Compare commits
111 commits
v1.66.3-ni
...
main
Author | SHA1 | Date | |
---|---|---|---|
|
b82af5b826 | ||
|
2adb2fc6a5 | ||
|
620a0f4805 | ||
|
05d617bea0 | ||
|
ab68af4ff5 | ||
|
430cc60e62 | ||
|
be4152c8d5 | ||
|
acd2c1783c | ||
|
6023427dae | ||
|
2486a106f4 | ||
|
a260afb74d | ||
|
5e2fd49dd3 | ||
|
f3291bde4d | ||
|
1014529ed6 | ||
|
edd15b0905 | ||
|
dc9b058dbd | ||
|
2e58e47b43 | ||
|
baa5564f95 | ||
|
36ee132514 | ||
|
a649f10e63 | ||
|
8184124217 | ||
|
174a1aa007 | ||
|
47420d8d68 | ||
|
34be7ffceb | ||
|
f5996b2f6b | ||
|
217681eb5e | ||
|
f670ebeb2f | ||
|
31f704a370 | ||
|
1e3a1cba23 | ||
|
96e31d205c | ||
|
5f98d4d7de | ||
|
0dba2886f0 | ||
|
6e4fed59b6 | ||
|
b96d2ea422 | ||
|
868cdd0226 | ||
|
2bb51866b1 | ||
|
44264ab6d6 | ||
|
66680c421d | ||
|
b2955a2bdd | ||
|
ebfff975d4 | ||
|
a7db0df043 | ||
|
d1fb051d25 | ||
|
7cb95bcc96 | ||
|
104e4cb1bc | ||
|
0c2f705417 | ||
|
4eac0f64f3 | ||
|
4a50cf10fb | ||
|
89131d8ed3 | ||
|
a34778dda6 | ||
|
0c3b7bb37d | ||
|
03245c732a | ||
|
10257426a2 | ||
|
0b63c7a2eb | ||
|
1ff7625984 | ||
|
aa55103486 | ||
|
1d9b58688b | ||
|
ce828408da | ||
|
e0a613f88a | ||
|
72f6bd3972 | ||
|
36bcb3de4e | ||
|
bb13ac45c8 | ||
|
1be36be72e | ||
|
55a17730fb | ||
|
bbfcb1ac7e | ||
|
daf024bad1 | ||
|
f39d917886 | ||
|
7c3df984da | ||
|
431b230f07 | ||
|
6206649219 | ||
|
653570824a | ||
|
c80e984d7e | ||
|
b0024bb229 | ||
|
0717369ae6 | ||
|
03b5399f86 | ||
|
99db1b7690 | ||
|
173ef01ef6 | ||
|
5c929317cd | ||
|
f08a4e3c06 | ||
|
3c463f6715 | ||
|
2508ca71cb | ||
|
b4f2b3dad1 | ||
|
8ae2653280 | ||
|
97d7a5e78e | ||
|
36308a31be | ||
|
db4ebe10c8 | ||
|
d726e0f34c | ||
|
ba1b552e8b | ||
|
49759d5678 | ||
|
0a35c208d7 | ||
|
dee5182fc8 | ||
|
a62805f98f | ||
|
5bf76f0bb1 | ||
|
ef6ac42658 | ||
|
b9756bf006 | ||
|
a1879cfa35 | ||
|
652e1b7f0f | ||
|
6de3481252 | ||
|
76f00a5121 | ||
|
3d5022bd79 | ||
|
3e87ec4f16 | ||
|
1ea046cc61 | ||
|
415abfc222 | ||
|
de3c2d14bf | ||
|
f7dd688035 | ||
|
809eb859cf | ||
|
614d80cb1b | ||
|
3c71a81100 | ||
|
19664960eb | ||
|
409dde22f6 | ||
|
d3e04eac7f | ||
|
8be8022914 |
|
@ -20,6 +20,8 @@ REPLICATE_API_TOKEN = ""
|
|||
ANTHROPIC_API_KEY = ""
|
||||
# Infisical
|
||||
INFISICAL_TOKEN = ""
|
||||
# INFINITY
|
||||
INFINITY_API_KEY = ""
|
||||
|
||||
# Development Configs
|
||||
LITELLM_MASTER_KEY = "sk-1234"
|
||||
|
|
2
.gitignore
vendored
|
@ -86,3 +86,5 @@ litellm/proxy/db/migrations/0_init/migration.sql
|
|||
litellm/proxy/db/migrations/*
|
||||
litellm/proxy/migrations/*config.yaml
|
||||
litellm/proxy/migrations/*
|
||||
config.yaml
|
||||
tests/litellm/litellm_core_utils/llm_cost_calc/log.txt
|
||||
|
|
|
@ -16,6 +16,7 @@ spec:
|
|||
{{- toYaml . | nindent 8 }}
|
||||
{{- end }}
|
||||
spec:
|
||||
serviceAccountName: {{ include "litellm.serviceAccountName" . }}
|
||||
containers:
|
||||
- name: prisma-migrations
|
||||
image: "{{ .Values.image.repository }}:{{ .Values.image.tag | default (printf "main-%s" .Chart.AppVersion) }}"
|
||||
|
|
|
@ -3,7 +3,7 @@ import TabItem from '@theme/TabItem';
|
|||
|
||||
# Using Audio Models
|
||||
|
||||
How to send / receieve audio to a `/chat/completions` endpoint
|
||||
How to send / receive audio to a `/chat/completions` endpoint
|
||||
|
||||
|
||||
## Audio Output from a model
|
||||
|
|
|
@ -3,7 +3,7 @@ import TabItem from '@theme/TabItem';
|
|||
|
||||
# Using PDF Input
|
||||
|
||||
How to send / receieve pdf's (other document types) to a `/chat/completions` endpoint
|
||||
How to send / receive pdf's (other document types) to a `/chat/completions` endpoint
|
||||
|
||||
Works for:
|
||||
- Vertex AI models (Gemini + Anthropic)
|
||||
|
|
|
@ -194,7 +194,7 @@ Expected Response
|
|||
|
||||
## Explicitly specify image type
|
||||
|
||||
If you have images without a mime-type, or if litellm is incorrectly inferring the mime type of your image (e.g. calling `gs://` url's with vertex ai), you can set this explicity via the `format` param.
|
||||
If you have images without a mime-type, or if litellm is incorrectly inferring the mime type of your image (e.g. calling `gs://` url's with vertex ai), you can set this explicitly via the `format` param.
|
||||
|
||||
```python
|
||||
"image_url": {
|
||||
|
|
|
@ -20,9 +20,9 @@ print(f"response: {response}")
|
|||
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: dall-e-2 ### RECEIVED MODEL NAME ###
|
||||
- model_name: gpt-image-1 ### RECEIVED MODEL NAME ###
|
||||
litellm_params: # all params accepted by litellm.image_generation()
|
||||
model: azure/dall-e-2 ### MODEL NAME sent to `litellm.image_generation()` ###
|
||||
model: azure/gpt-image-1 ### MODEL NAME sent to `litellm.image_generation()` ###
|
||||
api_base: https://my-endpoint-europe-berri-992.openai.azure.com/
|
||||
api_key: "os.environ/AZURE_API_KEY_EU" # does os.getenv("AZURE_API_KEY_EU")
|
||||
rpm: 6 # [OPTIONAL] Rate limit for this deployment: in requests per minute (rpm)
|
||||
|
@ -47,7 +47,7 @@ curl -X POST 'http://0.0.0.0:4000/v1/images/generations' \
|
|||
-H 'Content-Type: application/json' \
|
||||
-H 'Authorization: Bearer sk-1234' \
|
||||
-D '{
|
||||
"model": "dall-e-2",
|
||||
"model": "gpt-image-1",
|
||||
"prompt": "A cute baby sea otter",
|
||||
"n": 1,
|
||||
"size": "1024x1024"
|
||||
|
@ -104,7 +104,7 @@ Any non-openai params, will be treated as provider-specific params, and sent in
|
|||
litellm_logging_obj=None,
|
||||
custom_llm_provider=None,
|
||||
|
||||
- `model`: *string (optional)* The model to use for image generation. Defaults to openai/dall-e-2
|
||||
- `model`: *string (optional)* The model to use for image generation. Defaults to openai/gpt-image-1
|
||||
|
||||
- `n`: *int (optional)* The number of images to generate. Must be between 1 and 10. For dall-e-3, only n=1 is supported.
|
||||
|
||||
|
@ -112,7 +112,7 @@ Any non-openai params, will be treated as provider-specific params, and sent in
|
|||
|
||||
- `response_format`: *string (optional)* The format in which the generated images are returned. Must be one of url or b64_json.
|
||||
|
||||
- `size`: *string (optional)* The size of the generated images. Must be one of 256x256, 512x512, or 1024x1024 for dall-e-2. Must be one of 1024x1024, 1792x1024, or 1024x1792 for dall-e-3 models.
|
||||
- `size`: *string (optional)* The size of the generated images. Must be one of 256x256, 512x512, or 1024x1024 for gpt-image-1. Must be one of 1024x1024, 1792x1024, or 1024x1792 for dall-e-3 models.
|
||||
|
||||
- `timeout`: *integer* - The maximum time, in seconds, to wait for the API to respond. Defaults to 600 seconds (10 minutes).
|
||||
|
||||
|
@ -148,13 +148,14 @@ Any non-openai params, will be treated as provider-specific params, and sent in
|
|||
from litellm import image_generation
|
||||
import os
|
||||
os.environ['OPENAI_API_KEY'] = ""
|
||||
response = image_generation(model='dall-e-2', prompt="cute baby otter")
|
||||
response = image_generation(model='gpt-image-1', prompt="cute baby otter")
|
||||
```
|
||||
|
||||
| Model Name | Function Call | Required OS Variables |
|
||||
|----------------------|---------------------------------------------|--------------------------------------|
|
||||
| dall-e-2 | `image_generation(model='dall-e-2', prompt="cute baby otter")` | `os.environ['OPENAI_API_KEY']` |
|
||||
| gpt-image-1 | `image_generation(model='gpt-image-1', prompt="cute baby otter")` | `os.environ['OPENAI_API_KEY']` |
|
||||
| dall-e-3 | `image_generation(model='dall-e-3', prompt="cute baby otter")` | `os.environ['OPENAI_API_KEY']` |
|
||||
| dall-e-2 | `image_generation(model='dall-e-2', prompt="cute baby otter")` | `os.environ['OPENAI_API_KEY']` |
|
||||
|
||||
## Azure OpenAI Image Generation Models
|
||||
|
||||
|
@ -182,8 +183,9 @@ print(response)
|
|||
|
||||
| Model Name | Function Call |
|
||||
|----------------------|---------------------------------------------|
|
||||
| dall-e-2 | `image_generation(model="azure/<your deployment name>", prompt="cute baby otter")` |
|
||||
| gpt-image-1 | `image_generation(model="azure/<your deployment name>", prompt="cute baby otter")` |
|
||||
| dall-e-3 | `image_generation(model="azure/<your deployment name>", prompt="cute baby otter")` |
|
||||
| dall-e-2 | `image_generation(model="azure/<your deployment name>", prompt="cute baby otter")` |
|
||||
|
||||
|
||||
## OpenAI Compatible Image Generation Models
|
||||
|
|
83
docs/my-website/docs/observability/agentops_integration.md
Normal file
|
@ -0,0 +1,83 @@
|
|||
# 🖇️ AgentOps - LLM Observability Platform
|
||||
|
||||
:::tip
|
||||
|
||||
This is community maintained. Please make an issue if you run into a bug:
|
||||
https://github.com/BerriAI/litellm
|
||||
|
||||
:::
|
||||
|
||||
[AgentOps](https://docs.agentops.ai) is an observability platform that enables tracing and monitoring of LLM calls, providing detailed insights into your AI operations.
|
||||
|
||||
## Using AgentOps with LiteLLM
|
||||
|
||||
LiteLLM provides `success_callbacks` and `failure_callbacks`, allowing you to easily integrate AgentOps for comprehensive tracing and monitoring of your LLM operations.
|
||||
|
||||
### Integration
|
||||
|
||||
Use just a few lines of code to instantly trace your responses **across all providers** with AgentOps:
|
||||
Get your AgentOps API Keys from https://app.agentops.ai/
|
||||
```python
|
||||
import litellm
|
||||
|
||||
# Configure LiteLLM to use AgentOps
|
||||
litellm.success_callback = ["agentops"]
|
||||
|
||||
# Make your LLM calls as usual
|
||||
response = litellm.completion(
|
||||
model="gpt-3.5-turbo",
|
||||
messages=[{"role": "user", "content": "Hello, how are you?"}],
|
||||
)
|
||||
```
|
||||
|
||||
Complete Code:
|
||||
|
||||
```python
|
||||
import os
|
||||
from litellm import completion
|
||||
|
||||
# Set env variables
|
||||
os.environ["OPENAI_API_KEY"] = "your-openai-key"
|
||||
os.environ["AGENTOPS_API_KEY"] = "your-agentops-api-key"
|
||||
|
||||
# Configure LiteLLM to use AgentOps
|
||||
litellm.success_callback = ["agentops"]
|
||||
|
||||
# OpenAI call
|
||||
response = completion(
|
||||
model="gpt-4",
|
||||
messages=[{"role": "user", "content": "Hi 👋 - I'm OpenAI"}],
|
||||
)
|
||||
|
||||
print(response)
|
||||
```
|
||||
|
||||
### Configuration Options
|
||||
|
||||
The AgentOps integration can be configured through environment variables:
|
||||
|
||||
- `AGENTOPS_API_KEY` (str, optional): Your AgentOps API key
|
||||
- `AGENTOPS_ENVIRONMENT` (str, optional): Deployment environment (defaults to "production")
|
||||
- `AGENTOPS_SERVICE_NAME` (str, optional): Service name for tracing (defaults to "agentops")
|
||||
|
||||
### Advanced Usage
|
||||
|
||||
You can configure additional settings through environment variables:
|
||||
|
||||
```python
|
||||
import os
|
||||
|
||||
# Configure AgentOps settings
|
||||
os.environ["AGENTOPS_API_KEY"] = "your-agentops-api-key"
|
||||
os.environ["AGENTOPS_ENVIRONMENT"] = "staging"
|
||||
os.environ["AGENTOPS_SERVICE_NAME"] = "my-service"
|
||||
|
||||
# Enable AgentOps tracing
|
||||
litellm.success_callback = ["agentops"]
|
||||
```
|
||||
|
||||
### Support
|
||||
|
||||
For issues or questions, please refer to:
|
||||
- [AgentOps Documentation](https://docs.agentops.ai)
|
||||
- [LiteLLM Documentation](https://docs.litellm.ai)
|
|
@ -53,7 +53,7 @@ response = completion(
|
|||
|
||||
## Additional information in metadata
|
||||
|
||||
You can send any additional information to Greenscale by using the `metadata` field in completion and `greenscale_` prefix. This can be useful for sending metadata about the request, such as the project and application name, customer_id, enviornment, or any other information you want to track usage. `greenscale_project` and `greenscale_application` are required fields.
|
||||
You can send any additional information to Greenscale by using the `metadata` field in completion and `greenscale_` prefix. This can be useful for sending metadata about the request, such as the project and application name, customer_id, environment, or any other information you want to track usage. `greenscale_project` and `greenscale_application` are required fields.
|
||||
|
||||
```python
|
||||
#openai call with additional metadata
|
||||
|
|
|
@ -185,7 +185,7 @@ curl --location --request POST 'http://0.0.0.0:4000/chat/completions' \
|
|||
* `trace_release` - Release for the trace, defaults to `None`
|
||||
* `trace_metadata` - Metadata for the trace, defaults to `None`
|
||||
* `trace_user_id` - User identifier for the trace, defaults to completion argument `user`
|
||||
* `tags` - Tags for the trace, defeaults to `None`
|
||||
* `tags` - Tags for the trace, defaults to `None`
|
||||
|
||||
##### Updatable Parameters on Continuation
|
||||
|
||||
|
|
|
@ -4,7 +4,7 @@ Pass-through endpoints for Cohere - call provider-specific endpoint, in native f
|
|||
|
||||
| Feature | Supported | Notes |
|
||||
|-------|-------|-------|
|
||||
| Cost Tracking | ✅ | works across all integrations |
|
||||
| Cost Tracking | ✅ | Supported for `/v1/chat`, and `/v2/chat` |
|
||||
| Logging | ✅ | works across all integrations |
|
||||
| End-user Tracking | ❌ | [Tell us if you need this](https://github.com/BerriAI/litellm/issues/new) |
|
||||
| Streaming | ✅ | |
|
||||
|
|
217
docs/my-website/docs/pass_through/mistral.md
Normal file
|
@ -0,0 +1,217 @@
|
|||
# Mistral
|
||||
|
||||
Pass-through endpoints for Mistral - call provider-specific endpoint, in native format (no translation).
