system messages
if litellm.VertexGeminiConfig._is_model_gemini_spec_model(model):
supports_system_message = True
except Exception as e:
verbose_logger.warning(
"Unable to identify if system message supported. Defaulting to 'False'. Received error message - {}\nAdd it here - https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json".format(
@ -55,7 +60,9 @@ def get_supports_response_schema(
from typing import Literal, Optional
all_gemini_url_modes = Literal["chat", "embedding", "batch_embedding"]
all_gemini_url_modes = Literal[
"chat", "embedding", "batch_embedding", "image_generation"
]
def _get_vertex_url(
@ -68,6 +75,8 @@ def _get_vertex_url(
) -> Tuple[str, str]:
url: Optional[str] = None
endpoint: Optional[str] = None
model = litellm.VertexGeminiConfig.get_model_for_vertex_ai_url(model=model)
if mode == "chat":
### SET RUNTIME ENDPOINT ###
endpoint = "generateContent"
@ -91,7 +100,11 @@ def _get_vertex_url(
if model.isdigit():
# https://us-central1-aiplatform.googleapis.com/v1/projects/$PROJECT_ID/locations/us-central1/endpoints/$ENDPOINT_ID:predict
url = f"https://{vertex_location}-aiplatform.googleapis.com/{vertex_api_version}/projects/{vertex_project}/locations/{vertex_location}/endpoints/{model}:{endpoint}"
elif mode == "image_generation":
endpoint = "predict"
url = f"https://{vertex_location}-aiplatform.googleapis.com/v1/projects/{vertex_project}/locations/{vertex_location}/publishers/google/models/{model}:{endpoint}"
if model.isdigit():
url = f"https://{vertex_location}-aiplatform.googleapis.com/{vertex_api_version}/projects/{vertex_project}/locations/{vertex_location}/endpoints/{model}:{endpoint}"
if not url or not endpoint:
raise ValueError(f"Unable to get vertex url/endpoint for mode: {mode}")
return url, endpoint
@ -127,6 +140,10 @@ def _get_gemini_url(
url = "https://generativelanguage.googleapis.com/v1beta/{}:{}?key={}".format(
_gemini_model_name, endpoint, gemini_api_key
)
elif mode == "image_generation":
raise ValueError(
"LiteLLM's `gemini/` route does not support image generation yet. Let us know if you need this feature by opening an issue at https://github.com/BerriAI/litellm/issues"
)
return url, endpoint

View file

@ -4,7 +4,11 @@ from typing import Literal, Optional, Tuple, Union
import litellm
from litellm import verbose_logger
from litellm.litellm_core_utils.llm_cost_calc.utils import _is_above_128k
from litellm.litellm_core_utils.llm_cost_calc.utils import (
_is_above_128k,
generic_cost_per_token,
)
from litellm.types.utils import ModelInfo, Usage
"""
Gemini pricing covers:
@ -20,7 +24,7 @@ Vertex AI -> character based pricing
Google AI Studio -> token based pricing
"""
models_without_dynamic_pricing = ["gemini-1.0-pro", "gemini-pro"]
models_without_dynamic_pricing = ["gemini-1.0-pro", "gemini-pro", "gemini-2"]
def cost_router(
@ -46,14 +50,15 @@ def cost_router(
call_type == "embedding" or call_type == "aembedding"
):
return "cost_per_token"
elif custom_llm_provider == "vertex_ai" and ("gemini-2" in model):
return "cost_per_token"
return "cost_per_character"
def cost_per_character(
model: str,
custom_llm_provider: str,
prompt_tokens: float,
completion_tokens: float,
usage: Usage,
prompt_characters: Optional[float] = None,
completion_characters: Optional[float] = None,
) -> Tuple[float, float]:
@ -86,8 +91,7 @@ def cost_per_character(
prompt_cost, _ = cost_per_token(
model=model,
custom_llm_provider=custom_llm_provider,
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
usage=usage,
)
else:
try:
@ -124,8 +128,7 @@ def cost_per_character(
prompt_cost, _ = cost_per_token(
model=model,
custom_llm_provider=custom_llm_provider,
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
usage=usage,
)
## CALCULATE OUTPUT COST
@ -133,10 +136,10 @@ def cost_per_character(
_, completion_cost = cost_per_token(
model=model,
custom_llm_provider=custom_llm_provider,
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
usage=usage,
)
else:
completion_tokens = usage.completion_tokens
try:
if (
_is_above_128k(tokens=completion_characters * 4) # 1 token = 4 char
@ -172,18 +175,54 @@ def cost_per_character(
_, completion_cost = cost_per_token(
model=model,
custom_llm_provider=custom_llm_provider,
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
usage=usage,
)
return prompt_cost, completion_cost
def _handle_128k_pricing(
model_info: ModelInfo,
usage: Usage,
) -> Tuple[float, float]:
## CALCULATE INPUT COST
input_cost_per_token_above_128k_tokens = model_info.get(
"input_cost_per_token_above_128k_tokens"
)
output_cost_per_token_above_128k_tokens = model_info.get(
"output_cost_per_token_above_128k_tokens"
)
prompt_tokens = usage.prompt_tokens
completion_tokens = usage.completion_tokens
if (
_is_above_128k(tokens=prompt_tokens)
and input_cost_per_token_above_128k_tokens is not None
):
prompt_cost = prompt_tokens * input_cost_per_token_above_128k_tokens
else:
prompt_cost = prompt_tokens * model_info["input_cost_per_token"]
## CALCULATE OUTPUT COST
output_cost_per_token_above_128k_tokens = model_info.get(
"output_cost_per_token_above_128k_tokens"
)
if (
_is_above_128k(tokens=completion_tokens)
and output_cost_per_token_above_128k_tokens is not None
):
completion_cost = completion_tokens * output_cost_per_token_above_128k_tokens
else:
completion_cost = completion_tokens * model_info["output_cost_per_token"]
return prompt_cost, completion_cost
def cost_per_token(
model: str,
custom_llm_provider: str,
prompt_tokens: float,
completion_tokens: float,
usage: Usage,
) -> Tuple[float, float]:
"""
Calculates the cost per token for a given model, prompt tokens, and completion tokens.
@ -205,38 +244,24 @@ def cost_per_token(
model=model, custom_llm_provider=custom_llm_provider
)
## CALCULATE INPUT COST
## HANDLE 128k+ PRICING
input_cost_per_token_above_128k_tokens = model_info.get(
"input_cost_per_token_above_128k_tokens"
)
output_cost_per_token_above_128k_tokens = model_info.get(
"output_cost_per_token_above_128k_tokens"
)
if (
_is_above_128k(tokens=prompt_tokens)
and model not in models_without_dynamic_pricing
input_cost_per_token_above_128k_tokens is not None
or output_cost_per_token_above_128k_tokens is not None
):
assert (
"input_cost_per_token_above_128k_tokens" in model_info
and model_info["input_cost_per_token_above_128k_tokens"] is not None
), "model info for model={} does not have pricing for > 128k tokens\nmodel_info={}".format(
model, model_info
return _handle_128k_pricing(
model_info=model_info,
usage=usage,
)
prompt_cost = (
prompt_tokens * model_info["input_cost_per_token_above_128k_tokens"]
)
else:
prompt_cost = prompt_tokens * model_info["input_cost_per_token"]
## CALCULATE OUTPUT COST
if (
_is_above_128k(tokens=completion_tokens)
and model not in models_without_dynamic_pricing
):
assert (
"output_cost_per_token_above_128k_tokens" in model_info
and model_info["output_cost_per_token_above_128k_tokens"] is not None
), "model info for model={} does not have pricing for > 128k tokens\nmodel_info={}".format(
model, model_info
)
completion_cost = (
completion_tokens * model_info["output_cost_per_token_above_128k_tokens"]
)
else:
completion_cost = completion_tokens * model_info["output_cost_per_token"]
return prompt_cost, completion_cost
return generic_cost_per_token(
model=model,
custom_llm_provider=custom_llm_provider,
usage=usage,
)

View file

@ -207,6 +207,7 @@ class VertexGeminiConfig(VertexAIBaseConfig, BaseConfig):
"extra_headers",
"seed",
"logprobs",
"top_logprobs", # Added this to list of supported openAI params
]
def map_tool_choice_values(
@ -365,6 +366,8 @@ class VertexGeminiConfig(VertexAIBaseConfig, BaseConfig):
optional_params["presence_penalty"] = value
if param == "logprobs":
optional_params["responseLogprobs"] = value
if param == "top_logprobs":
optional_params["logprobs"] = value
if (param == "tools" or param == "functions") and isinstance(value, list):
optional_params["tools"] = self._map_function(value=value)
optional_params["litellm_param_is_function_call"] = (
@ -416,6 +419,49 @@ class VertexGeminiConfig(VertexAIBaseConfig, BaseConfig):
"europe-west9",
]
@staticmethod
def get_model_for_vertex_ai_url(model: str) -> str:
"""
Returns the model name to use in the request to Vertex AI
Handles 2 cases:
1. User passed `model="vertex_ai/gemini/ft-uuid"`, we need to return `ft-uuid` for the request to Vertex AI
2. User passed `model="vertex_ai/gemini-2.0-flash-001"`, we need to return `gemini-2.0-flash-001` for the request to Vertex AI
Args:
model (str): The model name to use in the request to Vertex AI
Returns:
str: The model name to use in the request to Vertex AI
"""
if VertexGeminiConfig._is_model_gemini_spec_model(model):
return VertexGeminiConfig._get_model_name_from_gemini_spec_model(model)
return model
@staticmethod
def _is_model_gemini_spec_model(model: Optional[str]) -> bool:
"""
Returns true if user is trying to call custom model in `/gemini` request/response format
"""
if model is None:
return False
if "gemini/" in model:
return True
return False
@staticmethod
def _get_model_name_from_gemini_spec_model(model: str) -> str:
"""
Returns the model name if model="vertex_ai/gemini/<unique_id>"
Example:
- model = "gemini/1234567890"
- returns "1234567890"
"""
if "gemini/" in model:
return model.split("/")[-1]
return model
def get_flagged_finish_reasons(self) -> Dict[str, str]:
"""
Return Dictionary of finish reasons which indicate response was flagged
@ -597,16 +643,25 @@ class VertexGeminiConfig(VertexAIBaseConfig, BaseConfig):
completion_response: GenerateContentResponseBody,
) -> Usage:
cached_tokens: Optional[int] = None
audio_tokens: Optional[int] = None
text_tokens: Optional[int] = None
prompt_tokens_details: Optional[PromptTokensDetailsWrapper] = None
if "cachedContentTokenCount" in completion_response["usageMetadata"]:
cached_tokens = completion_response["usageMetadata"][
"cachedContentTokenCount"
]
if "promptTokensDetails" in completion_response["usageMetadata"]:
for detail in completion_response["usageMetadata"]["promptTokensDetails"]:
if detail["modality"] == "AUDIO":
audio_tokens = detail["tokenCount"]
elif detail["modality"] == "TEXT":
text_tokens = detail["tokenCount"]
if cached_tokens is not None:
prompt_tokens_details = PromptTokensDetailsWrapper(
cached_tokens=cached_tokens,
)
prompt_tokens_details = PromptTokensDetailsWrapper(
cached_tokens=cached_tokens,
audio_tokens=audio_tokens,
text_tokens=text_tokens,
)
## GET USAGE ##
usage = Usage(
prompt_tokens=completion_response["usageMetadata"].get(
@ -745,6 +800,7 @@ class VertexGeminiConfig(VertexAIBaseConfig, BaseConfig):
model_response.choices.append(choice)
usage = self._calculate_usage(completion_response=completion_response)
setattr(model_response, "usage", usage)
## ADD GROUNDING METADATA ##

View file

@ -43,22 +43,23 @@ class VertexImageGeneration(VertexLLM):
def image_generation(
self,
prompt: str,
api_base: Optional[str],
vertex_project: Optional[str],
vertex_location: Optional[str],
vertex_credentials: Optional[VERTEX_CREDENTIALS_TYPES],
model_response: ImageResponse,
logging_obj: Any,
model: Optional[
str
] = "imagegeneration", # vertex ai uses imagegeneration as the default model
model: str = "imagegeneration", # vertex ai uses imagegeneration as the default model
client: Optional[Any] = None,
optional_params: Optional[dict] = None,
timeout: Optional[int] = None,
aimg_generation=False,
extra_headers: Optional[dict] = None,
) -> ImageResponse:
if aimg_generation is True:
return self.aimage_generation( # type: ignore
prompt=prompt,
api_base=api_base,
vertex_project=vertex_project,
vertex_location=vertex_location,
vertex_credentials=vertex_credentials,
@ -83,13 +84,27 @@ class VertexImageGeneration(VertexLLM):
else:
sync_handler = client # type: ignore
url = f"https://{vertex_location}-aiplatform.googleapis.com/v1/projects/{vertex_project}/locations/{vertex_location}/publishers/google/models/{model}:predict"
# url = f"https://{vertex_location}-aiplatform.googleapis.com/v1/projects/{vertex_project}/locations/{vertex_location}/publishers/google/models/{model}:predict"
auth_header: Optional[str] = None
auth_header, _ = self._ensure_access_token(
credentials=vertex_credentials,
project_id=vertex_project,
custom_llm_provider="vertex_ai",
)
auth_header, api_base = self._get_token_and_url(
model=model,
gemini_api_key=None,
auth_header=auth_header,
vertex_project=vertex_project,
vertex_location=vertex_location,
vertex_credentials=vertex_credentials,
stream=False,
custom_llm_provider="vertex_ai",
api_base=api_base,
should_use_v1beta1_features=False,
mode="image_generation",
)
optional_params = optional_params or {
"sampleCount": 1
} # default optional params
@ -99,31 +114,21 @@ class VertexImageGeneration(VertexLLM):
"parameters": optional_params,
}
request_str = f"\n curl -X POST \\\n -H \"Authorization: Bearer {auth_header[:10] + 'XXXXXXXXXX'}\" \\\n -H \"Content-Type: application/json; charset=utf-8\" \\\n -d {request_data} \\\n \"{url}\""
logging_obj.pre_call(
input=prompt,
api_key=None,
additional_args={
"complete_input_dict": optional_params,
"request_str": request_str,
},
)
headers = self.set_headers(auth_header=auth_header, extra_headers=extra_headers)
logging_obj.pre_call(
input=prompt,
api_key=None,
api_key="",
additional_args={
"complete_input_dict": optional_params,
"request_str": request_str,
"api_base": api_base,
"headers": headers,
},
)
response = sync_handler.post(
url=url,
headers={
"Content-Type": "application/json; charset=utf-8",
"Authorization": f"Bearer {auth_header}",
},
url=api_base,
headers=headers,
data=json.dumps(request_data),
)
@ -138,17 +143,17 @@ class VertexImageGeneration(VertexLLM):
async def aimage_generation(
self,
prompt: str,
api_base: Optional[str],
vertex_project: Optional[str],
vertex_location: Optional[str],
vertex_credentials: Optional[VERTEX_CREDENTIALS_TYPES],
model_response: litellm.ImageResponse,
logging_obj: Any,
model: Optional[
str
] = "imagegeneration", # vertex ai uses imagegeneration as the default model
model: str = "imagegeneration", # vertex ai uses imagegeneration as the default model
client: Optional[AsyncHTTPHandler] = None,
optional_params: Optional[dict] = None,
timeout: Optional[int] = None,
extra_headers: Optional[dict] = None,
):
response = None
if client is None:
@ -169,7 +174,6 @@ class VertexImageGeneration(VertexLLM):
# make POST request to
# https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/imagegeneration:predict
url = f"https://{vertex_location}-aiplatform.googleapis.com/v1/projects/{vertex_project}/locations/{vertex_location}/publishers/google/models/{model}:predict"
"""
Docs link: https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/imagegeneration?project=adroit-crow-413218
@ -188,11 +192,25 @@ class VertexImageGeneration(VertexLLM):
} \
"https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/imagegeneration:predict"
"""
auth_header: Optional[str] = None
auth_header, _ = self._ensure_access_token(
credentials=vertex_credentials,
project_id=vertex_project,
custom_llm_provider="vertex_ai",
)
auth_header, api_base = self._get_token_and_url(
model=model,
gemini_api_key=None,
auth_header=auth_header,
vertex_project=vertex_project,
vertex_location=vertex_location,
vertex_credentials=vertex_credentials,
stream=False,
custom_llm_provider="vertex_ai",
api_base=api_base,
should_use_v1beta1_features=False,
mode="image_generation",
)
optional_params = optional_params or {
"sampleCount": 1
} # default optional params
@ -202,22 +220,21 @@ class VertexImageGeneration(VertexLLM):
"parameters": optional_params,
}
request_str = f"\n curl -X POST \\\n -H \"Authorization: Bearer {auth_header[:10] + 'XXXXXXXXXX'}\" \\\n -H \"Content-Type: application/json; charset=utf-8\" \\\n -d {request_data} \\\n \"{url}\""
headers = self.set_headers(auth_header=auth_header, extra_headers=extra_headers)
logging_obj.pre_call(
input=prompt,
api_key=None,
api_key="",
additional_args={
"complete_input_dict": optional_params,
"request_str": request_str,
"api_base": api_base,
"headers": headers,
},
)
response = await self.async_handler.post(
url=url,
headers={
"Content-Type": "application/json; charset=utf-8",
"Authorization": f"Bearer {auth_header}",
},
url=api_base,
headers=headers,
data=json.dumps(request_data),
)

