* build(model_prices_and_context_window.json): add vertex ai gemini-2.5-flash pricing
* build(model_prices_and_context_window.json): add gemini reasoning token pricing
* fix(vertex_and_google_ai_studio_gemini.py): support counting thinking tokens for gemini
allows accurate cost calc
* fix(utils.py): add reasoning token cost calc to generic cost calc
ensures gemini-2.5-flash cost calculation is accurate
* build(model_prices_and_context_window.json): mark gemini-2.5-flash as 'supports_reasoning'
* feat(gemini/): support 'thinking' + 'reasoning_effort' params + new unit tests
allow controlling thinking effort for gemini-2.5-flash models
* test: update unit testing
* feat(vertex_and_google_ai_studio_gemini.py): return reasoning content if given in gemini response
* test: update model name
* fix: fix ruff check
* test(test_spend_management_endpoints.py): update tests to be less sensitive to new keys / updates to usage object
* fix(vertex_and_google_ai_studio_gemini.py): fix translation
* feat(llm_passthrough_endpoints.py): support mistral passthrough
Closes https://github.com/BerriAI/litellm/issues/9051
* feat(llm_passthrough_endpoints.py): initial commit for adding vllm passthrough route
* feat(vllm/common_utils.py): add new vllm model info route
make it possible to use vllm passthrough route via factory function
* fix(llm_passthrough_endpoints.py): add all methods to vllm passthrough route
* fix: fix linting error
* fix: fix linting error
* fix: fix ruff check
* fix(proxy/_types.py): add new passthrough routes
* docs(config_settings.md): add mistral env vars to docs
* Add date picker to usage tab + Add reasoning_content token tracking across all providers on streaming (#9722)
* feat(new_usage.tsx): add date picker for new usage tab
allow user to look back on their usage data
* feat(anthropic/chat/transformation.py): report reasoning tokens in completion token details
allows usage tracking on how many reasoning tokens are actually being used
* feat(streaming_chunk_builder.py): return reasoning_tokens in anthropic/openai streaming response
allows tracking reasoning_token usage across providers
* Fix update team metadata + fix bulk adding models on Ui (#9721)
* fix(handle_add_model_submit.tsx): fix bulk adding models
* fix(team_info.tsx): fix team metadata update
Fixes https://github.com/BerriAI/litellm/issues/9689
* (v0) Unified file id - allow calling multiple providers with same file id (#9718)
* feat(files_endpoints.py): initial commit adding 'target_model_names' support
allow developer to specify all the models they want to call with the file
* feat(files_endpoints.py): return unified files endpoint
* test(test_files_endpoints.py): add validation test - if invalid purpose submitted
* feat: more updates
* feat: initial working commit of unified file id translation
* fix: additional fixes
* fix(router.py): remove model replace logic in jsonl on acreate_file
enables file upload to work for chat completion requests as well
* fix(files_endpoints.py): remove whitespace around model name
* fix(azure/handler.py): return acreate_file with correct response type
* fix: fix linting errors
* test: fix mock test to run on github actions
* fix: fix ruff errors
* fix: fix file too large error
* fix(utils.py): remove redundant var
* test: modify test to work on github actions
* test: update tests
* test: more debug logs to understand ci/cd issue
* test: fix test for respx
* test: skip mock respx test
fails on ci/cd - not clear why
* fix: fix ruff check
* fix: fix test
* fix(model_connection_test.tsx): fix linting error
* test: update unit tests
* build(pyproject.toml): add new dev dependencies - for type checking
* build: reformat files to fit black
* ci: reformat to fit black
* ci(test-litellm.yml): make tests run clear
* build(pyproject.toml): add ruff
* fix: fix ruff checks
* build(mypy/): fix mypy linting errors
* fix(hashicorp_secret_manager.py): fix passing cert for tls auth
* build(mypy/): resolve all mypy errors
* test: update test
* fix: fix black formatting
* build(pre-commit-config.yaml): use poetry run black