|
||||
|
||||
| Feature | Supported | Notes |
|
||||
|-------|-------|-------|
|
||||
| Cost Tracking | ❌ | Not supported |
|
||||
| Logging | ✅ | works across all integrations |
|
||||
| End-user Tracking | ❌ | [Tell us if you need this](https://github.com/BerriAI/litellm/issues/new) |
|
||||
| Streaming | ✅ | |
|
||||
|
||||
Just replace `https://api.mistral.ai/v1` with `LITELLM_PROXY_BASE_URL/mistral` 🚀
|
||||
|
||||
#### **Example Usage**
|
||||
|
||||
```bash
|
||||
curl -L -X POST 'http://0.0.0.0:4000/mistral/v1/ocr' \
|
||||
-H 'Content-Type: application/json' \
|
||||
-H 'Authorization: Bearer sk-1234' \
|
||||
-d '{
|
||||
"model": "mistral-ocr-latest",
|
||||
"document": {
|
||||
"type": "image_url",
|
||||
"image_url": "https://raw.githubusercontent.com/mistralai/cookbook/refs/heads/main/mistral/ocr/receipt.png"
|
||||
}
|
||||
|
||||
}'
|
||||
```
|
||||
|
||||
Supports **ALL** Mistral Endpoints (including streaming).
|
||||
|
||||
## Quick Start
|
||||
|
||||
Let's call the Mistral [`/chat/completions` endpoint](https://docs.mistral.ai/api/#tag/chat/operation/chat_completion_v1_chat_completions_post)
|
||||
|
||||
1. Add MISTRAL_API_KEY to your environment
|
||||
|
||||
```bash
|
||||
export MISTRAL_API_KEY="sk-1234"
|
||||
```
|
||||
|
||||
2. Start LiteLLM Proxy
|
||||
|
||||
```bash
|
||||
litellm
|
||||
|
||||
# RUNNING on http://0.0.0.0:4000
|
||||
```
|
||||
|
||||
3. Test it!
|
||||
|
||||
Let's call the Mistral `/ocr` endpoint
|
||||
|
||||
```bash
|
||||
curl -L -X POST 'http://0.0.0.0:4000/mistral/v1/ocr' \
|
||||
-H 'Content-Type: application/json' \
|
||||
-H 'Authorization: Bearer sk-1234' \
|
||||
-d '{
|
||||
"model": "mistral-ocr-latest",
|
||||
"document": {
|
||||
"type": "image_url",
|
||||
"image_url": "https://raw.githubusercontent.com/mistralai/cookbook/refs/heads/main/mistral/ocr/receipt.png"
|
||||
}
|
||||
|
||||
}'
|
||||
```
|
||||
|
||||
|
||||
## Examples
|
||||
|
||||
Anything after `http://0.0.0.0:4000/mistral` is treated as a provider-specific route, and handled accordingly.
|
||||
|
||||
Key Changes:
|
||||
|
||||
| **Original Endpoint** | **Replace With** |
|
||||
|------------------------------------------------------|-----------------------------------|
|
||||
| `https://api.mistral.ai/v1` | `http://0.0.0.0:4000/mistral` (LITELLM_PROXY_BASE_URL="http://0.0.0.0:4000") |
|
||||
| `bearer $MISTRAL_API_KEY` | `bearer anything` (use `bearer LITELLM_VIRTUAL_KEY` if Virtual Keys are setup on proxy) |
|
||||
|
||||
|
||||
### **Example 1: OCR endpoint**
|
||||
|
||||
#### LiteLLM Proxy Call
|
||||
|
||||
```bash
|
||||
curl -L -X POST 'http://0.0.0.0:4000/mistral/v1/ocr' \
|
||||
-H 'Content-Type: application/json' \
|
||||
-H 'Authorization: Bearer $LITELLM_API_KEY' \
|
||||
-d '{
|
||||
"model": "mistral-ocr-latest",
|
||||
"document": {
|
||||
"type": "image_url",
|
||||
"image_url": "https://raw.githubusercontent.com/mistralai/cookbook/refs/heads/main/mistral/ocr/receipt.png"
|
||||
}
|
||||
}'
|
||||
```
|
||||
|
||||
|
||||
#### Direct Mistral API Call
|
||||
|
||||
```bash
|
||||
curl https://api.mistral.ai/v1/ocr \
|
||||
-H "Content-Type: application/json" \
|
||||
-H "Authorization: Bearer ${MISTRAL_API_KEY}" \
|
||||
-d '{
|
||||
"model": "mistral-ocr-latest",
|
||||
"document": {
|
||||
"type": "document_url",
|
||||
"document_url": "https://arxiv.org/pdf/2201.04234"
|
||||
},
|
||||
"include_image_base64": true
|
||||
}'
|
||||
```
|
||||
|
||||
### **Example 2: Chat API**
|
||||
|
||||
#### LiteLLM Proxy Call
|
||||
|
||||
```bash
|
||||
curl -L -X POST 'http://0.0.0.0:4000/mistral/v1/chat/completions' \
|
||||
-H 'Content-Type: application/json' \
|
||||
-H 'Authorization: Bearer $LITELLM_VIRTUAL_KEY' \
|
||||
-d '{
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "I am going to Paris, what should I see?"
|
||||
}
|
||||
],
|
||||
"max_tokens": 2048,
|
||||
"temperature": 0.8,
|
||||
"top_p": 0.1,
|
||||
"model": "mistral-large-latest",
|
||||
}'
|
||||
```
|
||||
|
||||
#### Direct Mistral API Call
|
||||
|
||||
```bash
|
||||
curl -L -X POST 'https://api.mistral.ai/v1/chat/completions' \
|
||||
-H 'Content-Type: application/json' \
|
||||
-d '{
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "I am going to Paris, what should I see?"
|
||||
}
|
||||
],
|
||||
"max_tokens": 2048,
|
||||
"temperature": 0.8,
|
||||
"top_p": 0.1,
|
||||
"model": "mistral-large-latest",
|
||||
}'
|
||||
```
|
||||
|
||||
|
||||
## Advanced - Use with Virtual Keys
|
||||
|
||||
Pre-requisites
|
||||
- [Setup proxy with DB](../proxy/virtual_keys.md#setup)
|
||||
|
||||
Use this, to avoid giving developers the raw Mistral API key, but still letting them use Mistral endpoints.
|
||||
|
||||
### Usage
|
||||
|
||||
1. Setup environment
|
||||
|
||||
```bash
|
||||
export DATABASE_URL=""
|
||||
export LITELLM_MASTER_KEY=""
|
||||
export MISTRAL_API_BASE=""
|
||||
```
|
||||
|
||||
```bash
|
||||
litellm
|
||||
|
||||
# RUNNING on http://0.0.0.0:4000
|
||||
```
|
||||
|
||||
2. Generate virtual key
|
||||
|
||||
```bash
|
||||
curl -X POST 'http://0.0.0.0:4000/key/generate' \
|
||||
-H 'Authorization: Bearer sk-1234' \
|
||||
-H 'Content-Type: application/json' \
|
||||
-d '{}'
|
||||
```
|
||||
|
||||
Expected Response
|
||||
|
||||
```bash
|
||||
{
|
||||
...
|
||||
"key": "sk-1234ewknldferwedojwojw"
|
||||
}
|
||||
```
|
||||
|
||||
3. Test it!
|
||||
|
||||
|
||||
```bash
|
||||
curl -L -X POST 'http://0.0.0.0:4000/mistral/v1/chat/completions' \
|
||||
-H 'Content-Type: application/json' \
|
||||
-H 'Authorization: Bearer sk-1234ewknldferwedojwojw' \
|
||||
--data '{
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "I am going to Paris, what should I see?"
|
||||
}
|
||||
],
|
||||
"max_tokens": 2048,
|
||||
"temperature": 0.8,
|
||||
"top_p": 0.1,
|
||||
"model": "qwen2.5-7b-instruct",
|
||||
}'
|
||||
```
|
|
@ -13,6 +13,15 @@ Pass-through endpoints for Vertex AI - call provider-specific endpoint, in nativ
|
|||
| End-user Tracking | ❌ | [Tell us if you need this](https://github.com/BerriAI/litellm/issues/new) |
|
||||
| Streaming | ✅ | |
|
||||
|
||||
## Supported Endpoints
|
||||
|
||||
LiteLLM supports 2 vertex ai passthrough routes:
|
||||
|
||||
1. `/vertex_ai` → routes to `https://{vertex_location}-aiplatform.googleapis.com/`
|
||||
2. `/vertex_ai/discovery` → routes to [`https://discoveryengine.googleapis.com`](https://discoveryengine.googleapis.com/)
|
||||
|
||||
## How to use
|
||||
|
||||
Just replace `https://REGION-aiplatform.googleapis.com` with `LITELLM_PROXY_BASE_URL/vertex_ai`
|
||||
|
||||
LiteLLM supports 3 flows for calling Vertex AI endpoints via pass-through:
|
||||
|
@ -213,7 +222,7 @@ curl http://localhost:4000/vertex-ai/v1/projects/${PROJECT_ID}/locations/us-cent
|
|||
|
||||
LiteLLM Proxy Server supports two methods of authentication to Vertex AI:
|
||||
|
||||
1. Pass Vertex Credetials client side to proxy server
|
||||
1. Pass Vertex Credentials client side to proxy server
|
||||
|
||||
2. Set Vertex AI credentials on proxy server
|
||||
|
||||
|
|
185
docs/my-website/docs/pass_through/vllm.md
Normal file
|
@ -0,0 +1,185 @@
|
|||
# VLLM
|
||||
|
||||
Pass-through endpoints for VLLM - call provider-specific endpoint, in native format (no translation).
|
||||
|
||||
| Feature | Supported | Notes |
|
||||
|-------|-------|-------|
|
||||
| Cost Tracking | ❌ | Not supported |
|
||||
| Logging | ✅ | works across all integrations |
|
||||
| End-user Tracking | ❌ | [Tell us if you need this](https://github.com/BerriAI/litellm/issues/new) |
|
||||
| Streaming | ✅ | |
|
||||
|
||||
Just replace `https://my-vllm-server.com` with `LITELLM_PROXY_BASE_URL/vllm` 🚀
|
||||
|
||||
#### **Example Usage**
|
||||
|
||||
```bash
|
||||
curl -L -X GET 'http://0.0.0.0:4000/vllm/metrics' \
|
||||
-H 'Content-Type: application/json' \
|
||||
-H 'Authorization: Bearer sk-1234' \
|
||||
```
|
||||
|
||||
Supports **ALL** VLLM Endpoints (including streaming).
|
||||
|
||||
## Quick Start
|
||||
|
||||
Let's call the VLLM [`/metrics` endpoint](https://vllm.readthedocs.io/en/latest/api_reference/api_reference.html)
|
||||
|
||||
1. Add HOSTED VLLM API BASE to your environment
|
||||
|
||||
```bash
|
||||
export HOSTED_VLLM_API_BASE="https://my-vllm-server.com"
|
||||
```
|
||||
|
||||
2. Start LiteLLM Proxy
|
||||
|
||||
```bash
|
||||
litellm
|
||||
|
||||
# RUNNING on http://0.0.0.0:4000
|
||||
```
|
||||
|
||||
3. Test it!
|
||||
|
||||
Let's call the VLLM `/metrics` endpoint
|
||||
|
||||
```bash
|
||||
curl -L -X GET 'http://0.0.0.0:4000/vllm/metrics' \
|
||||
-H 'Content-Type: application/json' \
|
||||
-H 'Authorization: Bearer sk-1234' \
|
||||
```
|
||||
|
||||
|
||||
## Examples
|
||||
|
||||
Anything after `http://0.0.0.0:4000/vllm` is treated as a provider-specific route, and handled accordingly.
|
||||
|
||||
Key Changes:
|
||||
|
||||
| **Original Endpoint** | **Replace With** |
|
||||
|------------------------------------------------------|-----------------------------------|
|
||||
| `https://my-vllm-server.com` | `http://0.0.0.0:4000/vllm` (LITELLM_PROXY_BASE_URL="http://0.0.0.0:4000") |
|
||||
| `bearer $VLLM_API_KEY` | `bearer anything` (use `bearer LITELLM_VIRTUAL_KEY` if Virtual Keys are setup on proxy) |
|
||||
|
||||
|
||||
### **Example 1: Metrics endpoint**
|
||||
|
||||
#### LiteLLM Proxy Call
|
||||
|
||||
```bash
|
||||
curl -L -X GET 'http://0.0.0.0:4000/vllm/metrics' \
|
||||
-H 'Content-Type: application/json' \
|
||||
-H 'Authorization: Bearer $LITELLM_VIRTUAL_KEY' \
|
||||
```
|
||||
|
||||
|
||||
#### Direct VLLM API Call
|
||||
|
||||
```bash
|
||||
curl -L -X GET 'https://my-vllm-server.com/metrics' \
|
||||
-H 'Content-Type: application/json' \
|
||||
```
|
||||
|
||||
### **Example 2: Chat API**
|
||||
|
||||
#### LiteLLM Proxy Call
|
||||
|
||||
```bash
|
||||
curl -L -X POST 'http://0.0.0.0:4000/vllm/chat/completions' \
|
||||
-H 'Content-Type: application/json' \
|
||||
-H 'Authorization: Bearer $LITELLM_VIRTUAL_KEY' \
|
||||
-d '{
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "I am going to Paris, what should I see?"
|
||||
}
|
||||
],
|
||||
"max_tokens": 2048,
|
||||
"temperature": 0.8,
|
||||
"top_p": 0.1,
|
||||
"model": "qwen2.5-7b-instruct",
|
||||
}'
|
||||
```
|
||||
|
||||
#### Direct VLLM API Call
|
||||
|
||||
```bash
|
||||
curl -L -X POST 'https://my-vllm-server.com/chat/completions' \
|
||||
-H 'Content-Type: application/json' \
|
||||
-d '{
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "I am going to Paris, what should I see?"
|
||||
}
|
||||
],
|
||||
"max_tokens": 2048,
|
||||
"temperature": 0.8,
|
||||
"top_p": 0.1,
|
||||
"model": "qwen2.5-7b-instruct",
|
||||
}'
|
||||
```
|
||||
|
||||
|
||||
## Advanced - Use with Virtual Keys
|
||||
|
||||
Pre-requisites
|
||||
- [Setup proxy with DB](../proxy/virtual_keys.md#setup)
|
||||
|
||||
Use this, to avoid giving developers the raw Cohere API key, but still letting them use Cohere endpoints.
|
||||
|
||||
### Usage
|
||||
|
||||
1. Setup environment
|
||||
|
||||
```bash
|
||||
export DATABASE_URL=""
|
||||
export LITELLM_MASTER_KEY=""
|
||||
export HOSTED_VLLM_API_BASE=""
|
||||
```
|
||||
|
||||
```bash
|
||||
litellm
|
||||
|
||||
# RUNNING on http://0.0.0.0:4000
|
||||
```
|
||||
|
||||
2. Generate virtual key
|
||||
|
||||
```bash
|
||||
curl -X POST 'http://0.0.0.0:4000/key/generate' \
|
||||
-H 'Authorization: Bearer sk-1234' \
|
||||
-H 'Content-Type: application/json' \
|
||||
-d '{}'
|
||||
```
|
||||
|
||||
Expected Response
|
||||
|
||||
```bash
|
||||
{
|
||||
...
|
||||
"key": "sk-1234ewknldferwedojwojw"
|
||||
}
|
||||
```
|
||||
|
||||
3. Test it!
|
||||
|
||||
|
||||
```bash
|
||||
curl -L -X POST 'http://0.0.0.0:4000/vllm/chat/completions' \
|
||||
-H 'Content-Type: application/json' \
|
||||
-H 'Authorization: Bearer sk-1234ewknldferwedojwojw' \
|
||||
--data '{
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "I am going to Paris, what should I see?"
