mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
Litellm ruff linting enforcement (#5992)
* ci(config.yml): add a 'check_code_quality' step Addresses https://github.com/BerriAI/litellm/issues/5991 * ci(config.yml): check why circle ci doesn't pick up this test * ci(config.yml): fix to run 'check_code_quality' tests * fix(__init__.py): fix unprotected import * fix(__init__.py): don't remove unused imports * build(ruff.toml): update ruff.toml to ignore unused imports * fix: fix: ruff + pyright - fix linting + type-checking errors * fix: fix linting errors * fix(lago.py): fix module init error * fix: fix linting errors * ci(config.yml): cd into correct dir for checks * fix(proxy_server.py): fix linting error * fix(utils.py): fix bare except causes ruff linting errors * fix: ruff - fix remaining linting errors * fix(clickhouse.py): use standard logging object * fix(__init__.py): fix unprotected import * fix: ruff - fix linting errors * fix: fix linting errors * ci(config.yml): cleanup code qa step (formatting handled in local_testing) * fix(_health_endpoints.py): fix ruff linting errors * ci(config.yml): just use ruff in check_code_quality pipeline for now * build(custom_guardrail.py): include missing file * style(embedding_handler.py): fix ruff check
This commit is contained in:
parent
3fc4ae0d65
commit
d57be47b0f
263 changed files with 1687 additions and 3320 deletions
|
@ -8,7 +8,7 @@ import types
|
|||
from copy import deepcopy
|
||||
from enum import Enum
|
||||
from functools import partial
|
||||
from typing import Any, AsyncIterator, Callable, Iterator, List, Optional, Union
|
||||
from typing import Any, AsyncIterator, Callable, Dict, Iterator, List, Optional, Union
|
||||
|
||||
import httpx # type: ignore
|
||||
import requests # type: ignore
|
||||
|
@ -112,7 +112,7 @@ class SagemakerLLM(BaseAWSLLM):
|
|||
):
|
||||
try:
|
||||
from botocore.credentials import Credentials
|
||||
except ImportError as e:
|
||||
except ImportError:
|
||||
raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")
|
||||
## CREDENTIALS ##
|
||||
# pop aws_secret_access_key, aws_access_key_id, aws_session_token, aws_region_name from kwargs, since completion calls fail with them
|
||||
|
@ -123,7 +123,7 @@ class SagemakerLLM(BaseAWSLLM):
|
|||
aws_role_name = optional_params.pop("aws_role_name", None)
|
||||
aws_session_name = optional_params.pop("aws_session_name", None)
|
||||
aws_profile_name = optional_params.pop("aws_profile_name", None)
|
||||
aws_bedrock_runtime_endpoint = optional_params.pop(
|
||||
optional_params.pop(
|
||||
"aws_bedrock_runtime_endpoint", None
|
||||
) # https://bedrock-runtime.{region_name}.amazonaws.com
|
||||
aws_web_identity_token = optional_params.pop("aws_web_identity_token", None)
|
||||
|
@ -175,7 +175,7 @@ class SagemakerLLM(BaseAWSLLM):
|
|||
from botocore.auth import SigV4Auth
|
||||
from botocore.awsrequest import AWSRequest
|
||||
from botocore.credentials import Credentials
|
||||
except ImportError as e:
|
||||
except ImportError:
|
||||
raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")
|
||||
|
||||
sigv4 = SigV4Auth(credentials, "sagemaker", aws_region_name)
|
||||
|
@ -244,7 +244,7 @@ class SagemakerLLM(BaseAWSLLM):
|
|||
hf_model_name = (
|
||||
hf_model_name or model
|
||||
) # pass in hf model name for pulling it's prompt template - (e.g. `hf_model_name="meta-llama/Llama-2-7b-chat-hf` applies the llama2 chat template to the prompt)
|
||||
prompt = prompt_factory(model=hf_model_name, messages=messages)
|
||||