* fix(proxy_server.py): fix linting error
* fix: fix ruff safe representation error
* fix(anthropic/chat/transformation.py): Don't set tool choice on response_format conversion when thinking is enabled
Not allowed by Anthropic
Fixes https://github.com/BerriAI/litellm/issues/8901
* refactor: move test to base anthropic chat tests
ensures consistent behaviour across vertex/anthropic/bedrock
* fix(anthropic/chat/transformation.py): if thinking token is specified and max tokens is not - ensure max token to anthropic is higher than thinking tokens
* feat(converse_transformation.py): correctly handle thinking + response format on Bedrock Converse
Fixes https://github.com/BerriAI/litellm/issues/8901
* fix(converse_transformation.py): correctly handle adding max tokens
* test: handle service unavailable error
* fix(anthropic_claude3_transformation.py): fix amazon anthropic claude 3 tool calling transformation on invoke route
move to using anthropic config as base
* fix(utils.py): expose anthropic config via providerconfigmanager
* fix(llm_http_handler.py): support json mode on async completion calls
* fix(invoke_handler/make_call): support json mode for anthropic called via bedrock invoke
* fix(anthropic/): handle 'response_format: {"type": "text"}` + migrate amazon claude 3 invoke config to inherit from anthropic config
Prevents error when passing in 'response_format: {"type": "text"}
* test: fix test
* fix(utils.py): fix base invoke provider check
* fix(anthropic_claude3_transformation.py): don't pass 'stream' param
* fix: fix linting errors
* fix(converse_transformation.py): handle response_format type=text for converse
* feat(bedrock/converse/transformation.py): support claude-3-7-sonnet reasoning_Content transformation
Closes https://github.com/BerriAI/litellm/issues/8777
* fix(bedrock/): support returning `reasoning_content` on streaming for claude-3-7
Resolves https://github.com/BerriAI/litellm/issues/8777
* feat(bedrock/): unify converse reasoning content blocks for consistency across anthropic and bedrock
* fix(anthropic/chat/transformation.py): handle deepseek-style 'reasoning_content' extraction within transformation.py
simpler logic
* feat(bedrock/): fix streaming to return blocks in consistent format
* fix: fix linting error
* test: fix test
* feat(factory.py): fix bedrock thinking block translation on tool calling
allows passing the thinking blocks back to bedrock for tool calling
* fix(types/utils.py): don't exclude provider_specific_fields on model dump
ensures consistent responses
* fix: fix linting errors
* fix(convert_dict_to_response.py): pass reasoning_content on root
* fix: test
* fix(streaming_handler.py): add helper util for setting model id
* fix(streaming_handler.py): fix setting model id on model response stream chunk
* fix(streaming_handler.py): fix linting error
* fix(streaming_handler.py): fix linting error
* fix(types/utils.py): add provider_specific_fields to model stream response
* fix(streaming_handler.py): copy provider specific fields and add them to the root of the streaming response
* fix(streaming_handler.py): fix check
* fix: fix test
* fix(types/utils.py): ensure messages content is always openai compatible
* fix(types/utils.py): fix delta object to always be openai compatible
only introduce new params if variable exists
* test: fix bedrock nova tests
* test: skip flaky test
* test: skip flaky test in ci/cd
* fix(o_series_transformation.py): fix optional param check for o-series models
o3-mini and o-1 do not support parallel tool calling
* fix(utils.py): support 'drop_params' for 'thinking' param across models
allows switching to older claude versions (or non-anthropic models) and param to be safely dropped
* fix: fix passing thinking param in optional params
allows dropping thinking_param where not applicable
* test: update old model
* fix(utils.py): fix linting errors
* fix(main.py): add param to acompletion
* fix(base_utils.py): supported nested json schema passed in for anthropic calls
* refactor(base_utils.py): refactor ref parsing to prevent infinite loop