View file

@ -226,7 +226,15 @@ class VertexMultimodalEmbedding(VertexLLM):
else:
return Instance(image=InstanceImage(gcsUri=input_element))
elif is_base64_encoded(s=input_element):
return Instance(image=InstanceImage(bytesBase64Encoded=input_element))
return Instance(
image=InstanceImage(
bytesBase64Encoded=(
input_element.split(",")[1]
if "," in input_element
else input_element
)
)
)
else:
return Instance(text=input_element)

View file

@ -111,7 +111,7 @@ class VertexEmbedding(VertexBase):
)
try:
response = client.post(api_base, headers=headers, json=vertex_request) # type: ignore
response = client.post(url=api_base, headers=headers, json=vertex_request) # type: ignore
response.raise_for_status()
except httpx.HTTPStatusError as err:
error_code = err.response.status_code

View file

@ -0,0 +1,51 @@
from typing import Optional
import httpx
import litellm
from litellm.llms.base_llm.base_utils import BaseLLMModelInfo
from litellm.secret_managers.main import get_secret_str
class XAIModelInfo(BaseLLMModelInfo):
@staticmethod
def get_api_base(api_base: Optional[str] = None) -> Optional[str]:
return api_base or get_secret_str("XAI_API_BASE") or "https://api.x.ai"
@staticmethod
def get_api_key(api_key: Optional[str] = None) -> Optional[str]:
return api_key or get_secret_str("XAI_API_KEY")
@staticmethod
def get_base_model(model: str) -> Optional[str]:
return model.replace("xai/", "")
def get_models(
self, api_key: Optional[str] = None, api_base: Optional[str] = None
) -> list[str]:
api_base = self.get_api_base(api_base)
api_key = self.get_api_key(api_key)
if api_base is None or api_key is None:
raise ValueError(
"XAI_API_BASE or XAI_API_KEY is not set. Please set the environment variable, to query XAI's `/models` endpoint."
)
response = litellm.module_level_client.get(
url=f"{api_base}/v1/models",
headers={"Authorization": f"Bearer {api_key}"},
)
try:
response.raise_for_status()
except httpx.HTTPStatusError:
raise Exception(
f"Failed to fetch models from XAI. Status code: {response.status_code}, Response: {response.text}"
)
models = response.json()["data"]
litellm_model_names = []
for model in models:
stripped_model_name = model["id"]
litellm_model_name = "xai/" + stripped_model_name
litellm_model_names.append(litellm_model_name)
return litellm_model_names

View file

@ -2350,6 +2350,8 @@ def completion( # type: ignore # noqa: PLR0915
or litellm.api_key
)
api_base = api_base or litellm.api_base or get_secret("GEMINI_API_BASE")
new_params = deepcopy(optional_params)
response = vertex_chat_completion.completion( # type: ignore
model=model,
@ -2392,6 +2394,8 @@ def completion( # type: ignore # noqa: PLR0915
or get_secret("VERTEXAI_CREDENTIALS")
)
api_base = api_base or litellm.api_base or get_secret("VERTEXAI_API_BASE")
new_params = deepcopy(optional_params)
if (
model.startswith("meta/")
@ -3657,6 +3661,8 @@ def embedding( # noqa: PLR0915
api_key or get_secret_str("GEMINI_API_KEY") or litellm.api_key
)
api_base = api_base or litellm.api_base or get_secret_str("GEMINI_API_BASE")
response = google_batch_embeddings.batch_embeddings( # type: ignore
model=model,
input=input,
@ -3671,6 +3677,8 @@ def embedding( # noqa: PLR0915
print_verbose=print_verbose,
custom_llm_provider="gemini",
api_key=gemini_api_key,
api_base=api_base,
client=client,
)
elif custom_llm_provider == "vertex_ai":
@ -3695,6 +3703,13 @@ def embedding( # noqa: PLR0915
or get_secret_str("VERTEX_CREDENTIALS")
)
api_base = (
api_base
or litellm.api_base
or get_secret_str("VERTEXAI_API_BASE")
or get_secret_str("VERTEX_API_BASE")
)
if (
"image" in optional_params
or "video" in optional_params
@ -3715,6 +3730,8 @@ def embedding( # noqa: PLR0915
aembedding=aembedding,
print_verbose=print_verbose,
custom_llm_provider="vertex_ai",
client=client,
api_base=api_base,
)
else:
response = vertex_embedding.embedding(
@ -3732,6 +3749,8 @@ def embedding( # noqa: PLR0915
aembedding=aembedding,
print_verbose=print_verbose,
api_key=api_key,
api_base=api_base,
client=client,
)
elif custom_llm_provider == "oobabooga":
response = oobabooga.embedding(
@ -4694,6 +4713,14 @@ def image_generation( # noqa: PLR0915
or optional_params.pop("vertex_ai_credentials", None)
or get_secret_str("VERTEXAI_CREDENTIALS")
)
api_base = (
api_base
or litellm.api_base
or get_secret_str("VERTEXAI_API_BASE")
or get_secret_str("VERTEX_API_BASE")
)
model_response = vertex_image_generation.image_generation(
model=model,
prompt=prompt,
@ -4705,6 +4732,8 @@ def image_generation( # noqa: PLR0915
vertex_location=vertex_ai_location,
vertex_credentials=vertex_credentials,
aimg_generation=aimg_generation,
api_base=api_base,
client=client,
)
elif (
custom_llm_provider in litellm._custom_providers
@ -5066,6 +5095,12 @@ def transcription(
response: Optional[
Union[TranscriptionResponse, Coroutine[Any, Any, TranscriptionResponse]]
] = None
provider_config = ProviderConfigManager.get_provider_audio_transcription_config(
model=model,
provider=LlmProviders(custom_llm_provider),
)
if custom_llm_provider == "azure":
# azure configs
api_base = api_base or litellm.api_base or get_secret_str("AZURE_API_BASE")
@ -5132,12 +5167,15 @@ def transcription(
max_retries=max_retries,
api_base=api_base,
api_key=api_key,
provider_config=provider_config,
litellm_params=litellm_params_dict,
)
elif custom_llm_provider == "deepgram":
response = base_llm_http_handler.audio_transcriptions(
model=model,
audio_file=file,
optional_params=optional_params,
litellm_params=litellm_params_dict,
model_response=model_response,
atranscription=atranscription,
client=(
@ -5156,6 +5194,7 @@ def transcription(
api_key=api_key,
custom_llm_provider="deepgram",
headers={},
provider_config=provider_config,
)
if response is None:
raise ValueError("Unmapped provider passed in. Unable to get the response.")

View file

@ -1176,21 +1176,40 @@
"output_cost_per_pixel": 0.0,
"litellm_provider": "openai"
},
"gpt-4o-transcribe": {
"mode": "audio_transcription",
"input_cost_per_token": 0.0000025,
"input_cost_per_audio_token": 0.000006,
"output_cost_per_token": 0.00001,
"litellm_provider": "openai",
"supported_endpoints": ["/v1/audio/transcriptions"]
},
"gpt-4o-mini-transcribe": {
"mode": "audio_transcription",
"input_cost_per_token": 0.00000125,
"input_cost_per_audio_token": 0.000003,
"output_cost_per_token": 0.000005,
"litellm_provider": "openai",
"supported_endpoints": ["/v1/audio/transcriptions"]
},
"whisper-1": {
"mode": "audio_transcription",
"input_cost_per_second": 0.0001,
"output_cost_per_second": 0.0001,
"litellm_provider": "openai"
"litellm_provider": "openai",
"supported_endpoints": ["/v1/audio/transcriptions"]
},
"tts-1": {
"mode": "audio_speech",
"input_cost_per_character": 0.000015,
"litellm_provider": "openai"
"litellm_provider": "openai",
"supported_endpoints": ["/v1/audio/speech"]
},
"tts-1-hd": {
"mode": "audio_speech",
"input_cost_per_character": 0.000030,
"litellm_provider": "openai"
"litellm_provider": "openai",
"supported_endpoints": ["/v1/audio/speech"]
},
"azure/gpt-4o-mini-realtime-preview-2024-12-17": {
"max_tokens": 4096,
@ -4595,6 +4614,28 @@
"source": "https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#gemini-2.0-flash",
"supports_tool_choice": true
},
"gemini-2.0-flash-lite": {
"max_input_tokens": 1048576,
"max_output_tokens": 8192,
"max_images_per_prompt": 3000,
"max_videos_per_prompt": 10,
"max_video_length": 1,
"max_audio_length_hours": 8.4,
"max_audio_per_prompt": 1,
"max_pdf_size_mb": 50,
"input_cost_per_audio_token": 0.000000075,
"input_cost_per_token": 0.000000075,
"output_cost_per_token": 0.0000003,
"litellm_provider": "vertex_ai-language-models",
"mode": "chat",
"supports_system_messages": true,
"supports_function_calling": true,
"supports_vision": true,
"supports_response_schema": true,
"supports_audio_output": true,
"source": "https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#gemini-2.0-flash",
"supports_tool_choice": true
},
"gemini/gemini-2.0-pro-exp-02-05": {
"max_tokens": 8192,
"max_input_tokens": 2097152,
@ -4658,6 +4699,30 @@
"supports_tool_choice": true,
"source": "https://ai.google.dev/pricing#2_0flash"
},
"gemini/gemini-2.0-flash-lite": {
"max_input_tokens": 1048576,
"max_output_tokens": 8192,
"max_images_per_prompt": 3000,
"max_videos_per_prompt": 10,
"max_video_length": 1,
"max_audio_length_hours": 8.4,
"max_audio_per_prompt": 1,
"max_pdf_size_mb": 50,
"input_cost_per_audio_token": 0.000000075,
"input_cost_per_token": 0.000000075,
"output_cost_per_token": 0.0000003,
"litellm_provider": "gemini",
"mode": "chat",
"tpm": 4000000,
"rpm": 4000,
"supports_system_messages": true,
"supports_function_calling": true,
"supports_vision": true,
"supports_response_schema": true,
"supports_audio_output": true,
"supports_tool_choice": true,
"source": "https://ai.google.dev/gemini-api/docs/pricing#gemini-2.0-flash-lite"
},
"gemini/gemini-2.0-flash-001": {
"max_tokens": 8192,
"max_input_tokens": 1048576,
@ -5153,6 +5218,29 @@
"supports_function_calling": true,
"supports_tool_choice": true
},
"vertex_ai/mistral-small-2503@001": {
"max_tokens": 8191,
"max_input_tokens": 32000,
"max_output_tokens": 8191,
"input_cost_per_token": 0.000001,
"output_cost_per_token": 0.000003,
"litellm_provider": "vertex_ai-mistral_models",
"supports_function_calling": true,
"mode": "chat",
"supports_tool_choice": true
},
"vertex_ai/mistral-small-2503": {
"max_tokens": 128000,
"max_input_tokens": 128000,
"max_output_tokens": 128000,
"input_cost_per_token": 0.000001,
"output_cost_per_token": 0.000003,
"litellm_provider": "vertex_ai-mistral_models",
"mode": "chat",
"supports_function_calling": true,
"supports_vision": true,
"supports_tool_choice": true
},
"vertex_ai/jamba-1.5-mini@001": {
"max_tokens": 256000,
"max_input_tokens": 256000,
@ -5304,6 +5392,23 @@
"mode": "embedding",
"source": "https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models"
},
"multimodalembedding": {
"max_tokens": 2048,
"max_input_tokens": 2048,
"output_vector_size": 768,
"input_cost_per_character": 0.0000002,
"input_cost_per_image": 0.0001,
"input_cost_per_video_per_second": 0.0005,
"input_cost_per_video_per_second_above_8s_interval": 0.0010,
"input_cost_per_video_per_second_above_15s_interval": 0.0020,
"input_cost_per_token": 0.0000008,
"output_cost_per_token": 0,
"litellm_provider": "vertex_ai-embedding-models",
"mode": "embedding",
"supported_endpoints": ["/v1/embeddings"],
"supported_modalities": ["text", "image", "video"],
"source": "https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models"
},
"text-embedding-large-exp-03-07": {
"max_tokens": 8192,
"max_input_tokens": 8192,