|
||||
}
|
||||
],
|
||||
"max_tokens": 2048,
|
||||
"temperature": 0.8,
|
||||
"top_p": 0.1,
|
||||
"model": "qwen2.5-7b-instruct",
|
||||
}'
|
||||
```
|
|
@ -1095,7 +1095,7 @@ response = completion(
|
|||
print(response.choices[0])
|
||||
```
|
||||
</TabItem>
|
||||
<TabItem value="proxy" lable="PROXY">
|
||||
<TabItem value="proxy" label="PROXY">
|
||||
|
||||
1. Add model to config
|
||||
|
||||
|
|
|
@ -483,7 +483,7 @@ response.stream_to_file(speech_file_path)
|
|||
This is a walkthrough on how to use Azure Active Directory Tokens - Microsoft Entra ID to make `litellm.completion()` calls
|
||||
|
||||
Step 1 - Download Azure CLI
|
||||
Installation instructons: https://learn.microsoft.com/en-us/cli/azure/install-azure-cli
|
||||
Installation instructions: https://learn.microsoft.com/en-us/cli/azure/install-azure-cli
|
||||
```shell
|
||||
brew update && brew install azure-cli
|
||||
```
|
||||
|
@ -1002,8 +1002,125 @@ Expected Response:
|
|||
```
|
||||
|
||||
|
||||
## **Azure Responses API**
|
||||
|
||||
| Property | Details |
|
||||
|-------|-------|
|
||||
| Description | Azure OpenAI Responses API |
|
||||
| `custom_llm_provider` on LiteLLM | `azure/` |
|
||||
| Supported Operations | `/v1/responses`|
|
||||
| Azure OpenAI Responses API | [Azure OpenAI Responses API ↗](https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/responses?tabs=python-secure) |
|
||||
| Cost Tracking, Logging Support | ✅ LiteLLM will log, track cost for Responses API Requests |
|
||||
| Supported OpenAI Params | ✅ All OpenAI params are supported, [See here](https://github.com/BerriAI/litellm/blob/0717369ae6969882d149933da48eeb8ab0e691bd/litellm/llms/openai/responses/transformation.py#L23) |
|
||||
|
||||
## Usage
|
||||
|
||||
## Create a model response
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="litellm-sdk" label="LiteLLM SDK">
|
||||
|
||||
#### Non-streaming
|
||||
|
||||
```python showLineNumbers title="Azure Responses API"
|
||||
import litellm
|
||||
|
||||
# Non-streaming response
|
||||
response = litellm.responses(
|
||||
model="azure/o1-pro",
|
||||
input="Tell me a three sentence bedtime story about a unicorn.",
|
||||
max_output_tokens=100,
|
||||
api_key=os.getenv("AZURE_RESPONSES_OPENAI_API_KEY"),
|
||||
api_base="https://litellm8397336933.openai.azure.com/",
|
||||
api_version="2023-03-15-preview",
|
||||
)
|
||||
|
||||
print(response)
|
||||
```
|
||||
|
||||
#### Streaming
|
||||
```python showLineNumbers title="Azure Responses API"
|
||||
import litellm
|
||||
|
||||
# Streaming response
|
||||
response = litellm.responses(
|
||||
model="azure/o1-pro",
|
||||
input="Tell me a three sentence bedtime story about a unicorn.",
|
||||
stream=True,
|
||||
api_key=os.getenv("AZURE_RESPONSES_OPENAI_API_KEY"),
|
||||
api_base="https://litellm8397336933.openai.azure.com/",
|
||||
api_version="2023-03-15-preview",
|
||||
)
|
||||
|
||||
for event in response:
|
||||
print(event)
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="proxy" label="OpenAI SDK with LiteLLM Proxy">
|
||||
|
||||
First, add this to your litellm proxy config.yaml:
|
||||
```yaml showLineNumbers title="Azure Responses API"
|
||||
model_list:
|
||||
- model_name: o1-pro
|
||||
litellm_params:
|
||||
model: azure/o1-pro
|
||||
api_key: os.environ/AZURE_RESPONSES_OPENAI_API_KEY
|
||||
api_base: https://litellm8397336933.openai.azure.com/
|
||||
api_version: 2023-03-15-preview
|
||||
```
|
||||
|
||||
Start your LiteLLM proxy:
|
||||
```bash
|
||||
litellm --config /path/to/config.yaml
|
||||
|
||||
# RUNNING on http://0.0.0.0:4000
|
||||
```
|
||||
|
||||
Then use the OpenAI SDK pointed to your proxy:
|
||||
|
||||
#### Non-streaming
|
||||
```python showLineNumbers
|
||||
from openai import OpenAI
|
||||
|
||||
# Initialize client with your proxy URL
|
||||
client = OpenAI(
|
||||
base_url="http://localhost:4000", # Your proxy URL
|
||||
api_key="your-api-key" # Your proxy API key
|
||||
)
|
||||
|
||||
# Non-streaming response
|
||||
response = client.responses.create(
|
||||
model="o1-pro",
|
||||
input="Tell me a three sentence bedtime story about a unicorn."
|
||||
)
|
||||
|
||||
print(response)
|
||||
```
|
||||
|
||||
#### Streaming
|
||||
```python showLineNumbers
|
||||
from openai import OpenAI
|
||||
|
||||
# Initialize client with your proxy URL
|
||||
client = OpenAI(
|
||||
base_url="http://localhost:4000", # Your proxy URL
|
||||
api_key="your-api-key" # Your proxy API key
|
||||
)
|
||||
|
||||
# Streaming response
|
||||
response = client.responses.create(
|
||||
model="o1-pro",
|
||||
input="Tell me a three sentence bedtime story about a unicorn.",
|
||||
stream=True
|
||||
)
|
||||
|
||||
for event in response:
|
||||
print(event)
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -39,14 +39,164 @@ response = completion(
|
|||
- temperature
|
||||
- top_p
|
||||
- max_tokens
|
||||
- max_completion_tokens
|
||||
- stream
|
||||
- tools
|
||||
- tool_choice
|
||||
- functions
|
||||
- response_format
|
||||
- n
|
||||
- stop
|
||||
- logprobs
|
||||
- frequency_penalty
|
||||
- modalities
|
||||
- reasoning_content
|
||||
|
||||
**Anthropic Params**
|
||||
- thinking (used to set max budget tokens across anthropic/gemini models)
|
||||
|
||||
[**See Updated List**](https://github.com/BerriAI/litellm/blob/main/litellm/llms/gemini/chat/transformation.py#L70)
|
||||
|
||||
|
||||
|
||||
## Usage - Thinking / `reasoning_content`
|
||||
|
||||
LiteLLM translates OpenAI's `reasoning_effort` to Gemini's `thinking` parameter. [Code](https://github.com/BerriAI/litellm/blob/620664921902d7a9bfb29897a7b27c1a7ef4ddfb/litellm/llms/vertex_ai/gemini/vertex_and_google_ai_studio_gemini.py#L362)
|
||||
|
||||
**Mapping**
|
||||
|
||||
| reasoning_effort | thinking |
|
||||
| ---------------- | -------- |
|
||||
| "low" | "budget_tokens": 1024 |
|
||||
| "medium" | "budget_tokens": 2048 |
|
||||
| "high" | "budget_tokens": 4096 |
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="sdk" label="SDK">
|
||||
|
||||
```python
|
||||
from litellm import completion
|
||||
|
||||
resp = completion(
|
||||
model="gemini/gemini-2.5-flash-preview-04-17",
|
||||
messages=[{"role": "user", "content": "What is the capital of France?"}],
|
||||
reasoning_effort="low",
|
||||
)
|
||||
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
|
||||
<TabItem value="proxy" label="PROXY">
|
||||
|
||||
1. Setup config.yaml
|
||||
|
||||
```yaml
|
||||
- model_name: gemini-2.5-flash
|
||||
litellm_params:
|
||||
model: gemini/gemini-2.5-flash-preview-04-17
|
||||
api_key: os.environ/GEMINI_API_KEY
|
||||
```
|
||||
|
||||
2. Start proxy
|
||||
|
||||
```bash
|
||||
litellm --config /path/to/config.yaml
|
||||
```
|
||||
|
||||
3. Test it!
|
||||
|
||||
```bash
|
||||
curl http://0.0.0.0:4000/v1/chat/completions \
|
||||
-H "Content-Type: application/json" \
|
||||
-H "Authorization: Bearer <YOUR-LITELLM-KEY>" \
|
||||
-d '{
|
||||
"model": "gemini-2.5-flash",
|
||||
"messages": [{"role": "user", "content": "What is the capital of France?"}],
|
||||
"reasoning_effort": "low"
|
||||
}'
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
|
||||
**Expected Response**
|
||||
|
||||
```python
|
||||
ModelResponse(
|
||||
id='chatcmpl-c542d76d-f675-4e87-8e5f-05855f5d0f5e',
|
||||
created=1740470510,
|
||||
model='claude-3-7-sonnet-20250219',
|
||||
object='chat.completion',
|
||||
system_fingerprint=None,
|
||||
choices=[
|
||||
Choices(
|
||||
finish_reason='stop',
|
||||
index=0,
|
||||
message=Message(
|
||||
content="The capital of France is Paris.",
|
||||
role='assistant',
|
||||
tool_calls=None,
|
||||
function_call=None,
|
||||
reasoning_content='The capital of France is Paris. This is a very straightforward factual question.'
|
||||
),
|
||||
)
|
||||
],
|
||||
usage=Usage(
|
||||
completion_tokens=68,
|
||||
prompt_tokens=42,
|
||||
total_tokens=110,
|
||||
completion_tokens_details=None,
|
||||
prompt_tokens_details=PromptTokensDetailsWrapper(
|
||||
audio_tokens=None,
|
||||
cached_tokens=0,
|
||||
text_tokens=None,
|
||||
image_tokens=None
|
||||
),
|
||||
cache_creation_input_tokens=0,
|
||||
cache_read_input_tokens=0
|
||||
)
|
||||
)
|
||||
```
|
||||
|
||||
### Pass `thinking` to Gemini models
|
||||
|
||||
You can also pass the `thinking` parameter to Gemini models.
|
||||
|
||||
This is translated to Gemini's [`thinkingConfig` parameter](https://ai.google.dev/gemini-api/docs/thinking#set-budget).
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="sdk" label="SDK">
|
||||
|
||||
```python
|
||||
response = litellm.completion(
|
||||
model="gemini/gemini-2.5-flash-preview-04-17",
|
||||
messages=[{"role": "user", "content": "What is the capital of France?"}],
|
||||
thinking={"type": "enabled", "budget_tokens": 1024},
|
||||
)
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="proxy" label="PROXY">
|
||||
|
||||
```bash
|
||||
curl http://0.0.0.0:4000/v1/chat/completions \
|
||||
-H "Content-Type: application/json" \
|
||||
-H "Authorization: Bearer $LITELLM_KEY" \
|
||||
-d '{
|
||||
"model": "gemini/gemini-2.5-flash-preview-04-17",
|
||||
"messages": [{"role": "user", "content": "What is the capital of France?"}],
|
||||
"thinking": {"type": "enabled", "budget_tokens": 1024}
|
||||
}'
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
|
||||
|
||||
|
||||
[**See Updated List**](https://github.com/BerriAI/litellm/blob/1c747f3ad372399c5b95cc5696b06a5fbe53186b/litellm/llms/vertex_httpx.py#L122)
|
||||
|
||||
## Passing Gemini Specific Params
|
||||
### Response schema
|
||||
|
@ -505,7 +655,7 @@ import os
|
|||
|
||||
os.environ["GEMINI_API_KEY"] = ".."
|
||||
|
||||
tools = [{"googleSearchRetrieval": {}}] # 👈 ADD GOOGLE SEARCH
|
||||
tools = [{"googleSearch": {}}] # 👈 ADD GOOGLE SEARCH
|
||||
|
||||
response = completion(
|
||||
model="gemini/gemini-2.0-flash",
|
||||
|
@ -541,7 +691,7 @@ curl -X POST 'http://0.0.0.0:4000/chat/completions' \
|
|||
-d '{
|
||||
"model": "gemini-2.0-flash",
|
||||
"messages": [{"role": "user", "content": "What is the weather in San Francisco?"}],
|
||||
"tools": [{"googleSearchRetrieval": {}}]
|
||||
"tools": [{"googleSearch": {}}]
|
||||
}
|
||||
'
|
||||
```
|
||||
|
|
|
@ -3,18 +3,17 @@ import TabItem from '@theme/TabItem';
|
|||
|
||||
# Infinity
|
||||
|
||||
| Property | Details |
|
||||
|-------|-------|
|
||||
| Description | Infinity is a high-throughput, low-latency REST API for serving text-embeddings, reranking models and clip|
|
||||
| Provider Route on LiteLLM | `infinity/` |
|
||||
| Supported Operations | `/rerank` |
|
||||
| Link to Provider Doc | [Infinity ↗](https://github.com/michaelfeil/infinity) |
|
||||
|
||||
| Property | Details |
|
||||
| ------------------------- | ---------------------------------------------------------------------------------------------------------- |
|
||||
| Description | Infinity is a high-throughput, low-latency REST API for serving text-embeddings, reranking models and clip |
|
||||
| Provider Route on LiteLLM | `infinity/` |
|
||||
| Supported Operations | `/rerank`, `/embeddings` |
|
||||
| Link to Provider Doc | [Infinity ↗](https://github.com/michaelfeil/infinity) |
|
||||
|
||||
## **Usage - LiteLLM Python SDK**
|
||||
|
||||
```python
|
||||
from litellm import rerank
|
||||
from litellm import rerank, embedding
|
||||
import os
|
||||
|
||||
os.environ["INFINITY_API_BASE"] = "http://localhost:8080"
|
||||
|
@ -39,8 +38,8 @@ model_list:
|
|||
- model_name: custom-infinity-rerank
|
||||
litellm_params:
|
||||
model: infinity/rerank
|
||||
api_key: os.environ/INFINITY_API_KEY
|
||||
api_base: https://localhost:8080
|
||||
api_key: os.environ/INFINITY_API_KEY
|
||||
```
|
||||
|
||||
Start litellm
|
||||
|
@ -51,7 +50,9 @@ litellm --config /path/to/config.yaml
|
|||
# RUNNING on http://0.0.0.0:4000
|
||||
```
|
||||
|
||||
Test request
|
||||
## Test request:
|
||||
|
||||
### Rerank
|
||||
|
||||
```bash
|
||||
curl http://0.0.0.0:4000/rerank \
|
||||
|
@ -70,15 +71,14 @@ curl http://0.0.0.0:4000/rerank \
|
|||
}'
|
||||
```
|
||||
|
||||
#### Supported Cohere Rerank API Params
|
||||
|
||||
## Supported Cohere Rerank API Params
|
||||
|
||||
| Param | Type | Description |
|
||||
|-------|-------|-------|
|
||||
| `query` | `str` | The query to rerank the documents against |
|
||||
| `documents` | `list[str]` | The documents to rerank |
|
||||
| `top_n` | `int` | The number of documents to return |
|
||||
| `return_documents` | `bool` | Whether to return the documents in the response |
|
||||
| Param | Type | Description |
|
||||
| ------------------ | ----------- | ----------------------------------------------- |
|
||||
| `query` | `str` | The query to rerank the documents against |
|
||||
| `documents` | `list[str]` | The documents to rerank |
|
||||
| `top_n` | `int` | The number of documents to return |
|
||||
| `return_documents` | `bool` | Whether to return the documents in the response |
|
||||
|
||||
### Usage - Return Documents
|
||||
|
||||
|
@ -138,6 +138,7 @@ response = rerank(
|
|||
raw_scores=True, # 👈 PROVIDER-SPECIFIC PARAM
|
||||
)
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
|
||||
<TabItem value="proxy" label="PROXY">
|
||||
|
@ -161,7 +162,7 @@ litellm --config /path/to/config.yaml
|
|||
# RUNNING on http://0.0.0.0:4000
|
||||
```
|
||||
|
||||
3. Test it!
|
||||
3. Test it!
|
||||
|
||||
```bash
|
||||
curl http://0.0.0.0:4000/rerank \
|
||||
|
@ -179,6 +180,121 @@ curl http://0.0.0.0:4000/rerank \
|
|||
"raw_scores": True # 👈 PROVIDER-SPECIFIC PARAM
|
||||
}'
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
|
||||
</Tabs>
|
||||
|
||||
## Embeddings
|
||||
|
||||
LiteLLM provides an OpenAI api compatible `/embeddings` endpoint for embedding calls.