* test(test_openai_endpoints.py): refactor anthropic test to use bedrock
* fix(langfuse_prompt_management.py): add unit test for sync langfuse calls
Resolves https://github.com/BerriAI/litellm/issues/7938#issuecomment-2613293757
* build: ensure all regional bedrock models have same supported values as base bedrock model
prevents drift
* test(base_llm_unit_tests.py): add testing for nested pydantic objects
* fix(test_utils.py): add test_get_potential_model_names
* fix(anthropic/chat/transformation.py): support nested pydantic objects
Fixes https://github.com/BerriAI/litellm/issues/7755
* feat(pass_through_endpoints.py): fix anthropic end user cost tracking
* fix(anthropic/chat/transformation.py): use returned provider model for anthropic
handles anthropic `-latest` tag in request body throwing cost calculation errors
ensures we can be accurate in our model cost tracking
* feat(model_prices_and_context_window.json): add gemini-2.0-flash-thinking-exp pricing
* test: update test to use assumption that user_api_key_dict can get anthropic user id
* test: fix test
* fix: fix test
* fix(anthropic_pass_through.py): uncomment previous anthropic end-user cost tracking code block
can't guarantee user api key dict always has end user id - too many code paths
* fix(user_api_key_auth.py): this allows end user id from request body to always be read and set in auth object
* fix(auth_check.py): fix linting error
* test: fix auth check
* fix(auth_utils.py): fix get end user id to handle metadata = None
* build(model_prices_and_context_window.json): add azure o1 pricing
Closes https://github.com/BerriAI/litellm/issues/7712
* refactor: replace regex with string method for whitespace check in stop-sequences handling (#7713)
* Allows overriding keep_alive time in ollama (#7079)
* Allows overriding keep_alive time in ollama
* Also adds to ollama_chat
* Adds some info on the docs about this parameter
* fix: together ai warning (#7688)
Co-authored-by: Carl Senze <carl.senze@aleph-alpha.com>
* fix(proxy_server.py): handle config containing thread locked objects when using get_config_state
* fix(proxy_server.py): add exception to debug
* build(model_prices_and_context_window.json): update 'supports_vision' for azure o1
---------
Co-authored-by: Wolfram Ravenwolf <52386626+WolframRavenwolf@users.noreply.github.com>
Co-authored-by: Regis David Souza Mesquita <github@rdsm.dev>
Co-authored-by: Carl <45709281+capsenz@users.noreply.github.com>
Co-authored-by: Carl Senze <carl.senze@aleph-alpha.com>
* build(ui/): update ui
* fix: drop unsupported non-whitespace characters for real when calling… (#7484)
* fix: drop unsupported non-whitespace characters for real when calling anthropic with stop sequences
* test: add parameterized test for _map_stop_sequences method in AnthropicConfig
---------
Co-authored-by: Wolfram Ravenwolf <52386626+WolframRavenwolf@users.noreply.github.com>
* test(azure_openai_o1.py): initial commit with testing for azure openai o1 preview model
* fix(base_llm_unit_tests.py): handle azure o1 preview response format tests
skip as o1 on azure doesn't support tool calling yet
* fix: initial commit of azure o1 handler using openai caller
simplifies calling + allows fake streaming logic alr. implemented for openai to just work
* feat(azure/o1_handler.py): fake o1 streaming for azure o1 models
azure does not currently support streaming for o1
* feat(o1_transformation.py): support overriding 'should_fake_stream' on azure/o1 via 'supports_native_streaming' param on model info
enables user to toggle on when azure allows o1 streaming without needing to bump versions
* style(router.py): remove 'give feedback/get help' messaging when router is used
Prevents noisy messaging
Closes https://github.com/BerriAI/litellm/issues/5942
* fix(types/utils.py): handle none logprobs
Fixes https://github.com/BerriAI/litellm/issues/328
* fix(exception_mapping_utils.py): fix error str unbound error
* refactor(azure_ai/): move to openai_like chat completion handler
allows for easy swapping of api base url's (e.g. ai.services.com)