View file

@ -0,0 +1,123 @@
"""
LiteLLM MCP Server Routes
"""
import asyncio
from typing import Any, Dict, List, Union
from anyio import BrokenResourceError
from fastapi import APIRouter, HTTPException, Request
from fastapi.responses import StreamingResponse
from pydantic import ValidationError
from litellm._logging import verbose_logger
# Check if MCP is available
# "mcp" requires python 3.10 or higher, but several litellm users use python 3.8
# We're making this conditional import to avoid breaking users who use python 3.8.
try:
from mcp.server import Server
MCP_AVAILABLE = True
except ImportError as e:
verbose_logger.debug(f"MCP module not found: {e}")
MCP_AVAILABLE = False
router = APIRouter(
prefix="/mcp",
tags=["mcp"],
)
if MCP_AVAILABLE:
from mcp.server import NotificationOptions, Server
from mcp.server.models import InitializationOptions
from mcp.types import EmbeddedResource as MCPEmbeddedResource
from mcp.types import ImageContent as MCPImageContent
from mcp.types import TextContent as MCPTextContent
from mcp.types import Tool as MCPTool
from .sse_transport import SseServerTransport
from .tool_registry import global_mcp_tool_registry
########################################################
############ Initialize the MCP Server #################
########################################################
router = APIRouter(
prefix="/mcp",
tags=["mcp"],
)
server: Server = Server("litellm-mcp-server")
sse: SseServerTransport = SseServerTransport("/mcp/sse/messages")
########################################################
############### MCP Server Routes #######################
########################################################
@server.list_tools()
async def list_tools() -> list[MCPTool]:
"""
List all available tools
"""
tools = []
for tool in global_mcp_tool_registry.list_tools():
tools.append(
MCPTool(
name=tool.name,
description=tool.description,
inputSchema=tool.input_schema,
)
)
return tools
@server.call_tool()
async def handle_call_tool(
name: str, arguments: Dict[str, Any] | None
) -> List[Union[MCPTextContent, MCPImageContent, MCPEmbeddedResource]]:
"""
Call a specific tool with the provided arguments
"""
tool = global_mcp_tool_registry.get_tool(name)
if not tool:
raise HTTPException(status_code=404, detail=f"Tool '{name}' not found")
if arguments is None:
raise HTTPException(
status_code=400, detail="Request arguments are required"
)
try:
result = tool.handler(**arguments)
return [MCPTextContent(text=str(result), type="text")]
except Exception as e:
return [MCPTextContent(text=f"Error: {str(e)}", type="text")]
@router.get("/", response_class=StreamingResponse)
async def handle_sse(request: Request):
verbose_logger.info("new incoming SSE connection established")
async with sse.connect_sse(request) as streams:
try:
await server.run(streams[0], streams[1], options)
except BrokenResourceError:
pass
except asyncio.CancelledError:
pass
except ValidationError:
pass
except Exception:
raise
await request.close()
@router.post("/sse/messages")
async def handle_messages(request: Request):
verbose_logger.info("incoming SSE message received")
await sse.handle_post_message(request.scope, request.receive, request._send)
await request.close()
options = InitializationOptions(
server_name="litellm-mcp-server",
server_version="0.1.0",
capabilities=server.get_capabilities(
notification_options=NotificationOptions(),
experimental_capabilities={},
),
)

View file

@ -0,0 +1,150 @@
"""
This is a modification of code from: https://github.com/SecretiveShell/MCP-Bridge/blob/master/mcp_bridge/mcp_server/sse_transport.py
Credit to the maintainers of SecretiveShell for their SSE Transport implementation
"""
from contextlib import asynccontextmanager
from typing import Any
from urllib.parse import quote
from uuid import UUID, uuid4
import anyio
import mcp.types as types
from anyio.streams.memory import MemoryObjectReceiveStream, MemoryObjectSendStream
from fastapi.requests import Request
from fastapi.responses import Response
from pydantic import ValidationError
from sse_starlette import EventSourceResponse
from starlette.types import Receive, Scope, Send
from litellm._logging import verbose_logger
class SseServerTransport:
"""
SSE server transport for MCP. This class provides _two_ ASGI applications,
suitable to be used with a framework like Starlette and a server like Hypercorn:
1. connect_sse() is an ASGI application which receives incoming GET requests,
and sets up a new SSE stream to send server messages to the client.
2. handle_post_message() is an ASGI application which receives incoming POST
requests, which should contain client messages that link to a
previously-established SSE session.
"""
_endpoint: str
_read_stream_writers: dict[
UUID, MemoryObjectSendStream[types.JSONRPCMessage | Exception]
]
def __init__(self, endpoint: str) -> None:
"""
Creates a new SSE server transport, which will direct the client to POST
messages to the relative or absolute URL given.
"""
super().__init__()
self._endpoint = endpoint
self._read_stream_writers = {}
verbose_logger.debug(
f"SseServerTransport initialized with endpoint: {endpoint}"
)
@asynccontextmanager
async def connect_sse(self, request: Request):
if request.scope["type"] != "http":
verbose_logger.error("connect_sse received non-HTTP request")
raise ValueError("connect_sse can only handle HTTP requests")
verbose_logger.debug("Setting up SSE connection")
read_stream: MemoryObjectReceiveStream[types.JSONRPCMessage | Exception]
read_stream_writer: MemoryObjectSendStream[types.JSONRPCMessage | Exception]
write_stream: MemoryObjectSendStream[types.JSONRPCMessage]
write_stream_reader: MemoryObjectReceiveStream[types.JSONRPCMessage]
read_stream_writer, read_stream = anyio.create_memory_object_stream(0)
write_stream, write_stream_reader = anyio.create_memory_object_stream(0)
session_id = uuid4()
session_uri = f"{quote(self._endpoint)}?session_id={session_id.hex}"
self._read_stream_writers[session_id] = read_stream_writer
verbose_logger.debug(f"Created new session with ID: {session_id}")
sse_stream_writer: MemoryObjectSendStream[dict[str, Any]]
sse_stream_reader: MemoryObjectReceiveStream[dict[str, Any]]
sse_stream_writer, sse_stream_reader = anyio.create_memory_object_stream(
0, dict[str, Any]
)
async def sse_writer():
verbose_logger.debug("Starting SSE writer")
async with sse_stream_writer, write_stream_reader:
await sse_stream_writer.send({"event": "endpoint", "data": session_uri})
verbose_logger.debug(f"Sent endpoint event: {session_uri}")
async for message in write_stream_reader:
verbose_logger.debug(f"Sending message via SSE: {message}")
await sse_stream_writer.send(
{
"event": "message",
"data": message.model_dump_json(
by_alias=True, exclude_none=True
),
}
)
async with anyio.create_task_group() as tg:
response = EventSourceResponse(
content=sse_stream_reader, data_sender_callable=sse_writer
)
verbose_logger.debug("Starting SSE response task")
tg.start_soon(response, request.scope, request.receive, request._send)
verbose_logger.debug("Yielding read and write streams")
yield (read_stream, write_stream)
async def handle_post_message(
self, scope: Scope, receive: Receive, send: Send
) -> Response:
verbose_logger.debug("Handling POST message")
request = Request(scope, receive)
session_id_param = request.query_params.get("session_id")
if session_id_param is None:
verbose_logger.warning("Received request without session_id")
response = Response("session_id is required", status_code=400)
return response
try:
session_id = UUID(hex=session_id_param)
verbose_logger.debug(f"Parsed session ID: {session_id}")
except ValueError:
verbose_logger.warning(f"Received invalid session ID: {session_id_param}")
response = Response("Invalid session ID", status_code=400)
return response
writer = self._read_stream_writers.get(session_id)
if not writer:
verbose_logger.warning(f"Could not find session for ID: {session_id}")
response = Response("Could not find session", status_code=404)
return response
json = await request.json()
verbose_logger.debug(f"Received JSON: {json}")
try:
message = types.JSONRPCMessage.model_validate(json)
verbose_logger.debug(f"Validated client message: {message}")
except ValidationError as err:
verbose_logger.error(f"Failed to parse message: {err}")
response = Response("Could not parse message", status_code=400)
await writer.send(err)
return response
verbose_logger.debug(f"Sending message to writer: {message}")
response = Response("Accepted", status_code=202)
await writer.send(message)
return response

View file

@ -0,0 +1,103 @@
import json
from typing import Any, Callable, Dict, List, Optional
from litellm._logging import verbose_logger
from litellm.proxy.types_utils.utils import get_instance_fn
from litellm.types.mcp_server.tool_registry import MCPTool
class MCPToolRegistry:
"""
A registry for managing MCP tools
"""
def __init__(self):
# Registry to store all registered tools
self.tools: Dict[str, MCPTool] = {}
def register_tool(
self,
name: str,
description: str,
input_schema: Dict[str, Any],
handler: Callable,
) -> None:
"""
Register a new tool in the registry
"""
self.tools[name] = MCPTool(
name=name,
description=description,
input_schema=input_schema,
handler=handler,
)
verbose_logger.debug(f"Registered tool: {name}")
def get_tool(self, name: str) -> Optional[MCPTool]:
"""
Get a tool from the registry by name
"""
return self.tools.get(name)
def list_tools(self) -> List[MCPTool]:
"""
List all registered tools
"""
return list(self.tools.values())
def load_tools_from_config(
self, mcp_tools_config: Optional[Dict[str, Any]] = None
) -> None:
"""
Load and register tools from the proxy config
Args:
mcp_tools_config: The mcp_tools config from the proxy config
"""
if mcp_tools_config is None:
raise ValueError(
"mcp_tools_config is required, please set `mcp_tools` in your proxy config"
)
for tool_config in mcp_tools_config:
if not isinstance(tool_config, dict):
raise ValueError("mcp_tools_config must be a list of dictionaries")
name = tool_config.get("name")
description = tool_config.get("description")
input_schema = tool_config.get("input_schema", {})
handler_name = tool_config.get("handler")
if not all([name, description, handler_name]):
continue
# Try to resolve the handler
# First check if it's a module path (e.g., "module.submodule.function")
if handler_name is None:
raise ValueError(f"handler is required for tool {name}")
handler = get_instance_fn(handler_name)
if handler is None:
verbose_logger.warning(
f"Warning: Could not find handler {handler_name} for tool {name}"
)
continue
# Register the tool
if name is None:
raise ValueError(f"name is required for tool {name}")
if description is None:
raise ValueError(f"description is required for tool {name}")
self.register_tool(
name=name,
description=description,
input_schema=input_schema,
handler=handler,
)
verbose_logger.debug(
"all registered tools: %s", json.dumps(self.tools, indent=4, default=str)
)
global_mcp_tool_registry = MCPToolRegistry()

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View file

@ -0,0 +1 @@
(self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[185],{96443:function(n,e,t){Promise.resolve().then(t.t.bind(t,39974,23)),Promise.resolve().then(t.t.bind(t,2778,23))},2778:function(){},39974:function(n){n.exports={style:{fontFamily:"'__Inter_cf7686', '__Inter_Fallback_cf7686'",fontStyle:"normal"},className:"__className_cf7686"}}},function(n){n.O(0,[919,986,971,117,744],function(){return n(n.s=96443)}),_N_E=n.O()}]);

View file

@ -1 +0,0 @@
(self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[185],{6580:function(n,e,t){Promise.resolve().then(t.t.bind(t,39974,23)),Promise.resolve().then(t.t.bind(t,2778,23))},2778:function(){},39974:function(n){n.exports={style:{fontFamily:"'__Inter_cf7686', '__Inter_Fallback_cf7686'",fontStyle:"normal"},className:"__className_cf7686"}}},function(n){n.O(0,[919,986,971,117,744],function(){return n(n.s=6580)}),_N_E=n.O()}]);

View file

@ -1 +1 @@
(self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[418],{11790:function(e,n,u){Promise.resolve().then(u.bind(u,52829))},52829:function(e,n,u){"use strict";u.r(n),u.d(n,{default:function(){return f}});var t=u(57437),s=u(2265),r=u(99376),c=u(92699);function f(){let e=(0,r.useSearchParams)().get("key"),[n,u]=(0,s.useState)(null);return(0,s.useEffect)(()=>{e&&u(e)},[e]),(0,t.jsx)(c.Z,{accessToken:n,publicPage:!0,premiumUser:!1})}}},function(e){e.O(0,[42,261,250,699,971,117,744],function(){return e(e.s=11790)}),_N_E=e.O()}]);
(self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[418],{21024:function(e,n,u){Promise.resolve().then(u.bind(u,52829))},52829:function(e,n,u){"use strict";u.r(n),u.d(n,{default:function(){return f}});var t=u(57437),s=u(2265),r=u(99376),c=u(92699);function f(){let e=(0,r.useSearchParams)().get("key"),[n,u]=(0,s.useState)(null);return(0,s.useEffect)(()=>{e&&u(e)},[e]),(0,t.jsx)(c.Z,{accessToken:n,publicPage:!0,premiumUser:!1})}}},function(e){e.O(0,[42,261,250,699,971,117,744],function(){return e(e.s=21024)}),_N_E=e.O()}]);

View file

@ -1 +0,0 @@
(self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[461],{32922:function(e,t,n){Promise.resolve().then(n.bind(n,12011))},12011:function(e,t,n){"use strict";n.r(t),n.d(t,{default:function(){return S}});var s=n(57437),o=n(2265),a=n(99376),i=n(20831),c=n(94789),l=n(12514),r=n(49804),u=n(67101),d=n(84264),m=n(49566),h=n(96761),x=n(84566),p=n(19250),f=n(14474),k=n(13634),j=n(73002),g=n(3914);function S(){let[e]=k.Z.useForm(),t=(0,a.useSearchParams)();(0,g.e)("token");let n=t.get("invitation_id"),[S,_]=(0,o.useState)(null),[w,Z]=(0,o.useState)(""),[N,b]=(0,o.useState)(""),[T,v]=(0,o.useState)(null),[y,E]=(0,o.useState)(""),[C,U]=(0,o.useState)("");return(0,o.useEffect)(()=>{n&&(0,p.W_)(n).then(e=>{let t=e.login_url;console.log("login_url:",t),E(t);let n=e.token,s=(0,f.o)(n);U(n),console.log("decoded:",s),_(s.key),console.log("decoded user email:",s.user_email),b(s.user_email),v(s.user_id)})},[n]),(0,s.jsx)("div",{className:"mx-auto w-full max-w-md mt-10",children:(0,s.jsxs)(l.Z,{children:[(0,s.jsx)(h.Z,{className:"text-sm mb-5 text-center",children:"\uD83D\uDE85 LiteLLM"}),(0,s.jsx)(h.Z,{className:"text-xl",children:"Sign up"}),(0,s.jsx)(d.Z,{children:"Claim your user account to login to Admin UI."}),(0,s.jsx)(c.Z,{className:"mt-4",title:"SSO",icon:x.GH$,color:"sky",children:(0,s.jsxs)(u.Z,{numItems:2,className:"flex justify-between items-center",children:[(0,s.jsx)(r.Z,{children:"SSO is under the Enterprise Tirer."}),(0,s.jsx)(r.Z,{children:(0,s.jsx)(i.Z,{variant:"primary",className:"mb-2",children:(0,s.jsx)("a",{href:"https://forms.gle/W3U4PZpJGFHWtHyA9",target:"_blank",children:"Get Free Trial"})})})]})}),(0,s.jsxs)(k.Z,{className:"mt-10 mb-5 mx-auto",layout:"vertical",onFinish:e=>{console.log("in handle submit. accessToken:",S,"token:",C,"formValues:",e),S&&C&&(e.user_email=N,T&&n&&(0,p.m_)(S,n,T,e.password).then(e=>{var t;let n="/ui/";n+="?userID="+((null===(t=e.data)||void 0===t?void 0:t.user_id)||e.user_id),document.cookie="token="+C,console.log("redirecting to:",n),window.location.href=n}))},children:[(0,s.jsxs)(s.Fragment,{children:[(0,s.jsx)(k.Z.Item,{label:"Email Address",name:"user_email",children:(0,s.jsx)(m.Z,{type:"email",disabled:!0,value:N,defaultValue:N,className:"max-w-md"})}),(0,s.jsx)(k.Z.Item,{label:"Password",name:"password",rules:[{required:!0,message:"password required to sign up"}],help:"Create a password for your account",children:(0,s.jsx)(m.Z,{placeholder:"",type:"password",className:"max-w-md"})})]}),(0,s.jsx)("div",{className:"mt-10",children:(0,s.jsx)(j.ZP,{htmlType:"submit",children:"Sign Up"})})]})]})})}},3914:function(e,t,n){"use strict";function s(){let e=window.location.hostname,t=["Lax","Strict","None"];["/","/ui"].forEach(n=>{document.cookie="token=; expires=Thu, 01 Jan 1970 00:00:00 UTC; path=".concat(n,";"),document.cookie="token=; expires=Thu, 01 Jan 1970 00:00:00 UTC; path=".concat(n,"; domain=").concat(e,";"),t.forEach(t=>{let s="None"===t?" Secure;":"";document.cookie="token=; expires=Thu, 01 Jan 1970 00:00:00 UTC; path=".concat(n,"; SameSite=").concat(t,";").concat(s),document.cookie="token=; expires=Thu, 01 Jan 1970 00:00:00 UTC; path=".concat(n,"; domain=").concat(e,"; SameSite=").concat(t,";").concat(s)})}),console.log("After clearing cookies:",document.cookie)}function o(e){let t=document.cookie.split("; ").find(t=>t.startsWith(e+"="));return t?t.split("=")[1]:null}n.d(t,{b:function(){return s},e:function(){return o}})}},function(e){e.O(0,[665,42,899,250,971,117,744],function(){return e(e.s=32922)}),_N_E=e.O()}]);