|
||||
|
||||
**Setup**
|
||||
|
||||
Add this to your litellm proxy config.yaml
|
||||
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: custom-infinity-embedding
|
||||
litellm_params:
|
||||
model: infinity/provider/custom-embedding-v1
|
||||
api_base: http://localhost:8080
|
||||
api_key: os.environ/INFINITY_API_KEY
|
||||
```
|
||||
|
||||
### Test request:
|
||||
|
||||
```bash
|
||||
curl http://0.0.0.0:4000/embeddings \
|
||||
-H "Authorization: Bearer sk-1234" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"model": "custom-infinity-embedding",
|
||||
"input": ["hello"]
|
||||
}'
|
||||
```
|
||||
|
||||
#### Supported Embedding API Params
|
||||
|
||||
| Param | Type | Description |
|
||||
| ----------------- | ----------- | ----------------------------------------------------------- |
|
||||
| `model` | `str` | The embedding model to use |
|
||||
| `input` | `list[str]` | The text inputs to generate embeddings for |
|
||||
| `encoding_format` | `str` | The format to return embeddings in (e.g. "float", "base64") |
|
||||
| `modality` | `str` | The type of input (e.g. "text", "image", "audio") |
|
||||
|
||||
### Usage - Basic Examples
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="sdk" label="SDK">
|
||||
|
||||
```python
|
||||
from litellm import embedding
|
||||
import os
|
||||
|
||||
os.environ["INFINITY_API_BASE"] = "http://localhost:8080"
|
||||
|
||||
response = embedding(
|
||||
model="infinity/bge-small",
|
||||
input=["good morning from litellm"]
|
||||
)
|
||||
|
||||
print(response.data[0]['embedding'])
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
|
||||
<TabItem value="proxy" label="PROXY">
|
||||
|
||||
```bash
|
||||
curl http://0.0.0.0:4000/embeddings \
|
||||
-H "Authorization: Bearer sk-1234" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"model": "custom-infinity-embedding",
|
||||
"input": ["hello"]
|
||||
}'
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
### Usage - OpenAI Client
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="sdk" label="SDK">
|
||||
|
||||
```python
|
||||
from openai import OpenAI
|
||||
|
||||
client = OpenAI(
|
||||
api_key="<LITELLM_MASTER_KEY>",
|
||||
base_url="<LITELLM_URL>"
|
||||
)
|
||||
|
||||
response = client.embeddings.create(
|
||||
model="bge-small",
|
||||
input=["The food was delicious and the waiter..."],
|
||||
encoding_format="float"
|
||||
)
|
||||
|
||||
print(response.data[0].embedding)
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
|
||||
<TabItem value="proxy" label="PROXY">
|
||||
|
||||
```bash
|
||||
curl http://0.0.0.0:4000/embeddings \
|
||||
-H "Authorization: Bearer sk-1234" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"model": "bge-small",
|
||||
"input": ["The food was delicious and the waiter..."],
|
||||
"encoding_format": "float"
|
||||
}'
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
|
|
@ -163,6 +163,12 @@ os.environ["OPENAI_API_BASE"] = "openaiai-api-base" # OPTIONAL
|
|||
|
||||
| Model Name | Function Call |
|
||||
|-----------------------|-----------------------------------------------------------------|
|
||||
| gpt-4.1 | `response = completion(model="gpt-4.1", messages=messages)` |
|
||||
| gpt-4.1-mini | `response = completion(model="gpt-4.1-mini", messages=messages)` |
|
||||
| gpt-4.1-nano | `response = completion(model="gpt-4.1-nano", messages=messages)` |
|
||||
| o4-mini | `response = completion(model="o4-mini", messages=messages)` |
|
||||
| o3-mini | `response = completion(model="o3-mini", messages=messages)` |
|
||||
| o3 | `response = completion(model="o3", messages=messages)` |
|
||||
| o1-mini | `response = completion(model="o1-mini", messages=messages)` |
|
||||
| o1-preview | `response = completion(model="o1-preview", messages=messages)` |
|
||||
| gpt-4o-mini | `response = completion(model="gpt-4o-mini", messages=messages)` |
|
||||
|
|
|
@ -364,7 +364,7 @@ from litellm import completion
|
|||
## SETUP ENVIRONMENT
|
||||
# !gcloud auth application-default login - run this to add vertex credentials to your env
|
||||
|
||||
tools = [{"googleSearchRetrieval": {}}] # 👈 ADD GOOGLE SEARCH
|
||||
tools = [{"googleSearch": {}}] # 👈 ADD GOOGLE SEARCH
|
||||
|
||||
resp = litellm.completion(
|
||||
model="vertex_ai/gemini-1.0-pro-001",
|
||||
|
@ -391,7 +391,7 @@ client = OpenAI(
|
|||
response = client.chat.completions.create(
|
||||
model="gemini-pro",
|
||||
messages=[{"role": "user", "content": "Who won the world cup?"}],
|
||||
tools=[{"googleSearchRetrieval": {}}],
|
||||
tools=[{"googleSearch": {}}],
|
||||
)
|
||||
|
||||
print(response)
|
||||
|
@ -410,7 +410,7 @@ curl http://localhost:4000/v1/chat/completions \
|
|||
],
|
||||
"tools": [
|
||||
{
|
||||
"googleSearchRetrieval": {}
|
||||
"googleSearch": {}
|
||||
}
|
||||
]
|
||||
}'
|
||||
|
@ -529,7 +529,7 @@ from litellm import completion
|
|||
|
||||
# !gcloud auth application-default login - run this to add vertex credentials to your env
|
||||
|
||||
tools = [{"googleSearchRetrieval": {"disable_attributon": False}}] # 👈 ADD GOOGLE SEARCH
|
||||
tools = [{"googleSearch": {"disable_attributon": False}}] # 👈 ADD GOOGLE SEARCH
|
||||
|
||||
resp = litellm.completion(
|
||||
model="vertex_ai/gemini-1.0-pro-001",
|
||||
|
@ -542,9 +542,157 @@ print(resp)
|
|||
```
|
||||
|
||||
|
||||
### **Thinking / `reasoning_content`**
|
||||
|
||||
LiteLLM translates OpenAI's `reasoning_effort` to Gemini's `thinking` parameter. [Code](https://github.com/BerriAI/litellm/blob/620664921902d7a9bfb29897a7b27c1a7ef4ddfb/litellm/llms/vertex_ai/gemini/vertex_and_google_ai_studio_gemini.py#L362)
|
||||
|
||||
**Mapping**
|
||||
|
||||
| reasoning_effort | thinking |
|
||||
| ---------------- | -------- |
|
||||
| "low" | "budget_tokens": 1024 |
|
||||
| "medium" | "budget_tokens": 2048 |
|
||||
| "high" | "budget_tokens": 4096 |
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="sdk" label="SDK">
|
||||
|
||||
```python
|
||||
from litellm import completion
|
||||
|
||||
# !gcloud auth application-default login - run this to add vertex credentials to your env
|
||||
|
||||
resp = completion(
|
||||
model="vertex_ai/gemini-2.5-flash-preview-04-17",
|
||||
messages=[{"role": "user", "content": "What is the capital of France?"}],
|
||||
reasoning_effort="low",
|
||||
vertex_project="project-id",
|
||||
vertex_location="us-central1"
|
||||
)
|
||||
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
|
||||
<TabItem value="proxy" label="PROXY">
|
||||
|
||||
1. Setup config.yaml
|
||||
|
||||
```yaml
|
||||
- model_name: gemini-2.5-flash
|
||||
litellm_params:
|
||||
model: vertex_ai/gemini-2.5-flash-preview-04-17
|
||||
vertex_credentials: {"project_id": "project-id", "location": "us-central1", "project_key": "project-key"}
|
||||
vertex_project: "project-id"
|
||||
vertex_location: "us-central1"
|
||||
```
|
||||
|
||||
2. Start proxy
|
||||
|
||||
```bash
|
||||
litellm --config /path/to/config.yaml
|
||||
```
|
||||
|
||||
3. Test it!
|
||||
|
||||
```bash
|
||||
curl http://0.0.0.0:4000/v1/chat/completions \
|
||||
-H "Content-Type: application/json" \
|
||||
-H "Authorization: Bearer <YOUR-LITELLM-KEY>" \
|
||||
-d '{
|
||||
"model": "gemini-2.5-flash",
|
||||
"messages": [{"role": "user", "content": "What is the capital of France?"}],
|
||||
"reasoning_effort": "low"
|
||||
}'
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
|
||||
**Expected Response**
|
||||
|
||||
```python
|
||||
ModelResponse(
|
||||
id='chatcmpl-c542d76d-f675-4e87-8e5f-05855f5d0f5e',
|
||||
created=1740470510,
|
||||
model='claude-3-7-sonnet-20250219',
|
||||
object='chat.completion',
|
||||
system_fingerprint=None,
|
||||
choices=[
|
||||
Choices(
|
||||
finish_reason='stop',
|
||||
index=0,
|
||||
message=Message(
|
||||
content="The capital of France is Paris.",
|
||||
role='assistant',
|
||||
tool_calls=None,
|
||||
function_call=None,
|
||||
reasoning_content='The capital of France is Paris. This is a very straightforward factual question.'
|
||||
),
|
||||
)
|
||||
],
|
||||
usage=Usage(
|
||||
completion_tokens=68,
|
||||
prompt_tokens=42,
|
||||
total_tokens=110,
|
||||
completion_tokens_details=None,
|
||||
prompt_tokens_details=PromptTokensDetailsWrapper(
|
||||
audio_tokens=None,
|
||||
cached_tokens=0,
|
||||
text_tokens=None,
|
||||
image_tokens=None
|
||||
),
|
||||
cache_creation_input_tokens=0,
|
||||
cache_read_input_tokens=0
|
||||
)
|
||||
)
|
||||
```
|
||||
|
||||
#### Pass `thinking` to Gemini models
|
||||
|
||||
You can also pass the `thinking` parameter to Gemini models.
|
||||
|
||||
This is translated to Gemini's [`thinkingConfig` parameter](https://ai.google.dev/gemini-api/docs/thinking#set-budget).
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="sdk" label="SDK">
|
||||
|
||||
```python
|
||||
from litellm import completion
|
||||
|
||||
# !gcloud auth application-default login - run this to add vertex credentials to your env
|
||||
|
||||
response = litellm.completion(
|
||||
model="vertex_ai/gemini-2.5-flash-preview-04-17",
|
||||
messages=[{"role": "user", "content": "What is the capital of France?"}],
|
||||
thinking={"type": "enabled", "budget_tokens": 1024},
|
||||
vertex_project="project-id",
|
||||
vertex_location="us-central1"
|
||||
)
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="proxy" label="PROXY">
|
||||
|
||||
```bash
|
||||
curl http://0.0.0.0:4000/v1/chat/completions \
|
||||
-H "Content-Type: application/json" \
|
||||
-H "Authorization: Bearer $LITELLM_KEY" \
|
||||
-d '{
|
||||
"model": "vertex_ai/gemini-2.5-flash-preview-04-17",
|
||||
"messages": [{"role": "user", "content": "What is the capital of France?"}],
|
||||
"thinking": {"type": "enabled", "budget_tokens": 1024}
|
||||
}'
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
|
||||
### **Context Caching**
|
||||
|
||||
Use Vertex AI context caching is supported by calling provider api directly. (Unified Endpoint support comin soon.).
|
||||
Use Vertex AI context caching is supported by calling provider api directly. (Unified Endpoint support coming soon.).
|
||||
|
||||
[**Go straight to provider**](../pass_through/vertex_ai.md#context-caching)
|
||||
|
||||
|
@ -762,7 +910,7 @@ export VERTEXAI_PROJECT="my-test-project" # ONLY use if model project is differe
|
|||
|
||||
|
||||
## Specifying Safety Settings
|
||||
In certain use-cases you may need to make calls to the models and pass [safety settigns](https://ai.google.dev/docs/safety_setting_gemini) different from the defaults. To do so, simple pass the `safety_settings` argument to `completion` or `acompletion`. For example:
|
||||
In certain use-cases you may need to make calls to the models and pass [safety settings](https://ai.google.dev/docs/safety_setting_gemini) different from the defaults. To do so, simple pass the `safety_settings` argument to `completion` or `acompletion`. For example:
|
||||
|
||||
### Set per model/request
|
||||
|
||||
|
@ -1902,7 +2050,7 @@ response = completion(
|
|||
print(response.choices[0])
|
||||
```
|
||||
</TabItem>
|
||||
<TabItem value="proxy" lable="PROXY">
|
||||
<TabItem value="proxy" label="PROXY">
|
||||
|
||||
1. Add model to config
|
||||
|
||||
|
|
|
@ -161,6 +161,120 @@ curl -L -X POST 'http://0.0.0.0:4000/embeddings' \
|
|||
|
||||
Example Implementation from VLLM [here](https://github.com/vllm-project/vllm/pull/10020)
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="files_message" label="(Unified) Files Message">
|
||||
|
||||
Use this to send a video url to VLLM + Gemini in the same format, using OpenAI's `files` message type.
|
||||
|
||||
There are two ways to send a video url to VLLM:
|
||||
|
||||
1. Pass the video url directly
|
||||
|
||||
```
|
||||
{"type": "file", "file": {"file_id": video_url}},
|
||||
```
|
||||
|
||||
2. Pass the video data as base64
|
||||
|
||||
```
|
||||
{"type": "file", "file": {"file_data": f"data:video/mp4;base64,{video_data_base64}"}}
|
||||
```
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="sdk" label="SDK">
|
||||
|
||||
```python
|
||||
from litellm import completion
|
||||
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "Summarize the following video"
|
||||
},
|
||||
{
|
||||
"type": "file",
|
||||
"file": {
|
||||
"file_id": "https://www.youtube.com/watch?v=dQw4w9WgXcQ"
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
]
|
||||
|
||||
# call vllm
|
||||
os.environ["HOSTED_VLLM_API_BASE"] = "https://hosted-vllm-api.co"
|
||||
os.environ["HOSTED_VLLM_API_KEY"] = "" # [optional], if your VLLM server requires an API key
|
||||
response = completion(
|
||||
model="hosted_vllm/qwen", # pass the vllm model name
|
||||
messages=messages,
|
||||
)
|
||||
|
||||
# call gemini
|
||||
os.environ["GEMINI_API_KEY"] = "your-gemini-api-key"
|
||||
response = completion(
|
||||
model="gemini/gemini-1.5-flash", # pass the gemini model name
|
||||
messages=messages,
|
||||
)
|
||||
|
||||
print(response)
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="proxy" label="PROXY">
|
||||
|
||||
1. Setup config.yaml
|
||||
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: my-model
|
||||
litellm_params:
|
||||
model: hosted_vllm/qwen # add hosted_vllm/ prefix to route as OpenAI provider
|
||||
api_base: https://hosted-vllm-api.co # add api base for OpenAI compatible provider
|
||||
- model_name: my-gemini-model
|
||||
litellm_params:
|
||||
model: gemini/gemini-1.5-flash # add gemini/ prefix to route as Google AI Studio provider
|
||||
api_key: os.environ/GEMINI_API_KEY
|
||||
```
|
||||
|
||||
2. Start the proxy
|
||||
|
||||
```bash
|
||||
$ litellm --config /path/to/config.yaml
|
||||
|
||||
# RUNNING on http://0.0.0.0:4000
|
||||
```
|
||||
|
||||
3. Test it!
|
||||
|
||||
```bash
|
||||
curl -X POST http://0.0.0.0:4000/chat/completions \
|
||||
-H "Authorization: Bearer sk-1234" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"model": "my-model",
|
||||
"messages": [
|
||||
{"role": "user", "content":
|
||||
[
|
||||
{"type": "text", "text": "Summarize the following video"},
|
||||
{"type": "file", "file": {"file_id": "https://www.youtube.com/watch?v=dQw4w9WgXcQ"}}
|
||||
]
|
||||
}
|
||||
]
|
||||
}'
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="video_url" label="(VLLM-specific) Video Message">
|
||||
|
||||
Use this to send a video url to VLLM in it's native message format (`video_url`).
|
||||
|
||||
There are two ways to send a video url to VLLM:
|
||||
|
||||
1. Pass the video url directly
|
||||
|
@ -249,6 +363,10 @@ curl -X POST http://0.0.0.0:4000/chat/completions \
|
|||
</Tabs>
|
||||
|
||||
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
|
||||
## (Deprecated) for `vllm pip package`
|
||||
### Using - `litellm.completion`
|
||||
|
||||
|
|
|
@ -243,12 +243,12 @@ We allow you to pass a local image or a an http/https url of your image
|
|||
|
||||
Set `UI_LOGO_PATH` on your env. We recommend using a hosted image, it's a lot easier to set up and configure / debug
|
||||
|
||||
Exaple setting Hosted image
|
||||
Example setting Hosted image
|
||||
```shell
|
||||
UI_LOGO_PATH="https://litellm-logo-aws-marketplace.s3.us-west-2.amazonaws.com/berriai-logo-github.png"
|
||||
```
|
||||
|
||||
Exaple setting a local image (on your container)
|
||||
Example setting a local image (on your container)
|
||||
```shell
|
||||
UI_LOGO_PATH="ui_images/logo.jpg"
|
||||
```
|
||||
|
|
|
@ -213,7 +213,7 @@ model_list:
|
|||
general_settings:
|
||||
master_key: sk-1234
|
||||
alerting: ["slack"]
|
||||
alerting_threshold: 0.0001 # (Seconds) set an artifically low threshold for testing alerting
|
||||
alerting_threshold: 0.0001 # (Seconds) set an artificially low threshold for testing alerting
|
||||
alert_to_webhook_url: {
|
||||
"llm_exceptions": "https://hooks.slack.com/services/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",
|
||||
"llm_too_slow": "https://hooks.slack.com/services/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",
|
||||
|
@ -247,7 +247,7 @@ model_list:
|
|||
general_settings:
|
||||
master_key: sk-1234
|
||||
alerting: ["slack"]
|
||||
alerting_threshold: 0.0001 # (Seconds) set an artifically low threshold for testing alerting
|
||||
alerting_threshold: 0.0001 # (Seconds) set an artificially low threshold for testing alerting
|
||||
alert_to_webhook_url: {
|
||||
"llm_exceptions": ["os.environ/SLACK_WEBHOOK_URL", "os.environ/SLACK_WEBHOOK_URL_2"],
|
||||
"llm_too_slow": ["https://webhook.site/7843a980-a494-4967-80fb-d502dbc16886", "https://webhook.site/28cfb179-f4fb-4408-8129-729ff55cf213"],
|
||||
|
@ -425,7 +425,7 @@ curl -X GET --location 'http://0.0.0.0:4000/health/services?service=webhook' \
|
|||
- `projected_exceeded_date` *str or null*: The date when the budget is projected to be exceeded, returned when 'soft_budget' is set for key (optional).