Fixes https://github.com/BerriAI/litellm/issues/7275
* refactor(azure_ai/): move to base llm http handler
* fix(azure_ai/): handle differing api endpoints
* fix(azure_ai/): make sure all unit tests are passing
* fix: fix linting errors
* fix: fix linting errors
* fix: fix linting error
* fix: fix linting errors
* fix(azure_ai/transformation.py): handle extra body param
* fix(azure_ai/transformation.py): fix max retries param handling
* fix: fix test
* test(test_azure_o1.py): fix test
* fix(llm_http_handler.py): support handling azure ai unprocessable entity error
* fix(llm_http_handler.py): handle sync invalid param error for azure ai
* fix(azure_ai/): streaming support with base_llm_http_handler
* fix(llm_http_handler.py): working sync stream calls with unprocessable entity handling for azure ai
* fix: fix linting errors
* fix(llm_http_handler.py): fix linting error
* fix(azure_ai/): handle cohere tool call invalid index param error
* fix(azure/): support passing headers to azure openai endpoints
Fixes https://github.com/BerriAI/litellm/issues/6217
* fix(utils.py): move default tokenizer to just openai
hf tokenizer makes network calls when trying to get the tokenizer - this slows down execution time calls
* fix(router.py): fix pattern matching router - add generic "*" to it as well
Fixes issue where generic "*" model access group wouldn't show up
* fix(pattern_match_deployments.py): match to more specific pattern
match to more specific pattern
allows setting generic wildcard model access group and excluding specific models more easily
* fix(proxy_server.py): fix _delete_deployment to handle base case where db_model list is empty
don't delete all router models b/c of empty list
Fixes https://github.com/BerriAI/litellm/issues/7196
* fix(anthropic/): fix handling response_format for anthropic messages with anthropic api
* fix(fireworks_ai/): support passing response_format + tool call in same message
Addresses https://github.com/BerriAI/litellm/issues/7135
* Revert "fix(fireworks_ai/): support passing response_format + tool call in same message"
This reverts commit 6a30dc6929.
* test: fix test
* fix(replicate/): fix replicate default retry/polling logic
* test: add unit testing for router pattern matching
* test: update test to use default oai tokenizer
* test: mark flaky test
* test: skip flaky test
* fix use new format for Cohere config
* fix base llm http handler
* Litellm code qa common config (#7116)
* feat(base_llm): initial commit for common base config class
Addresses code qa critique https://github.com/andrewyng/aisuite/issues/113#issuecomment-2512369132
* feat(base_llm/): add transform request/response abstract methods to base config class
---------
Co-authored-by: Krrish Dholakia <krrishdholakia@gmail.com>
* use base transform helpers
* use base_llm_http_handler for cohere
* working cohere using base llm handler
* add async cohere chat completion support on base handler
* fix completion code
* working sync cohere stream
* add async support cohere_chat
* fix types get_model_response_iterator
* async / sync tests cohere
* feat cohere using base llm class
* fix linting errors
* fix _abc error
* add cohere params to transformation
* remove old cohere file
* fix type error
* fix merge conflicts
* fix cohere merge conflicts
* fix linting error
* fix litellm.llms.custom_httpx.http_handler.HTTPHandler.post
* fix passing cohere specific params
---------
Co-authored-by: Krrish Dholakia <krrishdholakia@gmail.com>
* feat(base_llm): initial commit for common base config class
Addresses code qa critique https://github.com/andrewyng/aisuite/issues/113#issuecomment-2512369132
* feat(base_llm/): add transform request/response abstract methods to base config class
* feat(cohere-+-clarifai): refactor integrations to use common base config class
* fix: fix linting errors
* refactor(anthropic/): move anthropic + vertex anthropic to use base config
* test: fix xai test
* test: fix tests
* fix: fix linting errors
* test: comment out WIP test
* fix(transformation.py): fix is pdf used check
* fix: fix linting error