View file

@ -0,0 +1 @@
(self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[461],{8672:function(e,t,n){Promise.resolve().then(n.bind(n,12011))},12011:function(e,t,n){"use strict";n.r(t),n.d(t,{default:function(){return S}});var s=n(57437),o=n(2265),a=n(99376),i=n(20831),c=n(94789),l=n(12514),r=n(49804),u=n(67101),d=n(84264),m=n(49566),h=n(96761),x=n(84566),p=n(19250),f=n(14474),k=n(13634),j=n(73002),g=n(3914);function S(){let[e]=k.Z.useForm(),t=(0,a.useSearchParams)();(0,g.e)("token");let n=t.get("invitation_id"),[S,_]=(0,o.useState)(null),[w,Z]=(0,o.useState)(""),[N,b]=(0,o.useState)(""),[T,v]=(0,o.useState)(null),[y,E]=(0,o.useState)(""),[C,U]=(0,o.useState)("");return(0,o.useEffect)(()=>{n&&(0,p.W_)(n).then(e=>{let t=e.login_url;console.log("login_url:",t),E(t);let n=e.token,s=(0,f.o)(n);U(n),console.log("decoded:",s),_(s.key),console.log("decoded user email:",s.user_email),b(s.user_email),v(s.user_id)})},[n]),(0,s.jsx)("div",{className:"mx-auto w-full max-w-md mt-10",children:(0,s.jsxs)(l.Z,{children:[(0,s.jsx)(h.Z,{className:"text-sm mb-5 text-center",children:"\uD83D\uDE85 LiteLLM"}),(0,s.jsx)(h.Z,{className:"text-xl",children:"Sign up"}),(0,s.jsx)(d.Z,{children:"Claim your user account to login to Admin UI."}),(0,s.jsx)(c.Z,{className:"mt-4",title:"SSO",icon:x.GH$,color:"sky",children:(0,s.jsxs)(u.Z,{numItems:2,className:"flex justify-between items-center",children:[(0,s.jsx)(r.Z,{children:"SSO is under the Enterprise Tirer."}),(0,s.jsx)(r.Z,{children:(0,s.jsx)(i.Z,{variant:"primary",className:"mb-2",children:(0,s.jsx)("a",{href:"https://forms.gle/W3U4PZpJGFHWtHyA9",target:"_blank",children:"Get Free Trial"})})})]})}),(0,s.jsxs)(k.Z,{className:"mt-10 mb-5 mx-auto",layout:"vertical",onFinish:e=>{console.log("in handle submit. accessToken:",S,"token:",C,"formValues:",e),S&&C&&(e.user_email=N,T&&n&&(0,p.m_)(S,n,T,e.password).then(e=>{var t;let n="/ui/";n+="?userID="+((null===(t=e.data)||void 0===t?void 0:t.user_id)||e.user_id),document.cookie="token="+C,console.log("redirecting to:",n),window.location.href=n}))},children:[(0,s.jsxs)(s.Fragment,{children:[(0,s.jsx)(k.Z.Item,{label:"Email Address",name:"user_email",children:(0,s.jsx)(m.Z,{type:"email",disabled:!0,value:N,defaultValue:N,className:"max-w-md"})}),(0,s.jsx)(k.Z.Item,{label:"Password",name:"password",rules:[{required:!0,message:"password required to sign up"}],help:"Create a password for your account",children:(0,s.jsx)(m.Z,{placeholder:"",type:"password",className:"max-w-md"})})]}),(0,s.jsx)("div",{className:"mt-10",children:(0,s.jsx)(j.ZP,{htmlType:"submit",children:"Sign Up"})})]})]})})}},3914:function(e,t,n){"use strict";function s(){let e=window.location.hostname,t=["Lax","Strict","None"];["/","/ui"].forEach(n=>{document.cookie="token=; expires=Thu, 01 Jan 1970 00:00:00 UTC; path=".concat(n,";"),document.cookie="token=; expires=Thu, 01 Jan 1970 00:00:00 UTC; path=".concat(n,"; domain=").concat(e,";"),t.forEach(t=>{let s="None"===t?" Secure;":"";document.cookie="token=; expires=Thu, 01 Jan 1970 00:00:00 UTC; path=".concat(n,"; SameSite=").concat(t,";").concat(s),document.cookie="token=; expires=Thu, 01 Jan 1970 00:00:00 UTC; path=".concat(n,"; domain=").concat(e,"; SameSite=").concat(t,";").concat(s)})}),console.log("After clearing cookies:",document.cookie)}function o(e){let t=document.cookie.split("; ").find(t=>t.startsWith(e+"="));return t?t.split("=")[1]:null}n.d(t,{b:function(){return s},e:function(){return o}})}},function(e){e.O(0,[665,42,899,250,971,117,744],function(){return e(e.s=8672)}),_N_E=e.O()}]);

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View file

@ -1 +1 @@
(self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[744],{20169:function(e,n,t){Promise.resolve().then(t.t.bind(t,12846,23)),Promise.resolve().then(t.t.bind(t,19107,23)),Promise.resolve().then(t.t.bind(t,61060,23)),Promise.resolve().then(t.t.bind(t,4707,23)),Promise.resolve().then(t.t.bind(t,80,23)),Promise.resolve().then(t.t.bind(t,36423,23))}},function(e){var n=function(n){return e(e.s=n)};e.O(0,[971,117],function(){return n(54278),n(20169)}),_N_E=e.O()}]);
(self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[744],{10264:function(e,n,t){Promise.resolve().then(t.t.bind(t,12846,23)),Promise.resolve().then(t.t.bind(t,19107,23)),Promise.resolve().then(t.t.bind(t,61060,23)),Promise.resolve().then(t.t.bind(t,4707,23)),Promise.resolve().then(t.t.bind(t,80,23)),Promise.resolve().then(t.t.bind(t,36423,23))}},function(e){var n=function(n){return e(e.s=n)};e.O(0,[971,117],function(){return n(54278),n(10264)}),_N_E=e.O()}]);

View file

@ -0,0 +1,5 @@
<?xml version="1.0" encoding="utf-8"?>
<svg width="46" height="46" viewBox="0 0 46 46" fill="none" xmlns="http://www.w3.org/2000/svg">
<circle cx="23" cy="23" r="23" fill="white"/>
<path d="M32.73 7h-6.945L38.45 39h6.945L32.73 7ZM12.665 7 0 39h7.082l2.59-6.72h13.25l2.59 6.72h7.082L19.929 7h-7.264Zm-.702 19.337 4.334-11.246 4.334 11.246h-8.668Z" fill="#000000"></path>
</svg>

After

Width:  |  Height:  |  Size: 381 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 414 B

View file

@ -0,0 +1,34 @@
<?xml version="1.0" encoding="utf-8"?>
<!-- Generator: Adobe Illustrator 26.0.3, SVG Export Plug-In . SVG Version: 6.00 Build 0) -->
<svg version="1.0" id="katman_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
viewBox="0 0 600 450" style="enable-background:new 0 0 600 450;" xml:space="preserve">
<style type="text/css">
.st0{fill:none;}
.st1{fill-rule:evenodd;clip-rule:evenodd;fill:#343B45;}
.st2{fill-rule:evenodd;clip-rule:evenodd;fill:#F4981A;}
</style>
<g id="_x31__stroke">
<g id="Amazon_1_">
<rect x="161.2" y="86.5" class="st0" width="277.8" height="277.8"/>
<g id="Amazon">
<path class="st1" d="M315,163.7c-8,0.6-17.2,1.2-26.4,2.4c-14.1,1.9-28.2,4.3-39.8,9.8c-22.7,9.2-38,28.8-38,57.6
c0,36.2,23.3,54.6,52.7,54.6c9.8,0,17.8-1.2,25.1-3.1c11.7-3.7,21.5-10.4,33.1-22.7c6.7,9.2,8.6,13.5,20.2,23.3
c3.1,1.2,6.1,1.2,8.6-0.6c7.4-6.1,20.3-17.2,27-23.3c3.1-2.5,2.5-6.1,0.6-9.2c-6.7-8.6-13.5-16-13.5-32.5V165
c0-23.3,1.9-44.8-15.3-60.7c-14.1-12.9-36.2-17.8-53.4-17.8h-7.4c-31.2,1.8-64.3,15.3-71.7,54c-1.2,4.9,2.5,6.8,4.9,7.4l34.3,4.3
c3.7-0.6,5.5-3.7,6.1-6.7c3.1-13.5,14.1-20.2,26.3-21.5h2.5c7.4,0,15.3,3.1,19.6,9.2c4.9,7.4,4.3,17.2,4.3,25.8L315,163.7
L315,163.7z M308.2,236.7c-4.3,8.6-11.7,14.1-19.6,16c-1.2,0-3.1,0.6-4.9,0.6c-13.5,0-21.4-10.4-21.4-25.8
c0-19.6,11.6-28.8,26.3-33.1c8-1.8,17.2-2.5,26.4-2.5v7.4C315,213.4,315.6,224.4,308.2,236.7z"/>
<path class="st2" d="M398.8,311.4c-1.4,0-2.8,0.3-4.1,0.9c-1.5,0.6-3,1.3-4.4,1.9l-2.1,0.9l-2.7,1.1v0
c-29.8,12.1-61.1,19.2-90.1,19.8c-1.1,0-2.1,0-3.2,0c-45.6,0-82.8-21.1-120.3-42c-1.3-0.7-2.7-1-4-1c-1.7,0-3.4,0.6-4.7,1.8
c-1.3,1.2-2,2.9-2,4.7c0,2.3,1.2,4.4,2.9,5.7c35.2,30.6,73.8,59,125.7,59c1,0,2,0,3.1,0c33-0.7,70.3-11.9,99.3-30.1l0.2-0.1
c3.8-2.3,7.6-4.9,11.2-7.7c2.2-1.6,3.8-4.2,3.8-6.9C407.2,314.6,403.2,311.4,398.8,311.4z M439,294.5L439,294.5
c-0.1-2.9-0.7-5.1-1.9-6.9l-0.1-0.2l-0.1-0.2c-1.2-1.3-2.4-1.8-3.7-2.4c-3.8-1.5-9.3-2.3-16-2.3c-4.8,0-10.1,0.5-15.4,1.6l0-0.4
l-5.3,1.8l-0.1,0l-3,1v0.1c-3.5,1.5-6.8,3.3-9.8,5.5c-1.9,1.4-3.4,3.2-3.5,6.1c0,1.5,0.7,3.3,2,4.3c1.3,1,2.8,1.4,4.1,1.4
c0.3,0,0.6,0,0.9-0.1l0.3,0l0.2,0c2.6-0.6,6.4-0.9,10.9-1.6c3.8-0.4,7.9-0.7,11.4-0.7c2.5,0,4.7,0.2,6.3,0.5
c0.8,0.2,1.3,0.4,1.6,0.5c0.1,0,0.2,0.1,0.2,0.1c0.1,0.2,0.2,0.8,0.1,1.5c0,2.9-1.2,8.4-2.9,13.7c-1.7,5.3-3.7,10.7-5,14.2
c-0.3,0.8-0.5,1.7-0.5,2.7c0,1.4,0.6,3.2,1.8,4.3c1.2,1.1,2.8,1.6,4.1,1.6h0.1c2,0,3.6-0.8,5.1-1.9
c13.6-12.2,18.3-31.7,18.5-42.6L439,294.5z"/>
</g>
</g>
</g>
</svg>

After

Width:  |  Height:  |  Size: 2.5 KiB

View file

@ -0,0 +1 @@
<svg height="1em" style="flex:none;line-height:1" viewBox="0 0 24 24" width="1em" xmlns="http://www.w3.org/2000/svg"><title>Bedrock</title><defs><linearGradient id="lobe-icons-bedrock-fill" x1="80%" x2="20%" y1="20%" y2="80%"><stop offset="0%" stop-color="#6350FB"></stop><stop offset="50%" stop-color="#3D8FFF"></stop><stop offset="100%" stop-color="#9AD8F8"></stop></linearGradient></defs><path d="M13.05 15.513h3.08c.214 0 .389.177.389.394v1.82a1.704 1.704 0 011.296 1.661c0 .943-.755 1.708-1.685 1.708-.931 0-1.686-.765-1.686-1.708 0-.807.554-1.484 1.297-1.662v-1.425h-2.69v4.663a.395.395 0 01-.188.338l-2.69 1.641a.385.385 0 01-.405-.002l-4.926-3.086a.395.395 0 01-.185-.336V16.3L2.196 14.87A.395.395 0 012 14.555L2 14.528V9.406c0-.14.073-.27.192-.34l2.465-1.462V4.448c0-.129.062-.249.165-.322l.021-.014L9.77 1.058a.385.385 0 01.407 0l2.69 1.675a.395.395 0 01.185.336V7.6h3.856V5.683a1.704 1.704 0 01-1.296-1.662c0-.943.755-1.708 1.685-1.708.931 0 1.685.765 1.685 1.708 0 .807-.553 1.484-1.296 1.662v2.311a.391.391 0 01-.389.394h-4.245v1.806h6.624a1.69 1.69 0 011.64-1.313c.93 0 1.685.764 1.685 1.707 0 .943-.754 1.708-1.685 1.708a1.69 1.69 0 01-1.64-1.314H13.05v1.937h4.953l.915 1.18a1.66 1.66 0 01.84-.227c.931 0 1.685.764 1.685 1.707 0 .943-.754 1.708-1.685 1.708-.93 0-1.685-.765-1.685-1.708 0-.346.102-.668.276-.937l-.724-.935H13.05v1.806zM9.973 1.856L7.93 3.122V6.09h-.778V3.604L5.435 4.669v2.945l2.11 1.36L9.712 7.61V5.334h.778V7.83c0 .136-.07.263-.184.335L7.963 9.638v2.081l1.422 1.009-.446.646-1.406-.998-1.53 1.005-.423-.66 1.605-1.055v-1.99L5.038 8.29l-2.26 1.34v1.676l1.972-1.189.398.677-2.37 1.429V14.3l2.166 1.258 2.27-1.368.397.677-2.176 1.311V19.3l1.876 1.175 2.365-1.426.398.678-2.017 1.216 1.918 1.201 2.298-1.403v-5.78l-4.758 2.893-.4-.675 5.158-3.136V3.289L9.972 1.856zM16.13 18.47a.913.913 0 00-.908.92c0 .507.406.918.908.918a.913.913 0 00.907-.919.913.913 0 00-.907-.92zm3.63-3.81a.913.913 0 00-.908.92c0 .508.406.92.907.92a.913.913 0 00.908-.92.913.913 0 00-.908-.92zm1.555-4.99a.913.913 0 00-.908.92c0 .507.407.918.908.918a.913.913 0 00.907-.919.913.913 0 00-.907-.92zM17.296 3.1a.913.913 0 00-.907.92c0 .508.406.92.907.92a.913.913 0 00.908-.92.913.913 0 00-.908-.92z" fill="url(#lobe-icons-bedrock-fill)" fill-rule="nonzero"></path></svg>