|
||||
- `projected_spend` *float or null*: The projected spend amount, returned when 'soft_budget' is set for key (optional).
|
||||
- `event` *Literal["budget_crossed", "threshold_crossed", "projected_limit_exceeded"]*: The type of event that triggered the webhook. Possible values are:
|
||||
* "spend_tracked": Emitted whenver spend is tracked for a customer id.
|
||||
* "spend_tracked": Emitted whenever spend is tracked for a customer id.
|
||||
* "budget_crossed": Indicates that the spend has exceeded the max budget.
|
||||
* "threshold_crossed": Indicates that spend has crossed a threshold (currently sent when 85% and 95% of budget is reached).
|
||||
* "projected_limit_exceeded": For "key" only - Indicates that the projected spend is expected to exceed the soft budget threshold.
|
||||
|
@ -480,7 +480,7 @@ LLM-related Alerts
|
|||
| `cooldown_deployment` | Alerts when a deployment is put into cooldown | ✅ |
|
||||
| `new_model_added` | Notifications when a new model is added to litellm proxy through /model/new| ✅ |
|
||||
| `outage_alerts` | Alerts when a specific LLM deployment is facing an outage | ✅ |
|
||||
| `region_outage_alerts` | Alerts when a specfic LLM region is facing an outage. Example us-east-1 | ✅ |
|
||||
| `region_outage_alerts` | Alerts when a specific LLM region is facing an outage. Example us-east-1 | ✅ |
|
||||
|
||||
Budget and Spend Alerts
|
||||
|
||||
|
|
|
@ -299,6 +299,9 @@ router_settings:
|
|||
|------|-------------|
|
||||
| ACTIONS_ID_TOKEN_REQUEST_TOKEN | Token for requesting ID in GitHub Actions
|
||||
| ACTIONS_ID_TOKEN_REQUEST_URL | URL for requesting ID token in GitHub Actions
|
||||
| AGENTOPS_ENVIRONMENT | Environment for AgentOps logging integration
|
||||
| AGENTOPS_API_KEY | API Key for AgentOps logging integration
|
||||
| AGENTOPS_SERVICE_NAME | Service Name for AgentOps logging integration
|
||||
| AISPEND_ACCOUNT_ID | Account ID for AI Spend
|
||||
| AISPEND_API_KEY | API Key for AI Spend
|
||||
| ALLOWED_EMAIL_DOMAINS | List of email domains allowed for access
|
||||
|
|
|
@ -56,7 +56,7 @@ model_list:
|
|||
model: azure/<your_deployment_name>
|
||||
api_key: os.environ/AZURE_API_KEY
|
||||
api_base: os.environ/AZURE_API_BASE
|
||||
api_version: os.envrion/AZURE_API_VERSION
|
||||
api_version: os.environ/AZURE_API_VERSION
|
||||
model_info:
|
||||
input_cost_per_token: 0.000421 # 👈 ONLY to track cost per token
|
||||
output_cost_per_token: 0.000520 # 👈 ONLY to track cost per token
|
||||
|
@ -133,4 +133,4 @@ acompletion(
|
|||
|
||||
If these keys are not present, LiteLLM will not use your custom pricing.
|
||||
|
||||
If the problem persists, please file an issue on [GitHub](https://github.com/BerriAI/litellm/issues).
|
||||
If the problem persists, please file an issue on [GitHub](https://github.com/BerriAI/litellm/issues).
|
||||
|
|
|
@ -19,7 +19,7 @@ LiteLLM writes `UPDATE` and `UPSERT` queries to the DB. When using 10+ instances
|
|||
|
||||
### Stage 1. Each instance writes updates to redis
|
||||
|
||||
Each instance will accumlate the spend updates for a key, user, team, etc and write the updates to a redis queue.
|
||||
Each instance will accumulate the spend updates for a key, user, team, etc and write the updates to a redis queue.
|
||||
|
||||
<Image img={require('../../img/deadlock_fix_1.png')} style={{ width: '900px', height: 'auto' }} />
|
||||
<p style={{textAlign: 'left', color: '#666'}}>
|
||||
|
|
|
@ -22,7 +22,7 @@ echo 'LITELLM_MASTER_KEY="sk-1234"' > .env
|
|||
|
||||
# Add the litellm salt key - you cannot change this after adding a model
|
||||
# It is used to encrypt / decrypt your LLM API Key credentials
|
||||
# We recommned - https://1password.com/password-generator/
|
||||
# We recommend - https://1password.com/password-generator/
|
||||
# password generator to get a random hash for litellm salt key
|
||||
echo 'LITELLM_SALT_KEY="sk-1234"' >> .env
|
||||
|
||||
|
@ -125,7 +125,7 @@ CMD ["--port", "4000", "--config", "config.yaml", "--detailed_debug"]
|
|||
|
||||
### Build from litellm `pip` package
|
||||
|
||||
Follow these instructons to build a docker container from the litellm pip package. If your company has a strict requirement around security / building images you can follow these steps.
|
||||
Follow these instructions to build a docker container from the litellm pip package. If your company has a strict requirement around security / building images you can follow these steps.
|
||||
|
||||
Dockerfile
|
||||
|
||||
|
@ -999,7 +999,7 @@ services:
|
|||
- "4000:4000" # Map the container port to the host, change the host port if necessary
|
||||
volumes:
|
||||
- ./litellm-config.yaml:/app/config.yaml # Mount the local configuration file
|
||||
# You can change the port or number of workers as per your requirements or pass any new supported CLI augument. Make sure the port passed here matches with the container port defined above in `ports` value
|
||||
# You can change the port or number of workers as per your requirements or pass any new supported CLI argument. Make sure the port passed here matches with the container port defined above in `ports` value
|
||||
command: [ "--config", "/app/config.yaml", "--port", "4000", "--num_workers", "8" ]
|
||||
|
||||
# ...rest of your docker-compose config if any
|
||||
|
|
|
@ -691,7 +691,7 @@ curl --request POST \
|
|||
<TabItem value="admin_only_routes" label="Test `admin_only_routes`">
|
||||
|
||||
|
||||
**Successfull Request**
|
||||
**Successful Request**
|
||||
|
||||
```shell
|
||||
curl --location 'http://0.0.0.0:4000/key/generate' \
|
||||
|
@ -729,7 +729,7 @@ curl --location 'http://0.0.0.0:4000/key/generate' \
|
|||
<TabItem value="allowed_routes" label="Test `allowed_routes`">
|
||||
|
||||
|
||||
**Successfull Request**
|
||||
**Successful Request**
|
||||
|
||||
```shell
|
||||
curl http://localhost:4000/chat/completions \
|
||||
|
|
|
@ -164,7 +164,7 @@ curl -i http://localhost:4000/v1/chat/completions \
|
|||
|
||||
**Expected response**
|
||||
|
||||
Your response headers will incude `x-litellm-applied-guardrails` with the guardrail applied
|
||||
Your response headers will include `x-litellm-applied-guardrails` with the guardrail applied
|
||||
|
||||
```
|
||||
x-litellm-applied-guardrails: aporia-pre-guard
|
||||
|
|
|
@ -277,7 +277,7 @@ Found under `kwargs["standard_logging_object"]`. This is a standard payload, log
|
|||
|
||||
## Langfuse
|
||||
|
||||
We will use the `--config` to set `litellm.success_callback = ["langfuse"]` this will log all successfull LLM calls to langfuse. Make sure to set `LANGFUSE_PUBLIC_KEY` and `LANGFUSE_SECRET_KEY` in your environment
|
||||
We will use the `--config` to set `litellm.success_callback = ["langfuse"]` this will log all successful LLM calls to langfuse. Make sure to set `LANGFUSE_PUBLIC_KEY` and `LANGFUSE_SECRET_KEY` in your environment
|
||||
|
||||
**Step 1** Install langfuse
|
||||
|
||||
|
@ -534,15 +534,15 @@ print(response)
|
|||
|
||||
Use this if you want to control which LiteLLM-specific fields are logged as tags by the LiteLLM proxy. By default LiteLLM Proxy logs no LiteLLM-specific fields
|
||||
|
||||
| LiteLLM specific field | Description | Example Value |
|
||||
|------------------------|-------------------------------------------------------|------------------------------------------------|
|
||||
| `cache_hit` | Indicates whether a cache hit occured (True) or not (False) | `true`, `false` |
|
||||
| `cache_key` | The Cache key used for this request | `d2b758c****`|
|
||||
| `proxy_base_url` | The base URL for the proxy server, the value of env var `PROXY_BASE_URL` on your server | `https://proxy.example.com`|
|
||||
| `user_api_key_alias` | An alias for the LiteLLM Virtual Key.| `prod-app1` |
|
||||
| `user_api_key_user_id` | The unique ID associated with a user's API key. | `user_123`, `user_456` |
|
||||
| `user_api_key_user_email` | The email associated with a user's API key. | `user@example.com`, `admin@example.com` |
|
||||
| `user_api_key_team_alias` | An alias for a team associated with an API key. | `team_alpha`, `dev_team` |
|
||||
| LiteLLM specific field | Description | Example Value |
|
||||
|---------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------|
|
||||
| `cache_hit` | Indicates whether a cache hit occurred (True) or not (False) | `true`, `false` |
|
||||
| `cache_key` | The Cache key used for this request | `d2b758c****` |
|
||||
| `proxy_base_url` | The base URL for the proxy server, the value of env var `PROXY_BASE_URL` on your server | `https://proxy.example.com` |
|
||||
| `user_api_key_alias` | An alias for the LiteLLM Virtual Key. | `prod-app1` |
|
||||
| `user_api_key_user_id` | The unique ID associated with a user's API key. | `user_123`, `user_456` |
|
||||
| `user_api_key_user_email` | The email associated with a user's API key. | `user@example.com`, `admin@example.com` |
|
||||
| `user_api_key_team_alias` | An alias for a team associated with an API key. | `team_alpha`, `dev_team` |
|
||||
|
||||
|
||||
**Usage**
|
||||
|
@ -1190,7 +1190,7 @@ We will use the `--config` to set
|
|||
|
||||
- `litellm.success_callback = ["s3"]`
|
||||
|
||||
This will log all successfull LLM calls to s3 Bucket
|
||||
This will log all successful LLM calls to s3 Bucket
|
||||
|
||||
**Step 1** Set AWS Credentials in .env
|
||||
|
||||
|
@ -1279,7 +1279,7 @@ Log LLM Logs to [Azure Data Lake Storage](https://learn.microsoft.com/en-us/azur
|
|||
|
||||
| Property | Details |
|
||||
|----------|---------|
|
||||
| Description | Log LLM Input/Output to Azure Blob Storag (Bucket) |
|
||||
| Description | Log LLM Input/Output to Azure Blob Storage (Bucket) |
|
||||
| Azure Docs on Data Lake Storage | [Azure Data Lake Storage](https://learn.microsoft.com/en-us/azure/storage/blobs/data-lake-storage-introduction) |
|
||||
|
||||
|
||||
|
@ -1360,7 +1360,7 @@ LiteLLM Supports logging to the following Datdog Integrations:
|
|||
<Tabs>
|
||||
<TabItem value="datadog" label="Datadog Logs">
|
||||
|
||||
We will use the `--config` to set `litellm.callbacks = ["datadog"]` this will log all successfull LLM calls to DataDog
|
||||
We will use the `--config` to set `litellm.callbacks = ["datadog"]` this will log all successful LLM calls to DataDog
|
||||
|
||||
**Step 1**: Create a `config.yaml` file and set `litellm_settings`: `success_callback`
|
||||
|
||||
|
@ -1636,7 +1636,7 @@ class MyCustomHandler(CustomLogger):
|
|||
litellm_params = kwargs.get("litellm_params", {})
|
||||
metadata = litellm_params.get("metadata", {}) # headers passed to LiteLLM proxy, can be found here
|
||||
|
||||
# Acess Exceptions & Traceback
|
||||
# Access Exceptions & Traceback
|
||||
exception_event = kwargs.get("exception", None)
|
||||
traceback_event = kwargs.get("traceback_exception", None)
|
||||
|
||||
|
@ -2205,7 +2205,7 @@ We will use the `--config` to set
|
|||
- `litellm.success_callback = ["dynamodb"]`
|
||||
- `litellm.dynamodb_table_name = "your-table-name"`
|
||||
|
||||
This will log all successfull LLM calls to DynamoDB
|
||||
This will log all successful LLM calls to DynamoDB
|
||||
|
||||
**Step 1** Set AWS Credentials in .env
|
||||
|
||||
|
@ -2370,7 +2370,7 @@ litellm --test
|
|||
|
||||
[Athina](https://athina.ai/) allows you to log LLM Input/Output for monitoring, analytics, and observability.
|
||||
|
||||
We will use the `--config` to set `litellm.success_callback = ["athina"]` this will log all successfull LLM calls to athina
|
||||
We will use the `--config` to set `litellm.success_callback = ["athina"]` this will log all successful LLM calls to athina
|
||||
|
||||
**Step 1** Set Athina API key
|
||||
|
||||
|
|
108
docs/my-website/docs/proxy/model_discovery.md
Normal file
|
@ -0,0 +1,108 @@
|
|||
# Model Discovery
|
||||
|
||||
Use this to give users an accurate list of models available behind provider endpoint, when calling `/v1/models` for wildcard models.
|
||||
|
||||
## Supported Models
|
||||
|
||||
- Fireworks AI
|
||||
- OpenAI
|
||||
- Gemini
|
||||
- LiteLLM Proxy
|
||||
- Topaz
|
||||
- Anthropic
|
||||
- XAI
|
||||
- VLLM
|
||||
- Vertex AI
|
||||
|
||||
### Usage
|
||||
|
||||
**1. Setup config.yaml**
|
||||
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: xai/*
|
||||
litellm_params:
|
||||
model: xai/*
|
||||
api_key: os.environ/XAI_API_KEY
|
||||
|
||||
litellm_settings:
|
||||
check_provider_endpoint: true # 👈 Enable checking provider endpoint for wildcard models
|
||||
```
|
||||
|
||||
**2. Start proxy**
|
||||
|
||||
```bash
|
||||
litellm --config /path/to/config.yaml
|
||||
|
||||
# RUNNING on http://0.0.0.0:4000
|
||||
```
|
||||
|
||||
**3. Call `/v1/models`**
|
||||
|
||||
```bash
|
||||
curl -X GET "http://localhost:4000/v1/models" -H "Authorization: Bearer $LITELLM_KEY"
|
||||
```
|
||||
|
||||
Expected response
|
||||
|
||||
```json
|
||||
{
|
||||
"data": [
|
||||
{
|
||||
"id": "xai/grok-2-1212",
|
||||
"object": "model",
|
||||
"created": 1677610602,
|
||||
"owned_by": "openai"
|
||||
},
|
||||
{
|
||||
"id": "xai/grok-2-vision-1212",
|
||||
"object": "model",
|
||||
"created": 1677610602,
|
||||
"owned_by": "openai"
|
||||
},
|
||||
{
|
||||
"id": "xai/grok-3-beta",
|
||||
"object": "model",
|
||||
"created": 1677610602,
|
||||
"owned_by": "openai"
|
||||
},
|
||||
{
|
||||
"id": "xai/grok-3-fast-beta",
|
||||
"object": "model",
|
||||
"created": 1677610602,
|
||||
"owned_by": "openai"
|
||||
},
|
||||
{
|
||||
"id": "xai/grok-3-mini-beta",
|
||||
"object": "model",
|
||||
"created": 1677610602,
|
||||
"owned_by": "openai"
|
||||
},
|
||||
{
|
||||
"id": "xai/grok-3-mini-fast-beta",
|
||||
"object": "model",
|
||||
"created": 1677610602,
|
||||
"owned_by": "openai"
|
||||
},
|
||||
{
|
||||
"id": "xai/grok-beta",
|
||||
"object": "model",
|
||||
"created": 1677610602,
|
||||
"owned_by": "openai"
|
||||
},
|
||||
{
|
||||
"id": "xai/grok-vision-beta",
|
||||
"object": "model",
|
||||
"created": 1677610602,
|
||||
"owned_by": "openai"
|
||||
},
|
||||
{
|
||||
"id": "xai/grok-2-image-1212",
|
||||
"object": "model",
|
||||
"created": 1677610602,
|
||||
"owned_by": "openai"
|
||||
}
|
||||
],
|
||||
"object": "list"
|
||||
}
|
||||
```
|
|
@ -61,7 +61,7 @@ CMD ["--port", "4000", "--config", "./proxy_server_config.yaml"]
|
|||
|
||||
## 3. Use Redis 'port','host', 'password'. NOT 'redis_url'
|
||||
|
||||
If you decide to use Redis, DO NOT use 'redis_url'. We recommend usig redis port, host, and password params.