prompt: str = prompt_factory(model=hf_model_name, messages=messages) # type: ignore
|
||||
|
||||
return prompt
|
||||
|
||||
|
@ -256,10 +256,10 @@ class SagemakerLLM(BaseAWSLLM):
|
|||
print_verbose: Callable,
|
||||
encoding,
|
||||
logging_obj,
|
||||
optional_params: dict,
|
||||
timeout: Optional[Union[float, httpx.Timeout]] = None,
|
||||
custom_prompt_dict={},
|
||||
hf_model_name=None,
|
||||
optional_params=None,
|
||||
litellm_params=None,
|
||||
logger_fn=None,
|
||||
acompletion: bool = False,
|
||||
|
@ -277,7 +277,7 @@ class SagemakerLLM(BaseAWSLLM):
|
|||
|
||||
openai_like_chat_completions = DatabricksChatCompletion()
|
||||
inference_params["stream"] = True if stream is True else False
|
||||
_data = {
|
||||
_data: Dict[str, Any] = {
|
||||
"model": model,
|
||||
"messages": messages,
|
||||
**inference_params,
|
||||
|
@ -310,7 +310,7 @@ class SagemakerLLM(BaseAWSLLM):
|
|||
logger_fn=logger_fn,
|
||||
timeout=timeout,
|
||||
encoding=encoding,
|
||||
headers=prepared_request.headers,
|
||||
headers=prepared_request.headers, # type: ignore
|
||||
custom_endpoint=True,
|
||||
custom_llm_provider="sagemaker_chat",
|
||||
streaming_decoder=custom_stream_decoder, # type: ignore
|
||||
|
@ -474,7 +474,7 @@ class SagemakerLLM(BaseAWSLLM):
|
|||
try:
|
||||
sync_response = sync_handler.post(
|
||||
url=prepared_request.url,
|
||||
headers=prepared_request.headers,
|
||||
headers=prepared_request.headers, # type: ignore
|
||||
json=_data,
|
||||
timeout=timeout,
|
||||
)
|
||||
|
@ -559,7 +559,7 @@ class SagemakerLLM(BaseAWSLLM):
|
|||
self,
|
||||
api_base: str,
|
||||
headers: dict,
|
||||
data: str,
|
||||
data: dict,
|
||||
logging_obj,
|
||||
client=None,
|
||||
):
|
||||
|
@ -598,7 +598,7 @@ class SagemakerLLM(BaseAWSLLM):
|
|||
except httpx.HTTPStatusError as err:
|
||||
error_code = err.response.status_code
|
||||
raise SagemakerError(status_code=error_code, message=err.response.text)
|
||||
except httpx.TimeoutException as e:
|
||||
except httpx.TimeoutException:
|
||||
raise SagemakerError(status_code=408, message="Timeout error occurred.")
|
||||
except Exception as e:
|
||||
raise SagemakerError(status_code=500, message=str(e))
|
||||
|
@ -638,7 +638,7 @@ class SagemakerLLM(BaseAWSLLM):
|
|||
make_call=partial(
|
||||
self.make_async_call,
|
||||
api_base=prepared_request.url,
|
||||
headers=prepared_request.headers,
|
||||
headers=prepared_request.headers, # type: ignore
|
||||
data=data,
|
||||
logging_obj=logging_obj,
|
||||
),
|
||||
|
@ -716,7 +716,7 @@ class SagemakerLLM(BaseAWSLLM):
|
|||
try:
|
||||
response = await async_handler.post(
|
||||
url=prepared_request.url,
|
||||
headers=prepared_request.headers,
|
||||
headers=prepared_request.headers, # type: ignore
|
||||
json=data,
|
||||
timeout=timeout,
|
||||
)
|
||||
|
@ -794,8 +794,8 @@ class SagemakerLLM(BaseAWSLLM):
|
|||
print_verbose: Callable,
|
||||
encoding,
|
||||
logging_obj,
|
||||
optional_params: dict,
|
||||
custom_prompt_dict={},
|
||||
optional_params=None,
|
||||
litellm_params=None,
|
||||
logger_fn=None,
|
||||
):
|
||||
|
@ -1032,7 +1032,7 @@ class AWSEventStreamDecoder:
|
|||
yield self._chunk_parser_messages_api(chunk_data=_data)
|
||||
else:
|
||||
yield self._chunk_parser(chunk_data=_data)
|
||||
except json.JSONDecodeError as e:
|
||||
except json.JSONDecodeError:
|
||||
# Handle or log any unparseable data at the end
|
||||
verbose_logger.error(
|
||||
f"Warning: Unparseable JSON data remained: {accumulated_json}"
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue