mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
adding support for nlp cloud
This commit is contained in:
parent
5b5835480c
commit
f98da9f13c
10 changed files with 286 additions and 3 deletions
103
litellm/llms/nlp_cloud.py
Normal file
103
litellm/llms/nlp_cloud.py
Normal file
|
@ -0,0 +1,103 @@
|
|||
import os
|
||||
import json
|
||||
from enum import Enum
|
||||
import requests
|
||||
import time
|
||||
from typing import Callable
|
||||
from litellm.utils import ModelResponse
|
||||
|
||||
class NLPCloudError(Exception):
|
||||
def __init__(self, status_code, message):
|
||||
self.status_code = status_code
|
||||
self.message = message
|
||||
super().__init__(
|
||||
self.message
|
||||
) # Call the base class constructor with the parameters it needs
|
||||
|
||||
def validate_environment(api_key):
|
||||
headers = {
|
||||
"accept": "application/json",
|
||||
"content-type": "application/json",
|
||||
}
|
||||
if api_key:
|
||||
headers["Authorization"] = f"Token {api_key}"
|
||||
return headers
|
||||
|
||||
def completion(
|
||||
model: str,
|
||||
messages: list,
|
||||
model_response: ModelResponse,
|
||||
print_verbose: Callable,
|
||||
encoding,
|
||||
api_key,
|
||||
logging_obj,
|
||||
optional_params=None,
|
||||
litellm_params=None,
|
||||
logger_fn=None,
|
||||
default_max_tokens_to_sample=None,
|
||||
):
|
||||
headers = validate_environment(api_key)
|
||||
completion_url_fragment_1 = "https://api.nlpcloud.io/v1/gpu/"
|
||||
completion_url_fragment_2 = "/generation"
|
||||
model = model
|
||||
text = " ".join(message["content"] for message in messages)
|
||||
|
||||
data = {
|
||||
"text": text,
|
||||
**optional_params,
|
||||
}
|
||||
|
||||
completion_url = completion_url_fragment_1 + model + completion_url_fragment_2
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input=text,
|
||||
api_key=api_key,
|
||||
additional_args={"complete_input_dict": data},
|
||||
)
|
||||
## COMPLETION CALL
|
||||
response = requests.post(
|
||||
completion_url, headers=headers, data=json.dumps(data), stream=optional_params["stream"] if "stream" in optional_params else False
|
||||
)
|
||||
if "stream" in optional_params and optional_params["stream"] == True:
|
||||
return response.iter_lines()
|
||||
else:
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=text,
|
||||
api_key=api_key,
|
||||
original_response=response.text,
|
||||
additional_args={"complete_input_dict": data},
|
||||
)
|
||||
print_verbose(f"raw model_response: {response.text}")
|
||||
## RESPONSE OBJECT
|
||||
try:
|
||||
completion_response = response.json()
|
||||
except:
|
||||
raise NLPCloudError(message=response.text, status_code=response.status_code)
|
||||
if "error" in completion_response:
|
||||
raise NLPCloudError(
|
||||
message=completion_response["error"],
|
||||
status_code=response.status_code,
|
||||
)
|
||||
else:
|
||||
try:
|
||||
model_response["choices"][0]["message"]["content"] = completion_response["generated_text"]
|
||||
except:
|
||||
raise NLPCloudError(message=json.dumps(completion_response), status_code=response.status_code)
|
||||
|
||||
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
|
||||
prompt_tokens = completion_response["nb_input_tokens"]
|
||||
completion_tokens = completion_response["nb_generated_tokens"]
|
||||
|
||||
model_response["created"] = time.time()
|
||||
model_response["model"] = model
|
||||
model_response["usage"] = {
|
||||
"prompt_tokens": prompt_tokens,
|
||||
"completion_tokens": completion_tokens,
|
||||
"total_tokens": prompt_tokens + completion_tokens,
|
||||
}
|
||||
return model_response
|
||||
|
||||
def embedding():
|
||||
# logic for parsing in - calling - parsing out model embedding calls
|
||||
pass
|
Loading…
Add table
Add a link
Reference in a new issue