* fix(anthropic/chat/transformation.py): add json schema as values: json_schema
fixes passing pydantic obj to anthropic
Fixes https://github.com/BerriAI/litellm/issues/6766
* (feat): Add timestamp_granularities parameter to transcription API (#6457)
* Add timestamp_granularities parameter to transcription API
* add param to the local test
* fix(databricks/chat.py): handle max_retries optional param handling for openai-like calls
Fixes issue with calling finetuned vertex ai models via databricks route
* build(ui/): add team admins via proxy ui
* fix: fix linting error
* test: fix test
* docs(vertex.md): refactor docs
* test: handle overloaded anthropic model error
* test: remove duplicate test
* test: fix test
* test: update test to handle model overloaded error
---------
Co-authored-by: Show <35062952+BrunooShow@users.noreply.github.com>
* fix(ollama.py): fix get model info request
Fixes https://github.com/BerriAI/litellm/issues/6703
* feat(anthropic/chat/transformation.py): support passing user id to anthropic via openai 'user' param
* docs(anthropic.md): document all supported openai params for anthropic
* test: fix tests
* fix: fix tests
* feat(jina_ai/): add rerank support
Closes https://github.com/BerriAI/litellm/issues/6691
* test: handle service unavailable error
* fix(handler.py): refactor together ai rerank call
* test: update test to handle overloaded error
* test: fix test
* Litellm router trace (#6742)
* feat(router.py): add trace_id to parent functions - allows tracking retry/fallbacks
* feat(router.py): log trace id across retry/fallback logic
allows grouping llm logs for the same request
* test: fix tests
* fix: fix test
* fix(transformation.py): only set non-none stop_sequences
* Litellm router disable fallbacks (#6743)
* bump: version 1.52.6 → 1.52.7
* feat(router.py): enable dynamically disabling fallbacks
Allows for enabling/disabling fallbacks per key
* feat(litellm_pre_call_utils.py): support setting 'disable_fallbacks' on litellm key
* test: fix test
* fix(exception_mapping_utils.py): map 'model is overloaded' to internal server error
* test: handle gemini error
* test: fix test
* fix: new run
* fix(__init__.py): add 'watsonx_text' as mapped llm api route
Fixes https://github.com/BerriAI/litellm/issues/6663
* fix(opentelemetry.py): fix passing parallel tool calls to otel
Fixes https://github.com/BerriAI/litellm/issues/6677
* refactor(test_opentelemetry_unit_tests.py): create a base set of unit tests for all logging integrations - test for parallel tool call handling
reduces bugs in repo
* fix(__init__.py): update provider-model mapping to include all known provider-model mappings
Fixes https://github.com/BerriAI/litellm/issues/6669
* feat(anthropic): support passing document in llm api call
* docs(anthropic.md): add pdf anthropic call to docs + expose new 'supports_pdf_input' function
* fix(factory.py): fix linting error
* refactor: move gemini translation logic inside the transformation.py file
easier to isolate the gemini translation logic
* fix(gemini-transformation): support multiple tool calls in message body
Merges https://github.com/BerriAI/litellm/pull/6487/files
* test(test_vertex.py): add remaining tests from https://github.com/BerriAI/litellm/pull/6487
* fix(gemini-transformation): return tool calls for multiple tool calls
* fix: support passing logprobs param for vertex + gemini
* feat(vertex_ai): add logprobs support for gemini calls
* fix(anthropic/chat/transformation.py): fix disable parallel tool use flag
* fix: fix linting error
* fix(_logging.py): log stacktrace information in json logs
Closes https://github.com/BerriAI/litellm/issues/6497
* fix(utils.py): fix mem leak for async stream + completion
Uses a global executor pool instead of creating a new thread on each request
Fixes https://github.com/BerriAI/litellm/issues/6404
* fix(factory.py): handle tool call + content in assistant message for bedrock
* fix: fix import
* fix(factory.py): maintain support for content as a str in assistant response
* fix: fix import
* test: cleanup test
* fix(vertex_and_google_ai_studio/): return none for content if no str value