After

Width:  |  Height:  |  Size: 2.2 KiB

View file

@ -0,0 +1,89 @@
<?xml version="1.0" encoding="utf-8"?>
<!-- Generator: Adobe Illustrator 26.0.3, SVG Export Plug-In . SVG Version: 6.00 Build 0) -->
<svg version="1.0" id="katman_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
viewBox="0 0 800 600" style="enable-background:new 0 0 800 600;" xml:space="preserve">
<style type="text/css">
.st0{fill-rule:evenodd;clip-rule:evenodd;fill:#F05A28;}
.st1{fill-rule:evenodd;clip-rule:evenodd;fill:#231F20;}
</style>
<g id="Contact">
<g id="Contact-us" transform="translate(-234.000000, -1114.000000)">
<g id="map" transform="translate(-6.000000, 1027.000000)">
<g id="Contact-box" transform="translate(190.000000, 36.000000)">
<g id="Group-26" transform="translate(50.000000, 51.000000)">
<g id="Group-3">
<path id="Fill-1" class="st0" d="M220.9,421c-17,0-33.1-3.4-47.8-9.5c-22-9.2-40.8-24.6-54.1-44c-13.3-19.4-21-42.7-21-67.9
c0-16.8,3.4-32.7,9.7-47.3c9.3-21.8,24.9-40.3,44.5-53.4c19.6-13.1,43.2-20.7,68.7-20.7v-18.3c-19.5,0-38.1,3.9-55.1,11
c-25.4,10.6-47,28.3-62.2,50.6c-15.3,22.3-24.2,49.2-24.2,78.1c0,19.3,4,37.7,11.1,54.4c10.7,25.1,28.7,46.4,51.2,61.5
c22.6,15.1,49.8,23.9,79.1,23.9V421z"/>
<path id="Fill-4" class="st0" d="M157.9,374.1c-11.5-9.6-20.1-21.2-25.9-33.9c-5.8-12.7-8.8-26.4-8.8-40.2
c0-11,1.9-22,5.6-32.5c3.8-10.5,9.4-20.5,17.1-29.6c9.6-11.4,21.3-20,34-25.8c12.7-5.8,26.6-8.7,40.4-8.7
c11,0,22.1,1.9,32.6,5.6c10.6,3.8,20.6,9.4,29.7,17l11.9-14.1c-10.8-9-22.8-15.8-35.4-20.2c-12.6-4.5-25.7-6.7-38.8-6.7
c-16.5,0-32.9,3.5-48.1,10.4c-15.2,6.9-29.1,17.2-40.5,30.7c-9.1,10.8-15.8,22.7-20.3,35.2c-4.5,12.5-6.7,25.6-6.7,38.7
c0,16.4,3.5,32.8,10.4,47.9c6.9,15.1,17.3,29,30.9,40.3L157.9,374.1z"/>
<path id="Fill-6" class="st0" d="M186.4,362.2c-12.1-6.4-21.6-15.7-28.1-26.6c-6.5-10.9-9.9-23.5-9.9-36.2
c0-11.2,2.6-22.5,8.3-33c6.4-12.1,15.8-21.5,26.8-27.9c11-6.5,23.6-9.9,36.4-9.9c11.2,0,22.6,2.6,33.2,8.2l8.6-16.3
c-13.3-7-27.7-10.4-41.9-10.3c-16.1,0-32,4.3-45.8,12.4c-13.8,8.1-25.7,20.1-33.7,35.2c-7,13.3-10.4,27.6-10.4,41.6
c0,16,4.3,31.8,12.5,45.5c8.2,13.8,20.2,25.5,35.4,33.5L186.4,362.2z"/>
<path id="Fill-8" class="st0" d="M221,344.6c-6.3,0-12.3-1.3-17.7-3.6c-8.2-3.4-15.1-9.2-20-16.5c-4.9-7.3-7.8-16-7.8-25.4
c0-6.3,1.3-12.3,3.6-17.7c3.4-8.1,9.2-15.1,16.5-20c7.3-4.9,16-7.8,25.4-7.8v-18.4c-8.8,0-17.2,1.8-24.9,5
c-11.5,4.9-21.2,12.9-28.1,23.1C161,273.6,157,286,157,299.2c0,8.8,1.8,17.2,5,24.9c4.9,11.5,13,21.2,23.2,28.1
C195.4,359,207.7,363,221,363V344.6z"/>
</g>
<g id="Group" transform="translate(22.000000, 13.000000)">
<path id="Fill-10" class="st1" d="M214,271.6c-2.1-2.2-4.4-4-6.7-5.3c-2.3-1.3-4.7-2-7.2-2c-3.4,0-6.3,0.6-9,1.8
c-2.6,1.2-4.9,2.8-6.8,4.9c-1.9,2-3.3,4.4-4.3,7c-1,2.6-1.4,5.4-1.4,8.2c0,2.8,0.5,5.6,1.4,8.2c1,2.6,2.4,5,4.3,7
c1.9,2,4.1,3.7,6.8,4.9c2.6,1.2,5.6,1.8,9,1.8c2.8,0,5.5-0.6,7.9-1.7c2.4-1.2,4.5-2.9,6.2-5.1l12.2,13.1
c-1.8,1.8-3.9,3.4-6.3,4.7c-2.4,1.3-4.8,2.4-7.2,3.2s-4.8,1.4-7,1.7c-2.2,0.4-4.2,0.5-5.8,0.5c-5.5,0-10.7-0.9-15.5-2.7
c-4.9-1.8-9.1-4.4-12.6-7.8c-3.6-3.3-6.4-7.4-8.5-12.1c-2.1-4.7-3.1-10-3.1-15.7c0-5.8,1-11,3.1-15.7
c2.1-4.7,4.9-8.7,8.5-12.1c3.6-3.3,7.8-5.9,12.6-7.8c4.9-1.8,10.1-2.7,15.5-2.7c4.7,0,9.4,0.9,14.1,2.7
c4.7,1.8,8.9,4.6,12.4,8.4L214,271.6z"/>
<path id="Fill-12" class="st1" d="M280.4,278.9c-0.1-5.4-1.8-9.6-5-12.7c-3.3-3.1-7.8-4.6-13.6-4.6c-5.5,0-9.8,1.6-13,4.7
c-3.2,3.1-5.2,7.4-5.9,12.6H280.4z M243,292.6c0.6,5.5,2.7,9.7,6.4,12.8c3.7,3,8.1,4.6,13.3,4.6c4.6,0,8.4-0.9,11.5-2.8
c3.1-1.9,5.8-4.2,8.2-7.1l13.1,9.9c-4.3,5.3-9,9-14.3,11.3c-5.3,2.2-10.8,3.3-16.6,3.3c-5.5,0-10.7-0.9-15.5-2.7
c-4.9-1.8-9.1-4.4-12.6-7.8c-3.6-3.3-6.4-7.4-8.5-12.1c-2.1-4.7-3.1-10-3.1-15.7c0-5.8,1-11,3.1-15.7
c2.1-4.7,4.9-8.7,8.5-12.1c3.6-3.3,7.8-5.9,12.6-7.8c4.9-1.8,10.1-2.7,15.5-2.7c5.1,0,9.7,0.9,13.9,2.7
c4.2,1.8,7.8,4.3,10.8,7.7c3,3.3,5.3,7.5,7,12.4c1.7,4.9,2.5,10.6,2.5,17v5H243z"/>
<path id="Fill-14" class="st1" d="M306.5,249.7h18.3v11.5h0.3c2-4.3,4.9-7.5,8.7-9.9c3.8-2.3,8.1-3.5,12.9-3.5
c1.1,0,2.2,0.1,3.3,0.3c1.1,0.2,2.2,0.5,3.3,0.8v17.6c-1.5-0.4-3-0.7-4.5-1c-1.5-0.3-2.9-0.4-4.3-0.4c-4.3,0-7.7,0.8-10.3,2.4
c-2.6,1.6-4.6,3.4-5.9,5.4c-1.4,2-2.3,4.1-2.7,6.1c-0.5,2-0.7,3.5-0.7,4.6v39h-18.3V249.7z"/>
<path id="Fill-16" class="st1" d="M409,278.9c-0.1-5.4-1.8-9.6-5-12.7c-3.3-3.1-7.8-4.6-13.6-4.6c-5.5,0-9.8,1.6-13,4.7
c-3.2,3.1-5.2,7.4-5.9,12.6H409z M371.6,292.6c0.6,5.5,2.7,9.7,6.4,12.8c3.7,3,8.1,4.6,13.3,4.6c4.6,0,8.4-0.9,11.5-2.8
c3.1-1.9,5.8-4.2,8.2-7.1l13.1,9.9c-4.3,5.3-9,9-14.3,11.3c-5.3,2.2-10.8,3.3-16.6,3.3c-5.5,0-10.7-0.9-15.5-2.7
c-4.9-1.8-9.1-4.4-12.6-7.8c-3.6-3.3-6.4-7.4-8.5-12.1c-2.1-4.7-3.1-10-3.1-15.7c0-5.8,1-11,3.1-15.7
c2.1-4.7,4.9-8.7,8.5-12.1c3.6-3.3,7.8-5.9,12.6-7.8c4.9-1.8,10.1-2.7,15.5-2.7c5.1,0,9.7,0.9,13.9,2.7
c4.2,1.8,7.8,4.3,10.8,7.7c3,3.3,5.3,7.5,7,12.4c1.7,4.9,2.5,10.6,2.5,17v5H371.6z"/>
<path id="Fill-18" class="st1" d="M494.6,286.2c0-2.8-0.5-5.6-1.5-8.2c-1-2.6-2.4-5-4.3-7c-1.9-2-4.2-3.7-6.9-4.9
c-2.7-1.2-5.7-1.8-9.1-1.8c-3.4,0-6.4,0.6-9.1,1.8c-2.7,1.2-5,2.8-6.9,4.9c-1.9,2-3.3,4.4-4.3,7c-1,2.6-1.5,5.4-1.5,8.2
c0,2.8,0.5,5.6,1.5,8.2c1,2.6,2.4,5,4.3,7c1.9,2,4.2,3.7,6.9,4.9c2.7,1.2,5.7,1.8,9.1,1.8c3.4,0,6.4-0.6,9.1-1.8
c2.7-1.2,5-2.8,6.9-4.9c1.9-2,3.3-4.4,4.3-7C494.1,291.8,494.6,289,494.6,286.2L494.6,286.2z M433.2,207.6h18.5v51.3h0.5
c0.9-1.2,2.1-2.5,3.5-3.7c1.4-1.3,3.2-2.5,5.2-3.6c2.1-1.1,4.4-2,7.1-2.7c2.7-0.7,5.8-1.1,9.3-1.1c5.2,0,10.1,1,14.5,3
c4.4,2,8.2,4.7,11.3,8.1c3.1,3.5,5.6,7.5,7.3,12.2c1.7,4.7,2.6,9.7,2.6,15.1c0,5.4-0.8,10.4-2.5,15.1
c-1.6,4.7-4.1,8.7-7.2,12.2c-3.2,3.5-7,6.2-11.6,8.1c-4.5,2-9.6,3-15.3,3c-5.2,0-10.1-1-14.7-3c-4.5-2-8.1-5.3-10.8-9.7h-0.3
v11h-17.6V207.6z"/>
<path id="Fill-20" class="st1" d="M520.9,249.7h18.3v11.5h0.3c2-4.3,4.9-7.5,8.7-9.9c3.8-2.3,8.1-3.5,12.9-3.5
c1.1,0,2.2,0.1,3.3,0.3c1.1,0.2,2.2,0.5,3.3,0.8v17.6c-1.5-0.4-3-0.7-4.5-1c-1.5-0.3-2.9-0.4-4.3-0.4c-4.3,0-7.7,0.8-10.3,2.4
c-2.6,1.6-4.6,3.4-5.9,5.4c-1.4,2-2.3,4.1-2.7,6.1c-0.5,2-0.7,3.5-0.7,4.6v39h-18.3V249.7z"/>
<path id="Fill-22" class="st1" d="M616,290h-3.9c-2.6,0-5.5,0.1-8.7,0.3c-3.2,0.2-6.2,0.7-9.1,1.4c-2.8,0.8-5.2,1.9-7.2,3.3
c-2,1.5-2.9,3.5-2.9,6.2c0,1.7,0.4,3.2,1.2,4.3c0.8,1.2,1.8,2.2,3,3c1.2,0.8,2.6,1.4,4.2,1.8c1.5,0.4,3.1,0.5,4.6,0.5
c6.4,0,11.1-1.5,14.2-4.5c3-3,4.6-7.1,4.6-12.2V290z M617.1,312.7h-0.5c-2.7,4.2-6.1,7.2-10.2,9.1c-4.1,1.9-8.7,2.8-13.6,2.8
c-3.4,0-6.7-0.5-10-1.4s-6.1-2.3-8.7-4.1c-2.5-1.8-4.6-4.1-6.1-6.8s-2.3-5.9-2.3-9.6c0-4,0.7-7.3,2.2-10.1
c1.4-2.8,3.4-5.1,5.8-7c2.4-1.9,5.2-3.4,8.4-4.5c3.2-1.1,6.5-2,10-2.5c3.5-0.6,6.9-0.9,10.5-1.1c3.5-0.2,6.8-0.2,9.9-0.2h4.6
v-2c0-4.6-1.6-8-4.8-10.3c-3.2-2.3-7.3-3.4-12.2-3.4c-3.9,0-7.6,0.7-11,2.1c-3.4,1.4-6.4,3.2-8.8,5.6l-9.8-9.6
c4.1-4.2,9-7.1,14.5-9c5.5-1.8,11.2-2.7,17.1-2.7c5.3,0,9.7,0.6,13.3,1.7c3.6,1.2,6.6,2.7,9,4.5c2.4,1.8,4.2,3.9,5.5,6.3
c1.3,2.4,2.2,4.8,2.8,7.2c0.6,2.4,0.9,4.8,1,7.1c0.1,2.3,0.2,4.3,0.2,6v42h-16.7V312.7z"/>
<path id="Fill-24" class="st1" d="M683.6,269.9c-3.6-5-8.4-7.5-14.4-7.5c-2.5,0-4.9,0.6-7.2,1.8c-2.4,1.2-3.5,3.2-3.5,5.9
c0,2.2,1,3.9,2.9,4.9c1.9,1,4.4,1.9,7.4,2.6c3,0.7,6.2,1.4,9.6,2.2c3.4,0.8,6.6,1.9,9.6,3.5c3,1.6,5.4,3.7,7.4,6.5
c1.9,2.7,2.9,6.5,2.9,11.3c0,4.4-0.9,8-2.8,11c-1.9,3-4.3,5.4-7.4,7.2c-3,1.8-6.4,3.1-10.2,4c-3.8,0.8-7.6,1.2-11.3,1.2
c-5.7,0-11-0.8-15.8-2.4c-4.8-1.6-9.1-4.6-12.9-8.8l12.3-11.4c2.4,2.6,4.9,4.8,7.6,6.5c2.7,1.7,6,2.5,9.9,2.5
c1.3,0,2.7-0.2,4.1-0.5c1.4-0.3,2.8-0.8,4-1.5c1.2-0.7,2.2-1.6,3-2.7c0.8-1.1,1.1-2.3,1.1-3.7c0-2.5-1-4.4-2.9-5.6
c-1.9-1.2-4.4-2.2-7.4-3c-3-0.8-6.2-1.5-9.6-2.1c-3.4-0.7-6.6-1.7-9.6-3.2c-3-1.5-5.4-3.5-7.4-6.2c-1.9-2.6-2.9-6.3-2.9-11
c0-4.1,0.8-7.6,2.5-10.6c1.7-3,3.9-5.4,6.7-7.4c2.8-1.9,5.9-3.3,9.5-4.3c3.6-0.9,7.2-1.4,10.9-1.4c4.9,0,9.8,0.8,14.6,2.5
c4.8,1.7,8.7,4.5,11.7,8.6L683.6,269.9z"/>
</g>
</g>
</g>
</g>
</g>
</g>
</svg>