|
||||
If you decide to use Redis, DO NOT use 'redis_url'. We recommend using redis port, host, and password params.
|
||||
|
||||
`redis_url`is 80 RPS slower
|
||||
|
||||
|
@ -169,7 +169,7 @@ If you plan on using the DB, set a salt key for encrypting/decrypting variables
|
|||
|
||||
Do not change this after adding a model. It is used to encrypt / decrypt your LLM API Key credentials
|
||||
|
||||
We recommned - https://1password.com/password-generator/ password generator to get a random hash for litellm salt key.
|
||||
We recommend - https://1password.com/password-generator/ password generator to get a random hash for litellm salt key.
|
||||
|
||||
```bash
|
||||
export LITELLM_SALT_KEY="sk-1234"
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
Set temporary budget increase for a LiteLLM Virtual Key. Use this if you get asked to increase the budget for a key temporarily.
|
||||
|
||||
|
||||
| Heirarchy | Supported |
|
||||
| Hierarchy | Supported |
|
||||
|-----------|-----------|
|
||||
| LiteLLM Virtual Key | ✅ |
|
||||
| User | ❌ |
|
||||
|
|
|
@ -4,7 +4,7 @@ import TabItem from '@theme/TabItem';
|
|||
|
||||
# Adding LLM Credentials
|
||||
|
||||
You can add LLM provider credentials on the UI. Once you add credentials you can re-use them when adding new models
|
||||
You can add LLM provider credentials on the UI. Once you add credentials you can reuse them when adding new models
|
||||
|
||||
## Add a credential + model
|
||||
|
||||
|
|
|
@ -23,7 +23,7 @@ Requirements:
|
|||
- ** Set on config.yaml** set your master key under `general_settings:master_key`, example below
|
||||
- ** Set env variable** set `LITELLM_MASTER_KEY`
|
||||
|
||||
(the proxy Dockerfile checks if the `DATABASE_URL` is set and then intializes the DB connection)
|
||||
(the proxy Dockerfile checks if the `DATABASE_URL` is set and then initializes the DB connection)
|
||||
|
||||
```shell
|
||||
export DATABASE_URL=postgresql://<user>:<password>@<host>:<port>/<dbname>
|
||||
|
@ -333,7 +333,7 @@ curl http://localhost:4000/v1/chat/completions \
|
|||
|
||||
**Expected Response**
|
||||
|
||||
Expect to see a successfull response from the litellm proxy since the key passed in `X-Litellm-Key` is valid
|
||||
Expect to see a successful response from the litellm proxy since the key passed in `X-Litellm-Key` is valid
|
||||
```shell
|
||||
{"id":"chatcmpl-f9b2b79a7c30477ab93cd0e717d1773e","choices":[{"finish_reason":"stop","index":0,"message":{"content":"\n\nHello there, how may I assist you today?","role":"assistant","tool_calls":null,"function_call":null}}],"created":1677652288,"model":"gpt-3.5-turbo-0125","object":"chat.completion","system_fingerprint":"fp_44709d6fcb","usage":{"completion_tokens":12,"prompt_tokens":9,"total_tokens":21}
|
||||
```
|
||||
|
|
|
@ -16,6 +16,8 @@ Supported Providers:
|
|||
- Vertex AI (Anthropic) (`vertexai/`)
|
||||
- OpenRouter (`openrouter/`)
|
||||
- XAI (`xai/`)
|
||||
- Google AI Studio (`google/`)
|
||||
- Vertex AI (`vertex_ai/`)
|
||||
|
||||
LiteLLM will standardize the `reasoning_content` in the response and `thinking_blocks` in the assistant message.
|
||||
|
||||
|
@ -23,7 +25,7 @@ LiteLLM will standardize the `reasoning_content` in the response and `thinking_b
|
|||
"message": {
|
||||
...
|
||||
"reasoning_content": "The capital of France is Paris.",
|
||||
"thinking_blocks": [
|
||||
"thinking_blocks": [ # only returned for Anthropic models
|
||||
{
|
||||
"type": "thinking",
|
||||
"thinking": "The capital of France is Paris.",
|
||||
|
|
|
@ -14,22 +14,22 @@ LiteLLM provides a BETA endpoint in the spec of [OpenAI's `/responses` API](http
|
|||
| Fallbacks | ✅ | Works between supported models |
|
||||
| Loadbalancing | ✅ | Works between supported models |
|
||||
| Supported LiteLLM Versions | 1.63.8+ | |
|
||||
| Supported LLM providers | `openai` | |
|
||||
| Supported LLM providers | **All LiteLLM supported providers** | `openai`, `anthropic`, `bedrock`, `vertex_ai`, `gemini`, `azure`, `azure_ai` etc. |
|
||||
|
||||
## Usage
|
||||
|
||||
## Create a model response
|
||||
### LiteLLM Python SDK
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="litellm-sdk" label="LiteLLM SDK">
|
||||
<TabItem value="openai" label="OpenAI">
|
||||
|
||||
#### Non-streaming
|
||||
```python
|
||||
```python showLineNumbers title="OpenAI Non-streaming Response"
|
||||
import litellm
|
||||
|
||||
# Non-streaming response
|
||||
response = litellm.responses(
|
||||
model="o1-pro",
|
||||
model="openai/o1-pro",
|
||||
input="Tell me a three sentence bedtime story about a unicorn.",
|
||||
max_output_tokens=100
|
||||
)
|
||||
|
@ -38,12 +38,12 @@ print(response)
|
|||
```
|
||||
|
||||
#### Streaming
|
||||
```python
|
||||
```python showLineNumbers title="OpenAI Streaming Response"
|
||||
import litellm
|
||||
|
||||
# Streaming response
|
||||
response = litellm.responses(
|
||||
model="o1-pro",
|
||||
model="openai/o1-pro",
|
||||
input="Tell me a three sentence bedtime story about a unicorn.",
|
||||
stream=True
|
||||
)
|
||||
|
@ -53,58 +53,169 @@ for event in response:
|
|||
```
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="proxy" label="OpenAI SDK with LiteLLM Proxy">
|
||||
|
||||
First, add this to your litellm proxy config.yaml:
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: o1-pro
|
||||
litellm_params:
|
||||
model: openai/o1-pro
|
||||
api_key: os.environ/OPENAI_API_KEY
|
||||
```
|
||||
|
||||
Start your LiteLLM proxy:
|
||||
```bash
|
||||
litellm --config /path/to/config.yaml
|
||||
|
||||
# RUNNING on http://0.0.0.0:4000
|
||||
```
|
||||
|
||||
Then use the OpenAI SDK pointed to your proxy:
|
||||
<TabItem value="anthropic" label="Anthropic">
|
||||
|
||||
#### Non-streaming
|
||||
```python
|
||||
from openai import OpenAI
|
||||
```python showLineNumbers title="Anthropic Non-streaming Response"
|
||||
import litellm
|
||||
import os
|
||||
|
||||
# Initialize client with your proxy URL
|
||||
client = OpenAI(
|
||||
base_url="http://localhost:4000", # Your proxy URL
|
||||
api_key="your-api-key" # Your proxy API key
|
||||
)
|
||||
# Set API key
|
||||
os.environ["ANTHROPIC_API_KEY"] = "your-anthropic-api-key"
|
||||
|
||||
# Non-streaming response
|
||||
response = client.responses.create(
|
||||
model="o1-pro",
|
||||
input="Tell me a three sentence bedtime story about a unicorn."
|
||||
response = litellm.responses(
|
||||
model="anthropic/claude-3-5-sonnet-20240620",
|
||||
input="Tell me a three sentence bedtime story about a unicorn.",
|
||||
max_output_tokens=100
|
||||
)
|
||||
|
||||
print(response)
|
||||
```
|
||||
|
||||
#### Streaming
|
||||
```python
|
||||
from openai import OpenAI
|
||||
```python showLineNumbers title="Anthropic Streaming Response"
|
||||
import litellm
|
||||
import os
|
||||
|
||||
# Initialize client with your proxy URL
|
||||
client = OpenAI(
|
||||
base_url="http://localhost:4000", # Your proxy URL
|
||||
api_key="your-api-key" # Your proxy API key
|
||||
)
|
||||
# Set API key
|
||||
os.environ["ANTHROPIC_API_KEY"] = "your-anthropic-api-key"
|
||||
|
||||
# Streaming response
|
||||
response = client.responses.create(
|
||||
model="o1-pro",
|
||||
response = litellm.responses(
|
||||
model="anthropic/claude-3-5-sonnet-20240620",
|
||||
input="Tell me a three sentence bedtime story about a unicorn.",
|
||||
stream=True
|
||||
)
|
||||
|
||||
for event in response:
|
||||
print(event)
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
|
||||
<TabItem value="vertex" label="Vertex AI">
|
||||
|
||||
#### Non-streaming
|
||||
```python showLineNumbers title="Vertex AI Non-streaming Response"
|
||||
import litellm
|
||||
import os
|
||||
|
||||
# Set credentials - Vertex AI uses application default credentials
|
||||
# Run 'gcloud auth application-default login' to authenticate
|
||||
os.environ["VERTEXAI_PROJECT"] = "your-gcp-project-id"
|
||||
os.environ["VERTEXAI_LOCATION"] = "us-central1"
|
||||
|
||||
# Non-streaming response
|
||||
response = litellm.responses(
|
||||
model="vertex_ai/gemini-1.5-pro",
|
||||
input="Tell me a three sentence bedtime story about a unicorn.",
|
||||
max_output_tokens=100
|
||||
)
|
||||
|
||||
print(response)
|
||||
```
|
||||
|
||||
#### Streaming
|
||||
```python showLineNumbers title="Vertex AI Streaming Response"
|
||||
import litellm
|
||||
import os
|
||||
|
||||
# Set credentials - Vertex AI uses application default credentials
|
||||
# Run 'gcloud auth application-default login' to authenticate
|
||||
os.environ["VERTEXAI_PROJECT"] = "your-gcp-project-id"
|
||||
os.environ["VERTEXAI_LOCATION"] = "us-central1"
|
||||
|
||||
# Streaming response
|
||||
response = litellm.responses(
|
||||
model="vertex_ai/gemini-1.5-pro",
|
||||
input="Tell me a three sentence bedtime story about a unicorn.",
|
||||
stream=True
|
||||
)
|
||||
|
||||
for event in response:
|
||||
print(event)
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
|
||||
<TabItem value="bedrock" label="AWS Bedrock">
|
||||
|
||||
#### Non-streaming
|
||||
```python showLineNumbers title="AWS Bedrock Non-streaming Response"
|
||||
import litellm
|
||||
import os
|
||||
|
||||
# Set AWS credentials
|
||||
os.environ["AWS_ACCESS_KEY_ID"] = "your-access-key-id"
|
||||
os.environ["AWS_SECRET_ACCESS_KEY"] = "your-secret-access-key"
|
||||
os.environ["AWS_REGION_NAME"] = "us-west-2" # or your AWS region
|
||||
|
||||
# Non-streaming response
|
||||
response = litellm.responses(
|
||||
model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
|
||||
input="Tell me a three sentence bedtime story about a unicorn.",
|
||||
max_output_tokens=100
|
||||
)
|
||||
|
||||
print(response)
|
||||
```
|
||||
|
||||
#### Streaming
|
||||
```python showLineNumbers title="AWS Bedrock Streaming Response"
|
||||
import litellm
|
||||
import os
|
||||
|
||||
# Set AWS credentials
|
||||
os.environ["AWS_ACCESS_KEY_ID"] = "your-access-key-id"
|
||||
os.environ["AWS_SECRET_ACCESS_KEY"] = "your-secret-access-key"
|
||||
os.environ["AWS_REGION_NAME"] = "us-west-2" # or your AWS region
|
||||
|
||||
# Streaming response
|
||||
response = litellm.responses(
|
||||
model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
|
||||
input="Tell me a three sentence bedtime story about a unicorn.",
|
||||
stream=True
|
||||
)
|
||||
|
||||
for event in response:
|
||||
print(event)
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
|
||||
<TabItem value="gemini" label="Google AI Studio">
|
||||
|
||||
#### Non-streaming
|
||||
```python showLineNumbers title="Google AI Studio Non-streaming Response"
|
||||
import litellm
|
||||
import os
|
||||
|
||||
# Set API key for Google AI Studio
|
||||
os.environ["GEMINI_API_KEY"] = "your-gemini-api-key"
|
||||
|
||||
# Non-streaming response
|
||||
response = litellm.responses(
|
||||
model="gemini/gemini-1.5-flash",
|
||||
input="Tell me a three sentence bedtime story about a unicorn.",
|
||||
max_output_tokens=100
|
||||
)
|
||||
|
||||
print(response)
|
||||
```
|
||||
|
||||
#### Streaming
|
||||
```python showLineNumbers title="Google AI Studio Streaming Response"
|
||||
import litellm
|
||||
import os
|
||||
|
||||
# Set API key for Google AI Studio
|
||||
os.environ["GEMINI_API_KEY"] = "your-gemini-api-key"
|
||||
|
||||
# Streaming response
|
||||
response = litellm.responses(
|
||||
model="gemini/gemini-1.5-flash",
|
||||
input="Tell me a three sentence bedtime story about a unicorn.",
|
||||
stream=True
|
||||
)
|
||||
|
@ -115,3 +226,408 @@ for event in response:
|
|||
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
### LiteLLM Proxy with OpenAI SDK
|
||||
|
||||
First, set up and start your LiteLLM proxy server.
|
||||
|
||||
```bash title="Start LiteLLM Proxy Server"
|
||||
litellm --config /path/to/config.yaml
|
||||
|
||||
# RUNNING on http://0.0.0.0:4000
|
||||
```
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="openai" label="OpenAI">
|
||||
|
||||
First, add this to your litellm proxy config.yaml:
|
||||
```yaml showLineNumbers title="OpenAI Proxy Configuration"
|
||||
model_list:
|
||||
- model_name: openai/o1-pro
|
||||
litellm_params:
|
||||
model: openai/o1-pro
|
||||
api_key: os.environ/OPENAI_API_KEY
|
||||
```
|
||||
|
||||
#### Non-streaming
|
||||
```python showLineNumbers title="OpenAI Proxy Non-streaming Response"
|
||||
from openai import OpenAI
|
||||
|
||||
# Initialize client with your proxy URL
|
||||
client = OpenAI(
|
||||
base_url="http://localhost:4000", # Your proxy URL
|
||||
api_key="your-api-key" # Your proxy API key
|
||||
)
|
||||
|
||||
# Non-streaming response
|
||||
response = client.responses.create(
|
||||
model="openai/o1-pro",
|
||||
input="Tell me a three sentence bedtime story about a unicorn."
|
||||
)
|
||||
|
||||
print(response)
|
||||
```
|
||||
|
||||
#### Streaming
|
||||
```python showLineNumbers title="OpenAI Proxy Streaming Response"
|
||||
from openai import OpenAI
|
||||
|
||||
# Initialize client with your proxy URL
|
||||
client = OpenAI(
|
||||
base_url="http://localhost:4000", # Your proxy URL
|
||||
api_key="your-api-key" # Your proxy API key
|
||||
)
|
||||
|
||||
# Streaming response
|
||||
response = client.responses.create(
|
||||
model="openai/o1-pro",
|
||||
input="Tell me a three sentence bedtime story about a unicorn.",
|
||||
stream=True
|
||||
)
|
||||
|
||||
for event in response:
|
||||
print(event)
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
|
||||
<TabItem value="anthropic" label="Anthropic">
|
||||
|
||||
First, add this to your litellm proxy config.yaml:
|
||||
```yaml showLineNumbers title="Anthropic Proxy Configuration"
|
||||
model_list:
|
||||
- model_name: anthropic/claude-3-5-sonnet-20240620
|
||||
litellm_params:
|
||||
model: anthropic/claude-3-5-sonnet-20240620
|
||||
api_key: os.environ/ANTHROPIC_API_KEY
|
||||
```
|
||||
|
||||
#### Non-streaming
|
||||
```python showLineNumbers title="Anthropic Proxy Non-streaming Response"
|
||||
from openai import OpenAI
|
||||
|
||||
# Initialize client with your proxy URL
|
||||
client = OpenAI(
|
||||
base_url="http://localhost:4000", # Your proxy URL
|
||||
api_key="your-api-key" # Your proxy API key
|
||||
)
|
||||
|
||||
# Non-streaming response
|
||||
response = client.responses.create(
|
||||
model="anthropic/claude-3-5-sonnet-20240620",
|
||||
input="Tell me a three sentence bedtime story about a unicorn."