* test: retry flaky tests
* (UI) Fix viewing members, keys in a team + added testing (#6514)
* fix listing teams on ui
* LiteLLM Minor Fixes & Improvements (10/28/2024) (#6475)
* fix(anthropic/chat/transformation.py): support anthropic disable_parallel_tool_use param
Fixes https://github.com/BerriAI/litellm/issues/6456
* feat(anthropic/chat/transformation.py): support anthropic computer tool use
Closes https://github.com/BerriAI/litellm/issues/6427
* fix(vertex_ai/common_utils.py): parse out '$schema' when calling vertex ai
Fixes issue when trying to call vertex from vercel sdk
* fix(main.py): add 'extra_headers' support for azure on all translation endpoints
Fixes https://github.com/BerriAI/litellm/issues/6465
* fix: fix linting errors
* fix(transformation.py): handle no beta headers for anthropic
* test: cleanup test
* fix: fix linting error
* fix: fix linting errors
* fix: fix linting errors
* fix(transformation.py): handle dummy tool call
* fix(main.py): fix linting error
* fix(azure.py): pass required param
* LiteLLM Minor Fixes & Improvements (10/24/2024) (#6441)
* fix(azure.py): handle /openai/deployment in azure api base
* fix(factory.py): fix faulty anthropic tool result translation check
Fixes https://github.com/BerriAI/litellm/issues/6422
* fix(gpt_transformation.py): add support for parallel_tool_calls to azure
Fixes https://github.com/BerriAI/litellm/issues/6440
* fix(factory.py): support anthropic prompt caching for tool results
* fix(vertex_ai/common_utils): don't pop non-null required field
Fixes https://github.com/BerriAI/litellm/issues/6426
* feat(vertex_ai.py): support code_execution tool call for vertex ai + gemini
Closes https://github.com/BerriAI/litellm/issues/6434
* build(model_prices_and_context_window.json): Add 'supports_assistant_prefill' for bedrock claude-3-5-sonnet v2 models
Closes https://github.com/BerriAI/litellm/issues/6437
* fix(types/utils.py): fix linting
* test: update test to include required fields
* test: fix test
* test: handle flaky test
* test: remove e2e test - hitting gemini rate limits
* Litellm dev 10 26 2024 (#6472)
* docs(exception_mapping.md): add missing exception types
Fixes https://github.com/Aider-AI/aider/issues/2120#issuecomment-2438971183
* fix(main.py): register custom model pricing with specific key
Ensure custom model pricing is registered to the specific model+provider key combination
* test: make testing more robust for custom pricing
* fix(redis_cache.py): instrument otel logging for sync redis calls
ensures complete coverage for all redis cache calls
* (Testing) Add unit testing for DualCache - ensure in memory cache is used when expected (#6471)
* test test_dual_cache_get_set
* unit testing for dual cache
* fix async_set_cache_sadd
* test_dual_cache_local_only
* redis otel tracing + async support for latency routing (#6452)
* docs(exception_mapping.md): add missing exception types
Fixes https://github.com/Aider-AI/aider/issues/2120#issuecomment-2438971183
* fix(main.py): register custom model pricing with specific key
Ensure custom model pricing is registered to the specific model+provider key combination
* test: make testing more robust for custom pricing
* fix(redis_cache.py): instrument otel logging for sync redis calls
ensures complete coverage for all redis cache calls
* refactor: pass parent_otel_span for redis caching calls in router
allows for more observability into what calls are causing latency issues
* test: update tests with new params
* refactor: ensure e2e otel tracing for router
* refactor(router.py): add more otel tracing acrosss router
catch all latency issues for router requests
* fix: fix linting error
* fix(router.py): fix linting error
* fix: fix test
* test: fix tests
* fix(dual_cache.py): pass ttl to redis cache
* fix: fix param
* fix(dual_cache.py): set default value for parent_otel_span
* fix(transformation.py): support 'response_format' for anthropic calls
* fix(transformation.py): check for cache_control inside 'function' block
* fix: fix linting error
* fix: fix linting errors