After

Width:  |  Height:  |  Size: 8 KiB

View file

@ -0,0 +1 @@
<svg xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="enable-background:new 0 0 75 75" viewBox="0 0 75 75" width="75" height="75" ><path d="M24.3 44.7c2 0 6-.1 11.6-2.4 6.5-2.7 19.3-7.5 28.6-12.5 6.5-3.5 9.3-8.1 9.3-14.3C73.8 7 66.9 0 58.3 0h-36C10 0 0 10 0 22.3s9.4 22.4 24.3 22.4z" style="fill-rule:evenodd;clip-rule:evenodd;fill:#39594d"/><path d="M30.4 60c0-6 3.6-11.5 9.2-13.8l11.3-4.7C62.4 36.8 75 45.2 75 57.6 75 67.2 67.2 75 57.6 75H45.3c-8.2 0-14.9-6.7-14.9-15z" style="fill-rule:evenodd;clip-rule:evenodd;fill:#d18ee2"/><path d="M12.9 47.6C5.8 47.6 0 53.4 0 60.5v1.7C0 69.2 5.8 75 12.9 75c7.1 0 12.9-5.8 12.9-12.9v-1.7c-.1-7-5.8-12.8-12.9-12.8z" style="fill:#ff7759"/></svg>

After

Width:  |  Height:  |  Size: 742 B

View file

@ -0,0 +1 @@
<svg height="1em" style="flex:none;line-height:1" viewBox="0 0 24 24" width="1em" xmlns="http://www.w3.org/2000/svg"><title>DBRX</title><path d="M21.821 9.894l-9.81 5.595L1.505 9.511 1 9.787v4.34l11.01 6.256 9.811-5.574v2.297l-9.81 5.596-10.506-5.979L1 17v.745L12.01 24 23 17.745v-4.34l-.505-.277-10.484 5.957-9.832-5.574v-2.298l9.832 5.574L23 10.532V6.255l-.547-.319-10.442 5.936-9.327-5.276 9.327-5.298 7.663 4.362.673-.383v-.532L12.011 0 1 6.255v.681l11.01 6.255 9.811-5.595z" fill="#EE3D2C" fill-rule="nonzero"></path></svg>

After

Width:  |  Height:  |  Size: 528 B

View file

@ -0,0 +1,25 @@
<?xml version="1.0" encoding="utf-8"?>
<!-- Generator: Adobe Illustrator 25.4.1, SVG Export Plug-In . SVG Version: 6.00 Build 0) -->
<svg version="1.1" id="Layer_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
viewBox="0 0 292.6 215.3" style="enable-background:new 0 0 292.6 215.3;" xml:space="preserve">
<style type="text/css">
.st0{fill:#566AB2;}
</style>
<path class="st0" d="M191.3,123.7c-2.4,1-4.9,1.8-7.2,1.9c-3.6,0.2-7.6-1.3-9.7-3.1c-3.3-2.8-5.7-4.4-6.7-9.2
c-0.4-2.1-0.2-5.3,0.2-7.2c0.9-4-0.1-6.5-2.9-8.9c-2.3-1.9-5.2-2.4-8.4-2.4s-2.3-0.5-3.1-1c-1.3-0.7-2.4-2.3-1.4-4.4
c0.3-0.7,2-2.3,2.3-2.5c4.3-2.5,9.4-1.7,14,0.2c4.3,1.7,7.5,5,12.2,9.5c4.8,5.5,5.6,7,8.4,11.1c2.1,3.2,4.1,6.6,5.4,10.4
C195.2,120.5,194.2,122.4,191.3,123.7L191.3,123.7z M153.4,104.3c0-2.1,1.7-3.7,3.8-3.7s0.9,0.1,1.3,0.2c0.5,0.2,1,0.5,1.4,0.9
c0.7,0.7,1.1,1.6,1.1,2.6c0,2.1-1.7,3.8-3.8,3.8s-3.7-1.7-3.7-3.8H153.4z M141.2,182.8c-25.5-20-37.8-26.6-42.9-26.3
c-4.8,0.3-3.9,5.7-2.8,9.3c1.1,3.5,2.5,5.9,4.5,9c1.4,2,2.3,5.1-1.4,7.3c-8.2,5.1-22.5-1.7-23.1-2c-16.6-9.8-30.5-22.7-40.2-40.3
c-9.5-17-14.9-35.2-15.8-54.6c-0.2-4.7,1.1-6.4,5.8-7.2c6.2-1.1,12.5-1.4,18.7-0.5c26,3.8,48.1,15.4,66.7,33.8
c10.6,10.5,18.6,23,26.8,35.2c8.8,13,18.2,25.4,30.2,35.5c4.3,3.6,7.6,6.3,10.9,8.2c-9.8,1.1-26.1,1.3-37.2-7.5L141.2,182.8z
M289.5,18c-3.1-1.5-4.4,1.4-6.3,2.8c-0.6,0.5-1.1,1.1-1.7,1.7c-4.5,4.8-9.8,8-16.8,7.6c-10.1-0.6-18.7,2.6-26.4,10.4
c-1.6-9.5-7-15.2-15.2-18.9c-4.3-1.9-8.6-3.8-11.6-7.9c-2.1-2.9-2.7-6.2-3.7-9.4c-0.7-2-1.3-3.9-3.6-4.3c-2.4-0.4-3.4,1.7-4.3,3.4
c-3.8,7-5.3,14.6-5.2,22.4c0.3,17.5,7.7,31.5,22.4,41.4c1.7,1.1,2.1,2.3,1.6,3.9c-1,3.4-2.2,6.7-3.3,10.1c-0.7,2.2-1.7,2.7-4,1.7
c-8.1-3.4-15-8.4-21.2-14.4c-10.4-10.1-19.9-21.2-31.6-30c-2.8-2.1-5.5-4-8.4-5.7c-12-11.7,1.6-21.3,4.7-22.4
c3.3-1.2,1.2-5.3-9.5-5.2c-10.6,0-20.3,3.6-32.8,8.4c-1.8,0.7-3.7,1.2-5.7,1.7c-11.3-2.1-22.9-2.6-35.1-1.2
c-23,2.5-41.4,13.4-54.8,32C1,68.3-2.8,93.6,1.9,120c4.9,27.8,19.1,50.9,41,68.9c22.6,18.7,48.7,27.8,78.5,26.1
c18.1-1,38.2-3.5,60.9-22.7c5.7,2.8,11.7,4,21.7,4.8c7.7,0.7,15.1-0.4,20.8-1.5c9-1.9,8.4-10.2,5.1-11.7
c-26.3-12.3-20.5-7.3-25.7-11.3c13.3-15.8,33.5-32.2,41.3-85.4c0.6-4.2,0.1-6.9,0-10.3c0-2.1,0.4-2.9,2.8-3.1
c6.6-0.8,13-2.6,18.8-5.8c17-9.3,23.9-24.6,25.5-42.9c0.2-2.8,0-5.7-3-7.2L289.5,18z"/>
</svg>

After

Width:  |  Height:  |  Size: 2.3 KiB

View file

@ -0,0 +1 @@
<svg height="1em" style="flex:none;line-height:1" viewBox="0 0 24 24" width="1em" xmlns="http://www.w3.org/2000/svg"><title>Fireworks</title><path clip-rule="evenodd" d="M14.8 5l-2.801 6.795L9.195 5H7.397l3.072 7.428a1.64 1.64 0 003.038.002L16.598 5H14.8zm1.196 10.352l5.124-5.244-.699-1.669-5.596 5.739a1.664 1.664 0 00-.343 1.807 1.642 1.642 0 001.516 1.012L16 17l8-.02-.699-1.669-7.303.041h-.002zM2.88 10.104l.699-1.669 5.596 5.739c.468.479.603 1.189.343 1.807a1.643 1.643 0 01-1.516 1.012l-8-.018-.002.002.699-1.669 7.303.042-5.122-5.246z" fill="#5019C5" fill-rule="evenodd"></path></svg>

After

Width:  |  Height:  |  Size: 592 B

View file

@ -0,0 +1,2 @@
<?xml version="1.0" encoding="utf-8"?>
<svg viewBox="0 0 16 16" xmlns="http://www.w3.org/2000/svg" fill="none"><path fill="#4285F4" d="M14.9 8.161c0-.476-.039-.954-.121-1.422h-6.64v2.695h3.802a3.24 3.24 0 01-1.407 2.127v1.75h2.269c1.332-1.22 2.097-3.02 2.097-5.15z"/><path fill="#34A853" d="M8.14 15c1.898 0 3.499-.62 4.665-1.69l-2.268-1.749c-.631.427-1.446.669-2.395.669-1.836 0-3.393-1.232-3.952-2.888H1.85v1.803A7.044 7.044 0 008.14 15z"/><path fill="#FBBC04" d="M4.187 9.342a4.17 4.17 0 010-2.68V4.859H1.849a6.97 6.97 0 000 6.286l2.338-1.803z"/><path fill="#EA4335" d="M8.14 3.77a3.837 3.837 0 012.7 1.05l2.01-1.999a6.786 6.786 0 00-4.71-1.82 7.042 7.042 0 00-6.29 3.858L4.186 6.66c.556-1.658 2.116-2.89 3.952-2.89z"/></svg>

After

Width:  |  Height:  |  Size: 728 B

View file

@ -0,0 +1,3 @@
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 26.3 26.3"><defs><style>.cls-1{fill:#f05237;}.cls-2{fill:#fff;}</style></defs><g id="Layer_2" data-name="Layer 2"><g id="Content"><circle class="cls-1" cx="13.15" cy="13.15" r="13.15"/><path class="cls-2" d="M13.17,6.88a4.43,4.43,0,0,0,0,8.85h1.45V14.07H13.17a2.77,2.77,0,1,1,2.77-2.76v4.07a2.74,2.74,0,0,1-4.67,2L10.1,18.51a4.37,4.37,0,0,0,3.07,1.29h.06a4.42,4.42,0,0,0,4.36-4.4V11.2a4.43,4.43,0,0,0-4.42-4.32"/></g></g></svg>

After

Width:  |  Height:  |  Size: 619 B

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 7.2 KiB

View file

@ -0,0 +1 @@
<svg height="1em" style="flex:none;line-height:1" viewBox="0 0 24 24" width="1em" xmlns="http://www.w3.org/2000/svg"><title>Mistral</title><path d="M3.428 3.4h3.429v3.428H3.428V3.4zm13.714 0h3.43v3.428h-3.43V3.4z" fill="gold"></path><path d="M3.428 6.828h6.857v3.429H3.429V6.828zm10.286 0h6.857v3.429h-6.857V6.828z" fill="#FFAF00"></path><path d="M3.428 10.258h17.144v3.428H3.428v-3.428z" fill="#FF8205"></path><path d="M3.428 13.686h3.429v3.428H3.428v-3.428zm6.858 0h3.429v3.428h-3.429v-3.428zm6.856 0h3.43v3.428h-3.43v-3.428z" fill="#FA500F"></path><path d="M0 17.114h10.286v3.429H0v-3.429zm13.714 0H24v3.429H13.714v-3.429z" fill="#E10500"></path></svg>

After

Width:  |  Height:  |  Size: 655 B

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 8.4 KiB

View file

@ -0,0 +1,5 @@
<?xml version="1.0" encoding="utf-8"?>
<svg fill="#000000" viewBox="-2 -2 28 28" role="img" xmlns="http://www.w3.org/2000/svg">
<circle cx="12" cy="12" r="14" fill="white" />
<path d="M22.2819 9.8211a5.9847 5.9847 0 0 0-.5157-4.9108 6.0462 6.0462 0 0 0-6.5098-2.9A6.0651 6.0651 0 0 0 4.9807 4.1818a5.9847 5.9847 0 0 0-3.9977 2.9 6.0462 6.0462 0 0 0 .7427 7.0966 5.98 5.98 0 0 0 .511 4.9107 6.051 6.051 0 0 0 6.5146 2.9001A5.9847 5.9847 0 0 0 13.2599 24a6.0557 6.0557 0 0 0 5.7718-4.2058 5.9894 5.9894 0 0 0 3.9977-2.9001 6.0557 6.0557 0 0 0-.7475-7.0729zm-9.022 12.6081a4.4755 4.4755 0 0 1-2.8764-1.0408l.1419-.0804 4.7783-2.7582a.7948.7948 0 0 0 .3927-.6813v-6.7369l2.02 1.1686a.071.071 0 0 1 .038.052v5.5826a4.504 4.504 0 0 1-4.4945 4.4944zm-9.6607-4.1254a4.4708 4.4708 0 0 1-.5346-3.0137l.142.0852 4.783 2.7582a.7712.7712 0 0 0 .7806 0l5.8428-3.3685v2.3324a.0804.0804 0 0 1-.0332.0615L9.74 19.9502a4.4992 4.4992 0 0 1-6.1408-1.6464zM2.3408 7.8956a4.485 4.485 0 0 1 2.3655-1.9728V11.6a.7664.7664 0 0 0 .3879.6765l5.8144 3.3543-2.0201 1.1685a.0757.0757 0 0 1-.071 0l-4.8303-2.7865A4.504 4.504 0 0 1 2.3408 7.872zm16.5963 3.8558L13.1038 8.364 15.1192 7.2a.0757.0757 0 0 1 .071 0l4.8303 2.7913a4.4944 4.4944 0 0 1-.6765 8.1042v-5.6772a.79.79 0 0 0-.407-.667zm2.0107-3.0231l-.142-.0852-4.7735-2.7818a.7759.7759 0 0 0-.7854 0L9.409 9.2297V6.8974a.0662.0662 0 0 1 .0284-.0615l4.8303-2.7866a4.4992 4.4992 0 0 1 6.6802 4.66zM8.3065 12.863l-2.02-1.1638a.0804.0804 0 0 1-.038-.0567V6.0742a4.4992 4.4992 0 0 1 7.3757-3.4537l-.142.0805L8.704 5.459a.7948.7948 0 0 0-.3927.6813zm1.0976-2.3654l2.602-1.4998 2.6069 1.4998v2.9994l-2.5974 1.4997-2.6067-1.4997Z"/>
</svg>

After

Width:  |  Height:  |  Size: 1.6 KiB

View file

@ -0,0 +1,39 @@
<?xml version="1.0" encoding="UTF-8"?>
<svg id="Layer_1" xmlns="http://www.w3.org/2000/svg" version="1.1" xmlns:xlink="http://www.w3.org/1999/xlink" viewBox="0 0 300 300">
<!-- Generator: Adobe Illustrator 29.2.1, SVG Export Plug-In . SVG Version: 2.1.0 Build 116) -->
<defs>
<style>
.st0 {
fill: none;
}
.st1 {
stroke-width: 52.7px;
}
.st1, .st2 {
stroke: #000;
stroke-miterlimit: 2.3;
}
.st2 {
stroke-width: .6px;
}
.st3 {
clip-path: url(#clippath);
}
</style>
<clipPath id="clippath">
<rect class="st0" width="300" height="300"/>
</clipPath>
</defs>
<g class="st3">
<g>
<path class="st1" d="M1.8,145.9c8.8,0,42.8-7.6,60.4-17.5s17.6-10,53.9-35.7c46-32.6,78.5-21.7,131.8-21.7"/>
<path class="st2" d="M299.4,71.2l-90.1,52V19.2l90.1,52Z"/>
<path class="st1" d="M0,145.9c8.8,0,42.8,7.6,60.4,17.5s17.6,10,53.9,35.7c46,32.6,78.5,21.7,131.8,21.7"/>
<path class="st2" d="M297.7,220.6l-90.1-52v104l90.1-52Z"/>
</g>
</g>
</svg>