|
||||
)
|
||||
|
||||
print(response)
|
||||
```
|
||||
|
||||
#### Streaming
|
||||
```python showLineNumbers title="Anthropic Proxy Streaming Response"
|
||||
from openai import OpenAI
|
||||
|
||||
# Initialize client with your proxy URL
|
||||
client = OpenAI(
|
||||
base_url="http://localhost:4000", # Your proxy URL
|
||||
api_key="your-api-key" # Your proxy API key
|
||||
)
|
||||
|
||||
# Streaming response
|
||||
response = client.responses.create(
|
||||
model="anthropic/claude-3-5-sonnet-20240620",
|
||||
input="Tell me a three sentence bedtime story about a unicorn.",
|
||||
stream=True
|
||||
)
|
||||
|
||||
for event in response:
|
||||
print(event)
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
|
||||
<TabItem value="vertex" label="Vertex AI">
|
||||
|
||||
First, add this to your litellm proxy config.yaml:
|
||||
```yaml showLineNumbers title="Vertex AI Proxy Configuration"
|
||||
model_list:
|
||||
- model_name: vertex_ai/gemini-1.5-pro
|
||||
litellm_params:
|
||||
model: vertex_ai/gemini-1.5-pro
|
||||
vertex_project: your-gcp-project-id
|
||||
vertex_location: us-central1
|
||||
```
|
||||
|
||||
#### Non-streaming
|
||||
```python showLineNumbers title="Vertex AI Proxy Non-streaming Response"
|
||||
from openai import OpenAI
|
||||
|
||||
# Initialize client with your proxy URL
|
||||
client = OpenAI(
|
||||
base_url="http://localhost:4000", # Your proxy URL
|
||||
api_key="your-api-key" # Your proxy API key
|
||||
)
|
||||
|
||||
# Non-streaming response
|
||||
response = client.responses.create(
|
||||
model="vertex_ai/gemini-1.5-pro",
|
||||
input="Tell me a three sentence bedtime story about a unicorn."
|
||||
)
|
||||
|
||||
print(response)
|
||||
```
|
||||
|
||||
#### Streaming
|
||||
```python showLineNumbers title="Vertex AI Proxy Streaming Response"
|
||||
from openai import OpenAI
|
||||
|
||||
# Initialize client with your proxy URL
|
||||
client = OpenAI(
|
||||
base_url="http://localhost:4000", # Your proxy URL
|
||||
api_key="your-api-key" # Your proxy API key
|
||||
)
|
||||
|
||||
# Streaming response
|
||||
response = client.responses.create(
|
||||
model="vertex_ai/gemini-1.5-pro",
|
||||
input="Tell me a three sentence bedtime story about a unicorn.",
|
||||
stream=True
|
||||
)
|
||||
|
||||
for event in response:
|
||||
print(event)
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
|
||||
<TabItem value="bedrock" label="AWS Bedrock">
|
||||
|
||||
First, add this to your litellm proxy config.yaml:
|
||||
```yaml showLineNumbers title="AWS Bedrock Proxy Configuration"
|
||||
model_list:
|
||||
- model_name: bedrock/anthropic.claude-3-sonnet-20240229-v1:0
|
||||
litellm_params:
|
||||
model: bedrock/anthropic.claude-3-sonnet-20240229-v1:0
|
||||
aws_access_key_id: os.environ/AWS_ACCESS_KEY_ID
|
||||
aws_secret_access_key: os.environ/AWS_SECRET_ACCESS_KEY
|
||||
aws_region_name: us-west-2
|
||||
```
|
||||
|
||||
#### Non-streaming
|
||||
```python showLineNumbers title="AWS Bedrock Proxy Non-streaming Response"
|
||||
from openai import OpenAI
|
||||
|
||||
# Initialize client with your proxy URL
|
||||
client = OpenAI(
|
||||
base_url="http://localhost:4000", # Your proxy URL
|
||||
api_key="your-api-key" # Your proxy API key
|
||||
)
|
||||
|
||||
# Non-streaming response
|
||||
response = client.responses.create(
|
||||
model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
|
||||
input="Tell me a three sentence bedtime story about a unicorn."
|
||||
)
|
||||
|
||||
print(response)
|
||||
```
|
||||
|
||||
#### Streaming
|
||||
```python showLineNumbers title="AWS Bedrock Proxy Streaming Response"
|
||||
from openai import OpenAI
|
||||
|
||||
# Initialize client with your proxy URL
|
||||
client = OpenAI(
|
||||
base_url="http://localhost:4000", # Your proxy URL
|
||||
api_key="your-api-key" # Your proxy API key
|
||||
)
|
||||
|
||||
# Streaming response
|
||||
response = client.responses.create(
|
||||
model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
|
||||
input="Tell me a three sentence bedtime story about a unicorn.",
|
||||
stream=True
|
||||
)
|
||||
|
||||
for event in response:
|
||||
print(event)
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
|
||||
<TabItem value="gemini" label="Google AI Studio">
|
||||
|
||||
First, add this to your litellm proxy config.yaml:
|
||||
```yaml showLineNumbers title="Google AI Studio Proxy Configuration"
|
||||
model_list:
|
||||
- model_name: gemini/gemini-1.5-flash
|
||||
litellm_params:
|
||||
model: gemini/gemini-1.5-flash
|
||||
api_key: os.environ/GEMINI_API_KEY
|
||||
```
|
||||
|
||||
#### Non-streaming
|
||||
```python showLineNumbers title="Google AI Studio Proxy Non-streaming Response"
|
||||
from openai import OpenAI
|
||||
|
||||
# Initialize client with your proxy URL
|
||||
client = OpenAI(
|
||||
base_url="http://localhost:4000", # Your proxy URL
|
||||
api_key="your-api-key" # Your proxy API key
|
||||
)
|
||||
|
||||
# Non-streaming response
|
||||
response = client.responses.create(
|
||||
model="gemini/gemini-1.5-flash",
|
||||
input="Tell me a three sentence bedtime story about a unicorn."
|
||||
)
|
||||
|
||||
print(response)
|
||||
```
|
||||
|
||||
#### Streaming
|
||||
```python showLineNumbers title="Google AI Studio Proxy Streaming Response"
|
||||
from openai import OpenAI
|
||||
|
||||
# Initialize client with your proxy URL
|
||||
client = OpenAI(
|
||||
base_url="http://localhost:4000", # Your proxy URL
|
||||
api_key="your-api-key" # Your proxy API key
|
||||
)
|
||||
|
||||
# Streaming response
|
||||
response = client.responses.create(
|
||||
model="gemini/gemini-1.5-flash",
|
||||
input="Tell me a three sentence bedtime story about a unicorn.",
|
||||
stream=True
|
||||
)
|
||||
|
||||
for event in response:
|
||||
print(event)
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
## Supported Responses API Parameters
|
||||
|
||||
| Provider | Supported Parameters |
|
||||
|----------|---------------------|
|
||||
| `openai` | [All Responses API parameters are supported](https://github.com/BerriAI/litellm/blob/7c3df984da8e4dff9201e4c5353fdc7a2b441831/litellm/llms/openai/responses/transformation.py#L23) |
|
||||
| `azure` | [All Responses API parameters are supported](https://github.com/BerriAI/litellm/blob/7c3df984da8e4dff9201e4c5353fdc7a2b441831/litellm/llms/openai/responses/transformation.py#L23) |
|
||||
| `anthropic` | [See supported parameters here](https://github.com/BerriAI/litellm/blob/f39d9178868662746f159d5ef642c7f34f9bfe5f/litellm/responses/litellm_completion_transformation/transformation.py#L57) |
|
||||
| `bedrock` | [See supported parameters here](https://github.com/BerriAI/litellm/blob/f39d9178868662746f159d5ef642c7f34f9bfe5f/litellm/responses/litellm_completion_transformation/transformation.py#L57) |
|
||||
| `gemini` | [See supported parameters here](https://github.com/BerriAI/litellm/blob/f39d9178868662746f159d5ef642c7f34f9bfe5f/litellm/responses/litellm_completion_transformation/transformation.py#L57) |
|
||||
| `vertex_ai` | [See supported parameters here](https://github.com/BerriAI/litellm/blob/f39d9178868662746f159d5ef642c7f34f9bfe5f/litellm/responses/litellm_completion_transformation/transformation.py#L57) |
|
||||
| `azure_ai` | [See supported parameters here](https://github.com/BerriAI/litellm/blob/f39d9178868662746f159d5ef642c7f34f9bfe5f/litellm/responses/litellm_completion_transformation/transformation.py#L57) |
|
||||
| All other llm api providers | [See supported parameters here](https://github.com/BerriAI/litellm/blob/f39d9178868662746f159d5ef642c7f34f9bfe5f/litellm/responses/litellm_completion_transformation/transformation.py#L57) |
|
||||
|
||||
## Load Balancing with Routing Affinity
|
||||
|
||||
When using the Responses API with multiple deployments of the same model (e.g., multiple Azure OpenAI endpoints), LiteLLM provides routing affinity for conversations. This ensures that follow-up requests using a `previous_response_id` are routed to the same deployment that generated the original response.
|
||||
|
||||
|
||||
#### Example Usage
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="python-sdk" label="Python SDK">
|
||||
|
||||
```python showLineNumbers title="Python SDK with Routing Affinity"
|
||||
import litellm
|
||||
|
||||
# Set up router with multiple deployments of the same model
|
||||
router = litellm.Router(
|
||||
model_list=[
|
||||
{
|
||||
"model_name": "azure-gpt4-turbo",
|
||||
"litellm_params": {
|
||||
"model": "azure/gpt-4-turbo",
|
||||
"api_key": "your-api-key-1",
|
||||
"api_version": "2024-06-01",
|
||||
"api_base": "https://endpoint1.openai.azure.com",
|
||||
},
|
||||
},
|
||||
{
|
||||
"model_name": "azure-gpt4-turbo",
|
||||
"litellm_params": {
|
||||
"model": "azure/gpt-4-turbo",
|
||||
"api_key": "your-api-key-2",
|
||||
"api_version": "2024-06-01",
|
||||
"api_base": "https://endpoint2.openai.azure.com",
|
||||
},
|
||||
},
|
||||
],
|
||||
optional_pre_call_checks=["responses_api_deployment_check"],
|
||||
)
|
||||
|
||||
# Initial request
|
||||
response = await router.aresponses(
|
||||
model="azure-gpt4-turbo",
|
||||
input="Hello, who are you?",
|
||||
truncation="auto",
|
||||
)
|
||||
|
||||
# Store the response ID
|
||||
response_id = response.id
|
||||
|
||||
# Follow-up request - will be automatically routed to the same deployment
|
||||
follow_up = await router.aresponses(
|
||||
model="azure-gpt4-turbo",
|
||||
input="Tell me more about yourself",
|
||||
truncation="auto",
|
||||
previous_response_id=response_id # This ensures routing to the same deployment
|
||||
)
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="proxy-server" label="Proxy Server">
|
||||
|
||||
#### 1. Setup routing affinity on proxy config.yaml
|
||||
|
||||
To enable routing affinity for Responses API in your LiteLLM proxy, set `optional_pre_call_checks: ["responses_api_deployment_check"]` in your proxy config.yaml.
|
||||
|
||||
```yaml showLineNumbers title="config.yaml with Responses API Routing Affinity"
|
||||
model_list:
|
||||
- model_name: azure-gpt4-turbo
|
||||
litellm_params:
|
||||
model: azure/gpt-4-turbo
|
||||
api_key: your-api-key-1
|
||||
api_version: 2024-06-01
|
||||
api_base: https://endpoint1.openai.azure.com
|
||||
- model_name: azure-gpt4-turbo
|
||||
litellm_params:
|
||||
model: azure/gpt-4-turbo
|
||||
api_key: your-api-key-2
|
||||
api_version: 2024-06-01
|
||||
api_base: https://endpoint2.openai.azure.com
|
||||
|
||||
router_settings:
|
||||
optional_pre_call_checks: ["responses_api_deployment_check"]
|
||||
```
|
||||
|
||||
#### 2. Use the OpenAI Python SDK to make requests to LiteLLM Proxy
|
||||
|
||||
```python showLineNumbers title="OpenAI Client with Proxy Server"
|
||||
from openai import OpenAI
|
||||
|
||||
client = OpenAI(
|
||||
base_url="http://localhost:4000",
|
||||
api_key="your-api-key"
|
||||
)
|
||||
|
||||
# Initial request
|
||||
response = client.responses.create(
|
||||
model="azure-gpt4-turbo",
|
||||
input="Hello, who are you?"
|
||||
)
|
||||
|
||||
response_id = response.id
|
||||
|
||||
# Follow-up request - will be automatically routed to the same deployment
|
||||
follow_up = client.responses.create(
|
||||
model="azure-gpt4-turbo",
|
||||
input="Tell me more about yourself",
|
||||
previous_response_id=response_id # This ensures routing to the same deployment
|
||||
)
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
|
|
@ -994,16 +994,16 @@ litellm --health
|
|||
|
||||
## Logging Proxy Input/Output - OpenTelemetry
|
||||
|
||||
### Step 1 Start OpenTelemetry Collecter Docker Container
|
||||
### Step 1 Start OpenTelemetry Collector Docker Container
|
||||
This container sends logs to your selected destination
|
||||
|
||||
#### Install OpenTelemetry Collecter Docker Image
|
||||
#### Install OpenTelemetry Collector Docker Image
|
||||
```shell
|
||||
docker pull otel/opentelemetry-collector:0.90.0
|
||||
docker run -p 127.0.0.1:4317:4317 -p 127.0.0.1:55679:55679 otel/opentelemetry-collector:0.90.0
|
||||
```
|
||||
|
||||
#### Set Destination paths on OpenTelemetry Collecter
|
||||
#### Set Destination paths on OpenTelemetry Collector
|
||||
|
||||
Here's the OpenTelemetry yaml config to use with Elastic Search
|
||||
```yaml
|
||||
|
@ -1077,7 +1077,7 @@ general_settings:
|
|||
LiteLLM will read the `OTEL_ENDPOINT` environment variable to send data to your OTEL collector
|
||||
|
||||
```python
|
||||
os.environ['OTEL_ENDPOINT'] # defauls to 127.0.0.1:4317 if not provided
|
||||
os.environ['OTEL_ENDPOINT'] # defaults to 127.0.0.1:4317 if not provided
|
||||
```
|
||||
|
||||
#### Start LiteLLM Proxy
|
||||
|
@ -1101,8 +1101,8 @@ curl --location 'http://0.0.0.0:4000/chat/completions' \
|
|||
```
|
||||
|
||||
|
||||
#### Test & View Logs on OpenTelemetry Collecter
|
||||
On successfull logging you should be able to see this log on your `OpenTelemetry Collecter` Docker Container
|
||||
#### Test & View Logs on OpenTelemetry Collector
|
||||
On successful logging you should be able to see this log on your `OpenTelemetry Collector` Docker Container
|
||||
```shell
|
||||
Events:
|
||||
SpanEvent #0
|
||||
|
@ -1149,7 +1149,7 @@ Here's the log view on Elastic Search. You can see the request `input`, `output`
|
|||
<Image img={require('../img/elastic_otel.png')} />
|
||||
|
||||
## Logging Proxy Input/Output - Langfuse
|
||||
We will use the `--config` to set `litellm.success_callback = ["langfuse"]` this will log all successfull LLM calls to langfuse
|
||||
We will use the `--config` to set `litellm.success_callback = ["langfuse"]` this will log all successful LLM calls to langfuse
|
||||
|
||||
**Step 1** Install langfuse
|
||||
|
||||
|
|
|
@ -117,7 +117,7 @@ response = completion("command-nightly", messages)
|
|||
"""
|
||||
|
||||
|
||||
# qustions/logs you want to run the LLM on
|
||||
# questions/logs you want to run the LLM on
|
||||
questions = [
|
||||
"what is litellm?",
|
||||
"why should I use LiteLLM",
|
||||
|
|
|
@ -30,7 +30,7 @@ def inference(message, history):
|
|||
yield partial_message
|
||||
except Exception as e:
|
||||
print("Exception encountered:", str(e))
|
||||
yield f"An Error occured please 'Clear' the error and try your question again"
|
||||
yield f"An Error occurred please 'Clear' the error and try your question again"
|
||||
```
|
||||
|
||||
### Define Chat Interface
|
||||
|
|
146
docs/my-website/docs/tutorials/openai_codex.md
Normal file
|
@ -0,0 +1,146 @@
|
|||
import Image from '@theme/IdealImage';
|
||||
import Tabs from '@theme/Tabs';
|
||||
import TabItem from '@theme/TabItem';
|
||||
|
||||
# Using LiteLLM with OpenAI Codex
|
||||
|
||||
This guide walks you through connecting OpenAI Codex to LiteLLM. Using LiteLLM with Codex allows teams to:
|
||||
- Access 100+ LLMs through the Codex interface
|
||||
- Use powerful models like Gemini through a familiar interface
|
||||
- Track spend and usage with LiteLLM's built-in analytics
|
||||
- Control model access with virtual keys
|
||||
|
||||
<Image img={require('../../img/litellm_codex.gif')} />
|
||||
|
||||
## Quickstart
|
||||
|
||||
:::info
|
||||
|
||||
Requires LiteLLM v1.66.3.dev5 and higher
|
||||
|
||||
:::
|
||||
|
||||
|
||||
Make sure to set up LiteLLM with the [LiteLLM Getting Started Guide](../proxy/docker_quick_start.md).