---------
Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
---------
Co-authored-by: Krish Dholakia <krrishdholakia@gmail.com>
* ui new build
* Add retry strat (#6520)
Signed-off-by: dbczumar <corey.zumar@databricks.com>
* (fix) slack alerting - don't spam the failed cost tracking alert for the same model (#6543)
* fix use failing_model as cache key for failed_tracking_alert
* fix use standard logging payload for getting response cost
* fix kwargs.get("response_cost")
* fix getting response cost
* (feat) add XAI ChatCompletion Support (#6373)
* init commit for XAI
* add full logic for xai chat completion
* test_completion_xai
* docs xAI
* add xai/grok-beta
* test_xai_chat_config_get_openai_compatible_provider_info
* test_xai_chat_config_map_openai_params
* add xai streaming test
---------
Signed-off-by: dbczumar <corey.zumar@databricks.com>
Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: Corey Zumar <39497902+dbczumar@users.noreply.github.com>
* fix(anthropic/chat/transformation.py): support anthropic disable_parallel_tool_use param
Fixes https://github.com/BerriAI/litellm/issues/6456
* feat(anthropic/chat/transformation.py): support anthropic computer tool use
Closes https://github.com/BerriAI/litellm/issues/6427
* fix(vertex_ai/common_utils.py): parse out '$schema' when calling vertex ai
Fixes issue when trying to call vertex from vercel sdk
* fix(main.py): add 'extra_headers' support for azure on all translation endpoints
Fixes https://github.com/BerriAI/litellm/issues/6465
* fix: fix linting errors
* fix(transformation.py): handle no beta headers for anthropic
* test: cleanup test
* fix: fix linting error
* fix: fix linting errors
* fix: fix linting errors
* fix(transformation.py): handle dummy tool call
* fix(main.py): fix linting error
* fix(azure.py): pass required param
* LiteLLM Minor Fixes & Improvements (10/24/2024) (#6441)
* fix(azure.py): handle /openai/deployment in azure api base
* fix(factory.py): fix faulty anthropic tool result translation check
Fixes https://github.com/BerriAI/litellm/issues/6422
* fix(gpt_transformation.py): add support for parallel_tool_calls to azure
Fixes https://github.com/BerriAI/litellm/issues/6440
* fix(factory.py): support anthropic prompt caching for tool results
* fix(vertex_ai/common_utils): don't pop non-null required field
Fixes https://github.com/BerriAI/litellm/issues/6426
* feat(vertex_ai.py): support code_execution tool call for vertex ai + gemini
Closes https://github.com/BerriAI/litellm/issues/6434
* build(model_prices_and_context_window.json): Add 'supports_assistant_prefill' for bedrock claude-3-5-sonnet v2 models
Closes https://github.com/BerriAI/litellm/issues/6437
* fix(types/utils.py): fix linting
* test: update test to include required fields
* test: fix test
* test: handle flaky test
* test: remove e2e test - hitting gemini rate limits
* Litellm dev 10 26 2024 (#6472)
* docs(exception_mapping.md): add missing exception types
Fixes https://github.com/Aider-AI/aider/issues/2120#issuecomment-2438971183
* fix(main.py): register custom model pricing with specific key
Ensure custom model pricing is registered to the specific model+provider key combination
* test: make testing more robust for custom pricing
* fix(redis_cache.py): instrument otel logging for sync redis calls
ensures complete coverage for all redis cache calls
* (Testing) Add unit testing for DualCache - ensure in memory cache is used when expected (#6471)
* test test_dual_cache_get_set
* unit testing for dual cache
* fix async_set_cache_sadd
* test_dual_cache_local_only
* redis otel tracing + async support for latency routing (#6452)
* docs(exception_mapping.md): add missing exception types
Fixes https://github.com/Aider-AI/aider/issues/2120#issuecomment-2438971183
* fix(main.py): register custom model pricing with specific key
Ensure custom model pricing is registered to the specific model+provider key combination
* test: make testing more robust for custom pricing
* fix(redis_cache.py): instrument otel logging for sync redis calls
ensures complete coverage for all redis cache calls