After

Width:  |  Height:  |  Size: 1.1 KiB

View file

@ -0,0 +1,16 @@
<?xml version="1.0" encoding="iso-8859-1"?>
<!-- Generator: Adobe Illustrator 26.1.0, SVG Export Plug-In . SVG Version: 6.00 Build 0) -->
<svg version="1.1" id="Layer_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
viewBox="0 0 48 48" style="enable-background:new 0 0 48 48;" xml:space="preserve">
<linearGradient id="SVGID_1_" gradientUnits="userSpaceOnUse" x1="10.5862" y1="1.61" x2="36.0543" y2="44.1206">
<stop offset="0.002" style="stop-color:#9C55D4"/>
<stop offset="0.003" style="stop-color:#20808D"/>
<stop offset="0.3731" style="stop-color:#218F9B"/>
<stop offset="1" style="stop-color:#22B1BC"/>
</linearGradient>
<path style="fill-rule:evenodd;clip-rule:evenodd;fill:url(#SVGID_1_);" d="M11.469,4l11.39,10.494v-0.002V4.024h2.217v10.517
L36.518,4v11.965h4.697v17.258h-4.683v10.654L25.077,33.813v10.18h-2.217V33.979L11.482,44V33.224H6.785V15.965h4.685V4z
M21.188,18.155H9.002v12.878h2.477v-4.062L21.188,18.155z M13.699,27.943v11.17l9.16-8.068V19.623L13.699,27.943z M25.141,30.938
V19.612l9.163,8.321v5.291h0.012v5.775L25.141,30.938z M36.532,31.033h2.466V18.155H26.903l9.629,8.725V31.033z M34.301,15.965
V9.038l-7.519,6.927H34.301z M21.205,15.965h-7.519V9.038L21.205,15.965z"/>
</svg>

After

Width:  |  Height:  |  Size: 1.2 KiB

View file

@ -0,0 +1 @@
<svg height="1em" style="flex:none;line-height:1" viewBox="0 0 24 24" width="1em" xmlns="http://www.w3.org/2000/svg"><title>SambaNova</title><path d="M23 23h-1.223V8.028c0-3.118-2.568-5.806-5.744-5.806H8.027c-3.176 0-5.744 2.565-5.744 5.686 0 3.119 2.568 5.684 5.744 5.684h.794c1.346 0 2.445 1.1 2.445 2.444 0 1.346-1.1 2.446-2.445 2.446H1v-1.223h7.761c.671 0 1.223-.551 1.223-1.16 0-.67-.552-1.16-1.223-1.16h-.794C4.177 14.872 1 11.756 1 7.909 1 4.058 4.176 1 8.027 1h8.066C19.88 1 23 4.239 23 8.028V23z" fill="#EE7624"></path><path d="M8.884 12.672c1.71.06 3.361 1.588 3.361 3.422 0 1.833-1.528 3.421-3.421 3.421H1v1.223h7.761c2.568 0 4.705-2.077 4.705-4.644 0-.672-.123-1.283-.43-1.894-.245-.551-.67-1.1-1.099-1.528-.489-.429-1.039-.734-1.65-.977-.525-.175-1.048-.193-1.594-.212-.218-.008-.441-.016-.669-.034-.428 0-1.406-.245-1.956-.61a3.369 3.369 0 01-1.223-1.406c-.183-.489-.305-.977-.305-1.528A3.417 3.417 0 017.96 4.482h8.066c1.895 0 3.422 1.65 3.422 3.483v15.032h1.223V8.027c0-2.568-2.077-4.768-4.645-4.768h-8c-2.568 0-4.705 2.077-4.705 4.646 0 .67.123 1.282.43 1.894a4.45 4.45 0 001.099 1.528c.429.428 1.039.734 1.588.976.306.123.611.183.976.246.857.06 1.406.123 1.466.123h.003z" fill="#EE7624"></path><path d="M1 23h7.761v-.003c3.85 0 7.03-3.116 7.09-7.026 0-3.79-3.117-6.906-6.967-6.906H8.09c-.672 0-1.222-.552-1.222-1.16 0-.608.487-1.16 1.159-1.16h8.069c.608 0 1.159.611 1.159 1.283v14.97h1.223V8.024c0-1.345-1.1-2.505-2.445-2.505H7.967a2.451 2.451 0 00-2.445 2.445 2.45 2.45 0 002.445 2.445h.794c3.176 0 5.744 2.568 5.744 5.684s-2.568 5.684-5.744 5.684H1V23z" fill="#EE7624"></path></svg>

After

Width:  |  Height:  |  Size: 1.6 KiB

View file

@ -0,0 +1,14 @@
<svg width="32" height="32" viewBox="0 0 32 32" fill="none" xmlns="http://www.w3.org/2000/svg">
<g clip-path="url(#clip0_542_18748)">
<rect width="32" height="32" rx="5.64706" fill="#F1EFED"/>
<circle cx="22.8233" cy="9.64706" r="5.64706" fill="#D3D1D1"/>
<circle cx="22.8233" cy="22.8238" r="5.64706" fill="#D3D1D1"/>
<circle cx="9.64706" cy="22.8238" r="5.64706" fill="#D3D1D1"/>
<circle cx="9.64706" cy="9.64706" r="5.64706" fill="#0F6FFF"/>
</g>
<defs>
<clipPath id="clip0_542_18748">
<rect width="32" height="32" fill="white"/>
</clipPath>
</defs>
</svg>

After

Width:  |  Height:  |  Size: 560 B

View file

@ -0,0 +1,28 @@
<?xml version="1.0" encoding="UTF-8"?>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 1000 1000">
<defs>
<style>
.cls-1 {
fill: #000;
}
polygon {
fill: #fff;
}
@media ( prefers-color-scheme: dark ) {
.cls-1 {
fill: #fff;
}
polygon {
fill: #000;
}
}
</style>
</defs>
<rect class="cls-1" width="1000" height="1000"/>
<g>
<polygon points="226.83 411.15 501.31 803.15 623.31 803.15 348.82 411.15 226.83 411.15" />
<polygon points="348.72 628.87 226.69 803.15 348.77 803.15 409.76 716.05 348.72 628.87" />
<polygon points="651.23 196.85 440.28 498.12 501.32 585.29 773.31 196.85 651.23 196.85" />
<polygon points="673.31 383.25 673.31 803.15 773.31 803.15 773.31 240.44 673.31 383.25" />
</g>
</svg>

After

Width:  |  Height:  |  Size: 937 B

View file

@ -1 +1 @@
<!DOCTYPE html><html id="__next_error__"><head><meta charSet="utf-8"/><meta name="viewport" content="width=device-width, initial-scale=1"/><link rel="preload" as="script" fetchPriority="low" href="/ui/_next/static/chunks/webpack-75a5453f51d60261.js"/><script src="/ui/_next/static/chunks/fd9d1056-524b80e1a6b8bb06.js" async=""></script><script src="/ui/_next/static/chunks/117-883150efc583d711.js" async=""></script><script src="/ui/_next/static/chunks/main-app-475d6efe4080647d.js" async=""></script><title>LiteLLM Dashboard</title><meta name="description" content="LiteLLM Proxy Admin UI"/><link rel="icon" href="/ui/favicon.ico" type="image/x-icon" sizes="16x16"/><meta name="next-size-adjust"/><script src="/ui/_next/static/chunks/polyfills-42372ed130431b0a.js" noModule=""></script></head><body><script src="/ui/_next/static/chunks/webpack-75a5453f51d60261.js" async=""></script><script>(self.__next_f=self.__next_f||[]).push([0]);self.__next_f.push([2,null])</script><script>self.__next_f.push([1,"1:HL[\"/ui/_next/static/media/a34f9d1faa5f3315-s.p.woff2\",\"font\",{\"crossOrigin\":\"\",\"type\":\"font/woff2\"}]\n2:HL[\"/ui/_next/static/css/86f6cc749f6b8493.css\",\"style\"]\n3:HL[\"/ui/_next/static/css/169f9187db1ec37e.css\",\"style\"]\n"])</script><script>self.__next_f.push([1,"4:I[12846,[],\"\"]\n6:I[19107,[],\"ClientPageRoot\"]\n7:I[14164,[\"665\",\"static/chunks/3014691f-0b72c78cfebbd712.js\",\"990\",\"static/chunks/13b76428-ebdf3012af0e4489.js\",\"42\",\"static/chunks/42-1cbed529ecb084e0.js\",\"261\",\"static/chunks/261-57d48f76eec1e568.js\",\"899\",\"static/chunks/899-9af4feaf6f21839c.js\",\"394\",\"static/chunks/394-0222ddf4d701e0b4.js\",\"250\",\"static/chunks/250-a75ee9d79f1140b0.js\",\"699\",\"static/chunks/699-2a1c30f260f44c15.js\",\"931\",\"static/chunks/app/page-75d771fb848b47a8.js\"],\"default\",1]\n8:I[4707,[],\"\"]\n9:I[36423,[],\"\"]\nb:I[61060,[],\"\"]\nc:[]\n"])</script><script>self.__next_f.push([1,"0:[\"$\",\"$L4\",null,{\"buildId\":\"9yIyUkG6nV2cO0gn7kJ-Q\",\"assetPrefix\":\"/ui\",\"urlParts\":[\"\",\"\"],\"initialTree\":[\"\",{\"children\":[\"__PAGE__\",{}]},\"$undefined\",\"$undefined\",true],\"initialSeedData\":[\"\",{\"children\":[\"__PAGE__\",{},[[\"$L5\",[\"$\",\"$L6\",null,{\"props\":{\"params\":{},\"searchParams\":{}},\"Component\":\"$7\"}],null],null],null]},[[[[\"$\",\"link\",\"0\",{\"rel\":\"stylesheet\",\"href\":\"/ui/_next/static/css/86f6cc749f6b8493.css\",\"precedence\":\"next\",\"crossOrigin\":\"$undefined\"}],[\"$\",\"link\",\"1\",{\"rel\":\"stylesheet\",\"href\":\"/ui/_next/static/css/169f9187db1ec37e.css\",\"precedence\":\"next\",\"crossOrigin\":\"$undefined\"}]],[\"$\",\"html\",null,{\"lang\":\"en\",\"children\":[\"$\",\"body\",null,{\"className\":\"__className_cf7686\",\"children\":[\"$\",\"$L8\",null,{\"parallelRouterKey\":\"children\",\"segmentPath\":[\"children\"],\"error\":\"$undefined\",\"errorStyles\":\"$undefined\",\"errorScripts\":\"$undefined\",\"template\":[\"$\",\"$L9\",null,{}],\"templateStyles\":\"$undefined\",\"templateScripts\":\"$undefined\",\"notFound\":[[\"$\",\"title\",null,{\"children\":\"404: This page could not be found.\"}],[\"$\",\"div\",null,{\"style\":{\"fontFamily\":\"system-ui,\\\"Segoe UI\\\",Roboto,Helvetica,Arial,sans-serif,\\\"Apple Color Emoji\\\",\\\"Segoe UI Emoji\\\"\",\"height\":\"100vh\",\"textAlign\":\"center\",\"display\":\"flex\",\"flexDirection\":\"column\",\"alignItems\":\"center\",\"justifyContent\":\"center\"},\"children\":[\"$\",\"div\",null,{\"children\":[[\"$\",\"style\",null,{\"dangerouslySetInnerHTML\":{\"__html\":\"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}\"}}],[\"$\",\"h1\",null,{\"className\":\"next-error-h1\",\"style\":{\"display\":\"inline-block\",\"margin\":\"0 20px 0 0\",\"padding\":\"0 23px 0 0\",\"fontSize\":24,\"fontWeight\":500,\"verticalAlign\":\"top\",\"lineHeight\":\"49px\"},\"children\":\"404\"}],[\"$\",\"div\",null,{\"style\":{\"display\":\"inline-block\"},\"children\":[\"$\",\"h2\",null,{\"style\":{\"fontSize\":14,\"fontWeight\":400,\"lineHeight\":\"49px\",\"margin\":0},\"children\":\"This page could not be found.\"}]}]]}]}]],\"notFoundStyles\":[]}]}]}]],null],null],\"couldBeIntercepted\":false,\"initialHead\":[null,\"$La\"],\"globalErrorComponent\":\"$b\",\"missingSlots\":\"$Wc\"}]\n"])</script><script>self.__next_f.push([1,"a:[[\"$\",\"meta\",\"0\",{\"name\":\"viewport\",\"content\":\"width=device-width, initial-scale=1\"}],[\"$\",\"meta\",\"1\",{\"charSet\":\"utf-8\"}],[\"$\",\"title\",\"2\",{\"children\":\"LiteLLM Dashboard\"}],[\"$\",\"meta\",\"3\",{\"name\":\"description\",\"content\":\"LiteLLM Proxy Admin UI\"}],[\"$\",\"link\",\"4\",{\"rel\":\"icon\",\"href\":\"/ui/favicon.ico\",\"type\":\"image/x-icon\",\"sizes\":\"16x16\"}],[\"$\",\"meta\",\"5\",{\"name\":\"next-size-adjust\"}]]\n5:null\n"])</script></body></html>
<!DOCTYPE html><html id="__next_error__"><head><meta charSet="utf-8"/><meta name="viewport" content="width=device-width, initial-scale=1"/><link rel="preload" as="script" fetchPriority="low" href="/ui/_next/static/chunks/webpack-75a5453f51d60261.js"/><script src="/ui/_next/static/chunks/fd9d1056-524b80e1a6b8bb06.js" async=""></script><script src="/ui/_next/static/chunks/117-883150efc583d711.js" async=""></script><script src="/ui/_next/static/chunks/main-app-4f7318ae681a6d94.js" async=""></script><title>LiteLLM Dashboard</title><meta name="description" content="LiteLLM Proxy Admin UI"/><link rel="icon" href="/ui/favicon.ico" type="image/x-icon" sizes="16x16"/><meta name="next-size-adjust"/><script src="/ui/_next/static/chunks/polyfills-42372ed130431b0a.js" noModule=""></script></head><body><script src="/ui/_next/static/chunks/webpack-75a5453f51d60261.js" async=""></script><script>(self.__next_f=self.__next_f||[]).push([0]);self.__next_f.push([2,null])</script><script>self.__next_f.push([1,"1:HL[\"/ui/_next/static/media/a34f9d1faa5f3315-s.p.woff2\",\"font\",{\"crossOrigin\":\"\",\"type\":\"font/woff2\"}]\n2:HL[\"/ui/_next/static/css/86f6cc749f6b8493.css\",\"style\"]\n3:HL[\"/ui/_next/static/css/169f9187db1ec37e.css\",\"style\"]\n"])</script><script>self.__next_f.push([1,"4:I[12846,[],\"\"]\n6:I[19107,[],\"ClientPageRoot\"]\n7:I[20314,[\"665\",\"static/chunks/3014691f-0b72c78cfebbd712.js\",\"990\",\"static/chunks/13b76428-ebdf3012af0e4489.js\",\"42\",\"static/chunks/42-1cbed529ecb084e0.js\",\"261\",\"static/chunks/261-57d48f76eec1e568.js\",\"899\",\"static/chunks/899-9af4feaf6f21839c.js\",\"394\",\"static/chunks/394-48a36e9c9b2cb488.js\",\"250\",\"static/chunks/250-601568e45a5ffece.js\",\"699\",\"static/chunks/699-2a1c30f260f44c15.js\",\"931\",\"static/chunks/app/page-e21d4be3d6c3c16e.js\"],\"default\",1]\n8:I[4707,[],\"\"]\n9:I[36423,[],\"\"]\nb:I[61060,[],\"\"]\nc:[]\n"])</script><script>self.__next_f.push([1,"0:[\"$\",\"$L4\",null,{\"buildId\":\"soi--ciJeUE6G2Fk4NMBG\",\"assetPrefix\":\"/ui\",\"urlParts\":[\"\",\"\"],\"initialTree\":[\"\",{\"children\":[\"__PAGE__\",{}]},\"$undefined\",\"$undefined\",true],\"initialSeedData\":[\"\",{\"children\":[\"__PAGE__\",{},[[\"$L5\",[\"$\",\"$L6\",null,{\"props\":{\"params\":{},\"searchParams\":{}},\"Component\":\"$7\"}],null],null],null]},[[[[\"$\",\"link\",\"0\",{\"rel\":\"stylesheet\",\"href\":\"/ui/_next/static/css/86f6cc749f6b8493.css\",\"precedence\":\"next\",\"crossOrigin\":\"$undefined\"}],[\"$\",\"link\",\"1\",{\"rel\":\"stylesheet\",\"href\":\"/ui/_next/static/css/169f9187db1ec37e.css\",\"precedence\":\"next\",\"crossOrigin\":\"$undefined\"}]],[\"$\",\"html\",null,{\"lang\":\"en\",\"children\":[\"$\",\"body\",null,{\"className\":\"__className_cf7686\",\"children\":[\"$\",\"$L8\",null,{\"parallelRouterKey\":\"children\",\"segmentPath\":[\"children\"],\"error\":\"$undefined\",\"errorStyles\":\"$undefined\",\"errorScripts\":\"$undefined\",\"template\":[\"$\",\"$L9\",null,{}],\"templateStyles\":\"$undefined\",\"templateScripts\":\"$undefined\",\"notFound\":[[\"$\",\"title\",null,{\"children\":\"404: This page could not be found.\"}],[\"$\",\"div\",null,{\"style\":{\"fontFamily\":\"system-ui,\\\"Segoe UI\\\",Roboto,Helvetica,Arial,sans-serif,\\\"Apple Color Emoji\\\",\\\"Segoe UI Emoji\\\"\",\"height\":\"100vh\",\"textAlign\":\"center\",\"display\":\"flex\",\"flexDirection\":\"column\",\"alignItems\":\"center\",\"justifyContent\":\"center\"},\"children\":[\"$\",\"div\",null,{\"children\":[[\"$\",\"style\",null,{\"dangerouslySetInnerHTML\":{\"__html\":\"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}\"}}],[\"$\",\"h1\",null,{\"className\":\"next-error-h1\",\"style\":{\"display\":\"inline-block\",\"margin\":\"0 20px 0 0\",\"padding\":\"0 23px 0 0\",\"fontSize\":24,\"fontWeight\":500,\"verticalAlign\":\"top\",\"lineHeight\":\"49px\"},\"children\":\"404\"}],[\"$\",\"div\",null,{\"style\":{\"display\":\"inline-block\"},\"children\":[\"$\",\"h2\",null,{\"style\":{\"fontSize\":14,\"fontWeight\":400,\"lineHeight\":\"49px\",\"margin\":0},\"children\":\"This page could not be found.\"}]}]]}]}]],\"notFoundStyles\":[]}]}]}]],null],null],\"couldBeIntercepted\":false,\"initialHead\":[null,\"$La\"],\"globalErrorComponent\":\"$b\",\"missingSlots\":\"$Wc\"}]\n"])</script><script>self.__next_f.push([1,"a:[[\"$\",\"meta\",\"0\",{\"name\":\"viewport\",\"content\":\"width=device-width, initial-scale=1\"}],[\"$\",\"meta\",\"1\",{\"charSet\":\"utf-8\"}],[\"$\",\"title\",\"2\",{\"children\":\"LiteLLM Dashboard\"}],[\"$\",\"meta\",\"3\",{\"name\":\"description\",\"content\":\"LiteLLM Proxy Admin UI\"}],[\"$\",\"link\",\"4\",{\"rel\":\"icon\",\"href\":\"/ui/favicon.ico\",\"type\":\"image/x-icon\",\"sizes\":\"16x16\"}],[\"$\",\"meta\",\"5\",{\"name\":\"next-size-adjust\"}]]\n5:null\n"])</script></body></html>