* refactor: pass parent_otel_span for redis caching calls in router
allows for more observability into what calls are causing latency issues
* test: update tests with new params
* refactor: ensure e2e otel tracing for router
* refactor(router.py): add more otel tracing acrosss router
catch all latency issues for router requests
* fix: fix linting error
* fix(router.py): fix linting error
* fix: fix test
* test: fix tests
* fix(dual_cache.py): pass ttl to redis cache
* fix: fix param
* fix(dual_cache.py): set default value for parent_otel_span
* fix(transformation.py): support 'response_format' for anthropic calls
* fix(transformation.py): check for cache_control inside 'function' block
* fix: fix linting error
* fix: fix linting errors
---------
Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
* fix(azure.py): handle /openai/deployment in azure api base
* fix(factory.py): fix faulty anthropic tool result translation check
Fixes https://github.com/BerriAI/litellm/issues/6422
* fix(gpt_transformation.py): add support for parallel_tool_calls to azure
Fixes https://github.com/BerriAI/litellm/issues/6440
* fix(factory.py): support anthropic prompt caching for tool results
* fix(vertex_ai/common_utils): don't pop non-null required field
Fixes https://github.com/BerriAI/litellm/issues/6426
* feat(vertex_ai.py): support code_execution tool call for vertex ai + gemini
Closes https://github.com/BerriAI/litellm/issues/6434
* build(model_prices_and_context_window.json): Add 'supports_assistant_prefill' for bedrock claude-3-5-sonnet v2 models
Closes https://github.com/BerriAI/litellm/issues/6437
* fix(types/utils.py): fix linting
* test: update test to include required fields
* test: fix test
* test: handle flaky test
* test: remove e2e test - hitting gemini rate limits
* feat(proxy_cli.py): add new 'log_config' cli param
Allows passing logging.conf to uvicorn on startup
* docs(cli.md): add logging conf to uvicorn cli docs
* fix(get_llm_provider_logic.py): fix default api base for litellm_proxy
Fixes https://github.com/BerriAI/litellm/issues/6332
* feat(openai_like/embedding): Add support for jina ai embeddings
Closes https://github.com/BerriAI/litellm/issues/6337
* docs(deploy.md): update entrypoint.sh filepath post-refactor
Fixes outdated docs
* feat(prometheus.py): emit time_to_first_token metric on prometheus
Closes https://github.com/BerriAI/litellm/issues/6334
* fix(prometheus.py): only emit time to first token metric if stream is True
enables more accurate ttft usage
* test: handle vertex api instability
* fix(get_llm_provider_logic.py): fix import
* fix(openai.py): fix deepinfra default api base
* fix(anthropic/transformation.py): remove anthropic beta header (#6361)
* feat(together_ai/completion): handle together ai completion calls
* fix: handle list of int / list of list of int for text completion calls
* fix(utils.py): check if base model in bedrock converse model list
Fixes https://github.com/BerriAI/litellm/issues/6003
* test(test_optional_params.py): add unit tests for bedrock optional param mapping
Fixes https://github.com/BerriAI/litellm/issues/6003
* feat(utils.py): enable passing dummy tool call for anthropic/bedrock calls if tool_use blocks exist
Fixes https://github.com/BerriAI/litellm/issues/5388
* fixed an issue with tool use of claude models with anthropic and bedrock (#6013)
* fix(utils.py): handle empty schema for anthropic/bedrock
Fixes https://github.com/BerriAI/litellm/issues/6012
* fix: fix linting errors
* fix: fix linting errors
* fix: fix linting errors
* fix(proxy_cli.py): fix import route for app + health checks path (#6026)
* (testing): Enable testing us.anthropic.claude-3-haiku-20240307-v1:0. (#6018)
* fix(proxy_cli.py): fix import route for app + health checks gettsburg.wav
Fixes https://github.com/BerriAI/litellm/issues/5999
---------
Co-authored-by: David Manouchehri <david.manouchehri@ai.moda>
---------
Co-authored-by: Ved Patwardhan <54766411+vedpatwardhan@users.noreply.github.com>
Co-authored-by: David Manouchehri <david.manouchehri@ai.moda>