View file

@ -1,7 +1,7 @@
2:I[19107,[],"ClientPageRoot"]
3:I[14164,["665","static/chunks/3014691f-0b72c78cfebbd712.js","990","static/chunks/13b76428-ebdf3012af0e4489.js","42","static/chunks/42-1cbed529ecb084e0.js","261","static/chunks/261-57d48f76eec1e568.js","899","static/chunks/899-9af4feaf6f21839c.js","394","static/chunks/394-0222ddf4d701e0b4.js","250","static/chunks/250-a75ee9d79f1140b0.js","699","static/chunks/699-2a1c30f260f44c15.js","931","static/chunks/app/page-75d771fb848b47a8.js"],"default",1]
3:I[20314,["665","static/chunks/3014691f-0b72c78cfebbd712.js","990","static/chunks/13b76428-ebdf3012af0e4489.js","42","static/chunks/42-1cbed529ecb084e0.js","261","static/chunks/261-57d48f76eec1e568.js","899","static/chunks/899-9af4feaf6f21839c.js","394","static/chunks/394-48a36e9c9b2cb488.js","250","static/chunks/250-601568e45a5ffece.js","699","static/chunks/699-2a1c30f260f44c15.js","931","static/chunks/app/page-e21d4be3d6c3c16e.js"],"default",1]
4:I[4707,[],""]
5:I[36423,[],""]
0:["9yIyUkG6nV2cO0gn7kJ-Q",[[["",{"children":["__PAGE__",{}]},"$undefined","$undefined",true],["",{"children":["__PAGE__",{},[["$L1",["$","$L2",null,{"props":{"params":{},"searchParams":{}},"Component":"$3"}],null],null],null]},[[[["$","link","0",{"rel":"stylesheet","href":"/ui/_next/static/css/86f6cc749f6b8493.css","precedence":"next","crossOrigin":"$undefined"}],["$","link","1",{"rel":"stylesheet","href":"/ui/_next/static/css/169f9187db1ec37e.css","precedence":"next","crossOrigin":"$undefined"}]],["$","html",null,{"lang":"en","children":["$","body",null,{"className":"__className_cf7686","children":["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children"],"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","title",null,{"children":"404: This page could not be found."}],["$","div",null,{"style":{"fontFamily":"system-ui,\"Segoe UI\",Roboto,Helvetica,Arial,sans-serif,\"Apple Color Emoji\",\"Segoe UI Emoji\"","height":"100vh","textAlign":"center","display":"flex","flexDirection":"column","alignItems":"center","justifyContent":"center"},"children":["$","div",null,{"children":[["$","style",null,{"dangerouslySetInnerHTML":{"__html":"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}"}}],["$","h1",null,{"className":"next-error-h1","style":{"display":"inline-block","margin":"0 20px 0 0","padding":"0 23px 0 0","fontSize":24,"fontWeight":500,"verticalAlign":"top","lineHeight":"49px"},"children":"404"}],["$","div",null,{"style":{"display":"inline-block"},"children":["$","h2",null,{"style":{"fontSize":14,"fontWeight":400,"lineHeight":"49px","margin":0},"children":"This page could not be found."}]}]]}]}]],"notFoundStyles":[]}]}]}]],null],null],["$L6",null]]]]
0:["soi--ciJeUE6G2Fk4NMBG",[[["",{"children":["__PAGE__",{}]},"$undefined","$undefined",true],["",{"children":["__PAGE__",{},[["$L1",["$","$L2",null,{"props":{"params":{},"searchParams":{}},"Component":"$3"}],null],null],null]},[[[["$","link","0",{"rel":"stylesheet","href":"/ui/_next/static/css/86f6cc749f6b8493.css","precedence":"next","crossOrigin":"$undefined"}],["$","link","1",{"rel":"stylesheet","href":"/ui/_next/static/css/169f9187db1ec37e.css","precedence":"next","crossOrigin":"$undefined"}]],["$","html",null,{"lang":"en","children":["$","body",null,{"className":"__className_cf7686","children":["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children"],"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","title",null,{"children":"404: This page could not be found."}],["$","div",null,{"style":{"fontFamily":"system-ui,\"Segoe UI\",Roboto,Helvetica,Arial,sans-serif,\"Apple Color Emoji\",\"Segoe UI Emoji\"","height":"100vh","textAlign":"center","display":"flex","flexDirection":"column","alignItems":"center","justifyContent":"center"},"children":["$","div",null,{"children":[["$","style",null,{"dangerouslySetInnerHTML":{"__html":"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}"}}],["$","h1",null,{"className":"next-error-h1","style":{"display":"inline-block","margin":"0 20px 0 0","padding":"0 23px 0 0","fontSize":24,"fontWeight":500,"verticalAlign":"top","lineHeight":"49px"},"children":"404"}],["$","div",null,{"style":{"display":"inline-block"},"children":["$","h2",null,{"style":{"fontSize":14,"fontWeight":400,"lineHeight":"49px","margin":0},"children":"This page could not be found."}]}]]}]}]],"notFoundStyles":[]}]}]}]],null],null],["$L6",null]]]]
6:[["$","meta","0",{"name":"viewport","content":"width=device-width, initial-scale=1"}],["$","meta","1",{"charSet":"utf-8"}],["$","title","2",{"children":"LiteLLM Dashboard"}],["$","meta","3",{"name":"description","content":"LiteLLM Proxy Admin UI"}],["$","link","4",{"rel":"icon","href":"/ui/favicon.ico","type":"image/x-icon","sizes":"16x16"}],["$","meta","5",{"name":"next-size-adjust"}]]
1:null

View file

@ -1,7 +1,7 @@
2:I[19107,[],"ClientPageRoot"]
3:I[52829,["42","static/chunks/42-1cbed529ecb084e0.js","261","static/chunks/261-57d48f76eec1e568.js","250","static/chunks/250-a75ee9d79f1140b0.js","699","static/chunks/699-2a1c30f260f44c15.js","418","static/chunks/app/model_hub/page-068a441595bd0fc3.js"],"default",1]
3:I[52829,["42","static/chunks/42-1cbed529ecb084e0.js","261","static/chunks/261-57d48f76eec1e568.js","250","static/chunks/250-601568e45a5ffece.js","699","static/chunks/699-2a1c30f260f44c15.js","418","static/chunks/app/model_hub/page-cde2fb783e81a6c1.js"],"default",1]
4:I[4707,[],""]
5:I[36423,[],""]
0:["9yIyUkG6nV2cO0gn7kJ-Q",[[["",{"children":["model_hub",{"children":["__PAGE__",{}]}]},"$undefined","$undefined",true],["",{"children":["model_hub",{"children":["__PAGE__",{},[["$L1",["$","$L2",null,{"props":{"params":{},"searchParams":{}},"Component":"$3"}],null],null],null]},[null,["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children","model_hub","children"],"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":"$undefined","notFoundStyles":"$undefined"}]],null]},[[[["$","link","0",{"rel":"stylesheet","href":"/ui/_next/static/css/86f6cc749f6b8493.css","precedence":"next","crossOrigin":"$undefined"}],["$","link","1",{"rel":"stylesheet","href":"/ui/_next/static/css/169f9187db1ec37e.css","precedence":"next","crossOrigin":"$undefined"}]],["$","html",null,{"lang":"en","children":["$","body",null,{"className":"__className_cf7686","children":["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children"],"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","title",null,{"children":"404: This page could not be found."}],["$","div",null,{"style":{"fontFamily":"system-ui,\"Segoe UI\",Roboto,Helvetica,Arial,sans-serif,\"Apple Color Emoji\",\"Segoe UI Emoji\"","height":"100vh","textAlign":"center","display":"flex","flexDirection":"column","alignItems":"center","justifyContent":"center"},"children":["$","div",null,{"children":[["$","style",null,{"dangerouslySetInnerHTML":{"__html":"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}"}}],["$","h1",null,{"className":"next-error-h1","style":{"display":"inline-block","margin":"0 20px 0 0","padding":"0 23px 0 0","fontSize":24,"fontWeight":500,"verticalAlign":"top","lineHeight":"49px"},"children":"404"}],["$","div",null,{"style":{"display":"inline-block"},"children":["$","h2",null,{"style":{"fontSize":14,"fontWeight":400,"lineHeight":"49px","margin":0},"children":"This page could not be found."}]}]]}]}]],"notFoundStyles":[]}]}]}]],null],null],["$L6",null]]]]
0:["soi--ciJeUE6G2Fk4NMBG",[[["",{"children":["model_hub",{"children":["__PAGE__",{}]}]},"$undefined","$undefined",true],["",{"children":["model_hub",{"children":["__PAGE__",{},[["$L1",["$","$L2",null,{"props":{"params":{},"searchParams":{}},"Component":"$3"}],null],null],null]},[null,["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children","model_hub","children"],"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":"$undefined","notFoundStyles":"$undefined"}]],null]},[[[["$","link","0",{"rel":"stylesheet","href":"/ui/_next/static/css/86f6cc749f6b8493.css","precedence":"next","crossOrigin":"$undefined"}],["$","link","1",{"rel":"stylesheet","href":"/ui/_next/static/css/169f9187db1ec37e.css","precedence":"next","crossOrigin":"$undefined"}]],["$","html",null,{"lang":"en","children":["$","body",null,{"className":"__className_cf7686","children":["$","$L4",null,{"parallelRouterKey":"children","segmentPath":["children"],"error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","title",null,{"children":"404: This page could not be found."}],["$","div",null,{"style":{"fontFamily":"system-ui,\"Segoe UI\",Roboto,Helvetica,Arial,sans-serif,\"Apple Color Emoji\",\"Segoe UI Emoji\"","height":"100vh","textAlign":"center","display":"flex","flexDirection":"column","alignItems":"center","justifyContent":"center"},"children":["$","div",null,{"children":[["$","style",null,{"dangerouslySetInnerHTML":{"__html":"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}"}}],["$","h1",null,{"className":"next-error-h1","style":{"display":"inline-block","margin":"0 20px 0 0","padding":"0 23px 0 0","fontSize":24,"fontWeight":500,"verticalAlign":"top","lineHeight":"49px"},"children":"404"}],["$","div",null,{"style":{"display":"inline-block"},"children":["$","h2",null,{"style":{"fontSize":14,"fontWeight":400,"lineHeight":"49px","margin":0},"children":"This page could not be found."}]}]]}]}]],"notFoundStyles":[]}]}]}]],null],null],["$L6",null]]]]
6:[["$","meta","0",{"name":"viewport","content":"width=device-width, initial-scale=1"}],["$","meta","1",{"charSet":"utf-8"}],["$","title","2",{"children":"LiteLLM Dashboard"}],["$","meta","3",{"name":"description","content":"LiteLLM Proxy Admin UI"}],["$","link","4",{"rel":"icon","href":"/ui/favicon.ico","type":"image/x-icon","sizes":"16x16"}],["$","meta","5",{"name":"next-size-adjust"}]]
1:null

Some files were not shown because too many files have changed in this diff Show more