|
||||
|
||||
## 1. Install OpenAI Codex
|
||||
|
||||
Install the OpenAI Codex CLI tool globally using npm:
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="npm" label="npm">
|
||||
|
||||
```bash showLineNumbers
|
||||
npm i -g @openai/codex
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="yarn" label="yarn">
|
||||
|
||||
```bash showLineNumbers
|
||||
yarn global add @openai/codex
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
## 2. Start LiteLLM Proxy
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="docker" label="Docker">
|
||||
|
||||
```bash showLineNumbers
|
||||
docker run \
|
||||
-v $(pwd)/litellm_config.yaml:/app/config.yaml \
|
||||
-p 4000:4000 \
|
||||
ghcr.io/berriai/litellm:main-latest \
|
||||
--config /app/config.yaml
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="pip" label="LiteLLM CLI">
|
||||
|
||||
```bash showLineNumbers
|
||||
litellm --config /path/to/config.yaml
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
LiteLLM should now be running on [http://localhost:4000](http://localhost:4000)
|
||||
|
||||
## 3. Configure LiteLLM for Model Routing
|
||||
|
||||
Ensure your LiteLLM Proxy is properly configured to route to your desired models. Create a `litellm_config.yaml` file with the following content:
|
||||
|
||||
```yaml showLineNumbers
|
||||
model_list:
|
||||
- model_name: o3-mini
|
||||
litellm_params:
|
||||
model: openai/o3-mini
|
||||
api_key: os.environ/OPENAI_API_KEY
|
||||
- model_name: claude-3-7-sonnet-latest
|
||||
litellm_params:
|
||||
model: anthropic/claude-3-7-sonnet-latest
|
||||
api_key: os.environ/ANTHROPIC_API_KEY
|
||||
- model_name: gemini-2.0-flash
|
||||
litellm_params:
|
||||
model: gemini/gemini-2.0-flash
|
||||
api_key: os.environ/GEMINI_API_KEY
|
||||
|
||||
litellm_settings:
|
||||
drop_params: true
|
||||
```
|
||||
|
||||
This configuration enables routing to specific OpenAI, Anthropic, and Gemini models with explicit names.
|
||||
|
||||
## 4. Configure Codex to Use LiteLLM Proxy
|
||||
|
||||
Set the required environment variables to point Codex to your LiteLLM Proxy:
|
||||
|
||||
```bash
|
||||
# Point to your LiteLLM Proxy server
|
||||
export OPENAI_BASE_URL=http://0.0.0.0:4000
|
||||
|
||||
# Use your LiteLLM API key (if you've set up authentication)
|
||||
export OPENAI_API_KEY="sk-1234"
|
||||
```
|
||||
|
||||
## 5. Run Codex with Gemini
|
||||
|
||||
With everything configured, you can now run Codex with Gemini:
|
||||
|
||||
```bash showLineNumbers
|
||||
codex --model gemini-2.0-flash --full-auto
|
||||
```
|
||||
|
||||
<Image img={require('../../img/litellm_codex.gif')} />
|
||||
|
||||
The `--full-auto` flag allows Codex to automatically generate code without additional prompting.
|
||||
|
||||
## 6. Advanced Options
|
||||
|
||||
### Using Different Models
|
||||
|
||||
You can use any model configured in your LiteLLM proxy:
|
||||
|
||||
```bash
|
||||
# Use Claude models
|
||||
codex --model claude-3-7-sonnet-latest
|
||||
|
||||
# Use Google AI Studio Gemini models
|
||||
codex --model gemini/gemini-2.0-flash
|
||||
```
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
- If you encounter connection issues, ensure your LiteLLM Proxy is running and accessible at the specified URL
|
||||
- Verify your LiteLLM API key is valid if you're using authentication
|
||||
- Check that your model routing configuration is correct
|
||||
- For model-specific errors, ensure the model is properly configured in your LiteLLM setup
|
||||
|
||||
## Additional Resources
|
||||
|
||||
- [LiteLLM Docker Quick Start Guide](../proxy/docker_quick_start.md)
|
||||
- [OpenAI Codex GitHub Repository](https://github.com/openai/codex)
|
||||
- [LiteLLM Virtual Keys and Authentication](../proxy/virtual_keys.md)
|
74
docs/my-website/docs/tutorials/scim_litellm.md
Normal file
|
@ -0,0 +1,74 @@
|
|||
|
||||
import Image from '@theme/IdealImage';
|
||||
|
||||
# SCIM with LiteLLM
|
||||
|
||||
Enables identity providers (Okta, Azure AD, OneLogin, etc.) to automate user and team (group) provisioning, updates, and deprovisioning on LiteLLM.
|
||||
|
||||
|
||||
This tutorial will walk you through the steps to connect your IDP to LiteLLM SCIM Endpoints.
|
||||
|
||||
### Supported SSO Providers for SCIM
|
||||
Below is a list of supported SSO providers for connecting to LiteLLM SCIM Endpoints.
|
||||
- Microsoft Entra ID (Azure AD)
|
||||
- Okta
|
||||
- Google Workspace
|
||||
- OneLogin
|
||||
- Keycloak
|
||||
- Auth0
|
||||
|
||||
|
||||
## 1. Get your SCIM Tenant URL and Bearer Token
|
||||
|
||||
On LiteLLM, navigate to the Settings > Admin Settings > SCIM. On this page you will create a SCIM Token, this allows your IDP to authenticate to litellm `/scim` endpoints.
|
||||
|
||||
<Image img={require('../../img/scim_2.png')} style={{ width: '800px', height: 'auto' }} />
|
||||
|
||||
## 2. Connect your IDP to LiteLLM SCIM Endpoints
|
||||
|
||||
On your IDP provider, navigate to your SSO application and select `Provisioning` > `New provisioning configuration`.
|
||||
|
||||
On this page, paste in your litellm scim tenant url and bearer token.
|
||||
|
||||
Once this is pasted in, click on `Test Connection` to ensure your IDP can authenticate to the LiteLLM SCIM endpoints.
|
||||
|
||||
<Image img={require('../../img/scim_4.png')} style={{ width: '800px', height: 'auto' }} />
|
||||
|
||||
|
||||
## 3. Test SCIM Connection
|
||||
|
||||
### 3.1 Assign the group to your LiteLLM Enterprise App
|
||||
|
||||
On your IDP Portal, navigate to `Enterprise Applications` > Select your litellm app
|
||||
|
||||
<Image img={require('../../img/msft_enterprise_app.png')} style={{ width: '800px', height: 'auto' }} />
|
||||
|
||||
<br />
|
||||
<br />
|
||||
|
||||
Once you've selected your litellm app, click on `Users and Groups` > `Add user/group`
|
||||
|
||||
<Image img={require('../../img/msft_enterprise_assign_group.png')} style={{ width: '800px', height: 'auto' }} />
|
||||
|
||||
<br />
|
||||
|
||||
Now select the group you created in step 1.1. And add it to the LiteLLM Enterprise App. At this point we have added `Production LLM Evals Group` to the LiteLLM Enterprise App. The next step is having LiteLLM automatically create the `Production LLM Evals Group` on the LiteLLM DB when a new user signs in.
|
||||
|
||||
<Image img={require('../../img/msft_enterprise_select_group.png')} style={{ width: '800px', height: 'auto' }} />
|
||||
|
||||
|
||||
### 3.2 Sign in to LiteLLM UI via SSO
|
||||
|
||||
Sign into the LiteLLM UI via SSO. You should be redirected to the Entra ID SSO page. This SSO sign in flow will trigger LiteLLM to fetch the latest Groups and Members from Azure Entra ID.
|
||||
|
||||
<Image img={require('../../img/msft_sso_sign_in.png')} style={{ width: '800px', height: 'auto' }} />
|
||||
|
||||
### 3.3 Check the new team on LiteLLM UI
|
||||
|
||||
On the LiteLLM UI, Navigate to `Teams`, You should see the new team `Production LLM Evals Group` auto-created on LiteLLM.
|
||||
|
||||
<Image img={require('../../img/msft_auto_team.png')} style={{ width: '900px', height: 'auto' }} />
|
||||
|
||||
|
||||
|
||||
|
BIN
docs/my-website/img/litellm_codex.gif
Normal file
After Width: | Height: | Size: 12 MiB |
BIN
docs/my-website/img/release_notes/new_tag_usage.png
Normal file
After Width: | Height: | Size: 207 KiB |
BIN
docs/my-website/img/release_notes/new_team_usage.png
Normal file
After Width: | Height: | Size: 268 KiB |
BIN
docs/my-website/img/release_notes/new_team_usage_highlight.jpg
Normal file
After Width: | Height: | Size: 999 KiB |
BIN
docs/my-website/img/release_notes/unified_responses_api_rn.png
Normal file
After Width: | Height: | Size: 244 KiB |
BIN
docs/my-website/img/scim_0.png
Normal file
After Width: | Height: | Size: 380 KiB |
BIN
docs/my-website/img/scim_1.png
Normal file
After Width: | Height: | Size: 231 KiB |
BIN
docs/my-website/img/scim_2.png
Normal file
After Width: | Height: | Size: 261 KiB |
BIN
docs/my-website/img/scim_3.png
Normal file
After Width: | Height: | Size: 413 KiB |
BIN
docs/my-website/img/scim_4.png
Normal file
After Width: | Height: | Size: 274 KiB |
BIN
docs/my-website/img/scim_integration.png
Normal file
After Width: | Height: | Size: 31 KiB |
153
docs/my-website/release_notes/v1.67.0-stable/index.md
Normal file
|
@ -0,0 +1,153 @@
|
|||
---
|
||||
title: v1.67.0-stable - SCIM Integration
|
||||
slug: v1.67.0-stable
|
||||
date: 2025-04-19T10:00:00
|
||||
authors:
|
||||
- name: Krrish Dholakia
|
||||
title: CEO, LiteLLM
|
||||
url: https://www.linkedin.com/in/krish-d/
|
||||
image_url: https://media.licdn.com/dms/image/v2/D4D03AQGrlsJ3aqpHmQ/profile-displayphoto-shrink_400_400/B4DZSAzgP7HYAg-/0/1737327772964?e=1749686400&v=beta&t=Hkl3U8Ps0VtvNxX0BNNq24b4dtX5wQaPFp6oiKCIHD8
|
||||
- name: Ishaan Jaffer
|
||||
title: CTO, LiteLLM
|
||||
url: https://www.linkedin.com/in/reffajnaahsi/
|
||||
image_url: https://pbs.twimg.com/profile_images/1613813310264340481/lz54oEiB_400x400.jpg
|
||||
|
||||
tags: ["sso", "unified_file_id", "cost_tracking", "security"]
|
||||
hide_table_of_contents: false
|
||||
---
|
||||
import Image from '@theme/IdealImage';
|
||||
import Tabs from '@theme/Tabs';
|
||||
import TabItem from '@theme/TabItem';
|
||||
|
||||
## Key Highlights
|
||||
|
||||
- **SCIM Integration**: Enables identity providers (Okta, Azure AD, OneLogin, etc.) to automate user and team (group) provisioning, updates, and deprovisioning
|
||||
- **Team and Tag based usage tracking**: You can now see usage and spend by team and tag at 1M+ spend logs.
|
||||
- **Unified Responses API**: Support for calling Anthropic, Gemini, Groq, etc. via OpenAI's new Responses API.
|
||||
|
||||
Let's dive in.
|
||||
|
||||
## SCIM Integration
|
||||
|
||||
<Image img={require('../../img/scim_integration.png')}/>
|
||||
|
||||
This release adds SCIM support to LiteLLM. This allows your SSO provider (Okta, Azure AD, etc) to automatically create/delete users, teams, and memberships on LiteLLM. This means that when you remove a team on your SSO provider, your SSO provider will automatically delete the corresponding team on LiteLLM.
|
||||
|
||||
[Read more](../../docs/tutorials/scim_litellm)
|
||||
## Team and Tag based usage tracking
|
||||
|
||||
<Image img={require('../../img/release_notes/new_team_usage_highlight.jpg')}/>
|
||||
|
||||
|
||||
This release improves team and tag based usage tracking at 1m+ spend logs, making it easy to monitor your LLM API Spend in production. This covers:
|
||||
|
||||
- View **daily spend** by teams + tags
|
||||
- View **usage / spend by key**, within teams
|
||||
- View **spend by multiple tags**
|
||||
- Allow **internal users** to view spend of teams they're a member of
|
||||
|
||||
[Read more](#management-endpoints--ui)
|
||||
|
||||
## Unified Responses API
|
||||
|
||||
This release allows you to call Azure OpenAI, Anthropic, AWS Bedrock, and Google Vertex AI models via the POST /v1/responses endpoint on LiteLLM. This means you can now use popular tools like [OpenAI Codex](https://docs.litellm.ai/docs/tutorials/openai_codex) with your own models.
|
||||
|
||||
<Image img={require('../../img/release_notes/unified_responses_api_rn.png')}/>
|
||||
|
||||
|
||||
[Read more](https://docs.litellm.ai/docs/response_api)
|
||||
|
||||
|
||||
## New Models / Updated Models
|
||||
|
||||
- **OpenAI**
|
||||
1. gpt-4.1, gpt-4.1-mini, gpt-4.1-nano, o3, o3-mini, o4-mini pricing - [Get Started](../../docs/providers/openai#usage), [PR](https://github.com/BerriAI/litellm/pull/9990)
|
||||
2. o4 - correctly map o4 to openai o_series model
|
||||
- **Azure AI**
|
||||
1. Phi-4 output cost per token fix - [PR](https://github.com/BerriAI/litellm/pull/9880)
|
||||
2. Responses API support [Get Started](../../docs/providers/azure#azure-responses-api),[PR](https://github.com/BerriAI/litellm/pull/10116)
|
||||
- **Anthropic**
|
||||
1. redacted message thinking support - [Get Started](../../docs/providers/anthropic#usage---thinking--reasoning_content),[PR](https://github.com/BerriAI/litellm/pull/10129)
|
||||
- **Cohere**
|
||||
1. `/v2/chat` Passthrough endpoint support w/ cost tracking - [Get Started](../../docs/pass_through/cohere), [PR](https://github.com/BerriAI/litellm/pull/9997)
|
||||
- **Azure**
|
||||
1. Support azure tenant_id/client_id env vars - [Get Started](../../docs/providers/azure#entra-id---use-tenant_id-client_id-client_secret), [PR](https://github.com/BerriAI/litellm/pull/9993)
|
||||
2. Fix response_format check for 2025+ api versions - [PR](https://github.com/BerriAI/litellm/pull/9993)
|
||||
3. Add gpt-4.1, gpt-4.1-mini, gpt-4.1-nano, o3, o3-mini, o4-mini pricing
|
||||
- **VLLM**
|
||||
1. Files - Support 'file' message type for VLLM video url's - [Get Started](../../docs/providers/vllm#send-video-url-to-vllm), [PR](https://github.com/BerriAI/litellm/pull/10129)
|
||||
2. Passthrough - new `/vllm/` passthrough endpoint support [Get Started](../../docs/pass_through/vllm), [PR](https://github.com/BerriAI/litellm/pull/10002)
|
||||
- **Mistral**
|
||||
1. new `/mistral` passthrough endpoint support [Get Started](../../docs/pass_through/mistral), [PR](https://github.com/BerriAI/litellm/pull/10002)
|
||||
- **AWS**
|
||||
1. New mapped bedrock regions - [PR](https://github.com/BerriAI/litellm/pull/9430)
|
||||
- **VertexAI / Google AI Studio**
|
||||
1. Gemini - Response format - Retain schema field ordering for google gemini and vertex by specifying propertyOrdering - [Get Started](../../docs/providers/vertex#json-schema), [PR](https://github.com/BerriAI/litellm/pull/9828)
|
||||
2. Gemini-2.5-flash - return reasoning content [Google AI Studio](../../docs/providers/gemini#usage---thinking--reasoning_content), [Vertex AI](../../docs/providers/vertex#thinking--reasoning_content)
|
||||
3. Gemini-2.5-flash - pricing + model information [PR](https://github.com/BerriAI/litellm/pull/10125)
|
||||
4. Passthrough - new `/vertex_ai/discovery` route - enables calling AgentBuilder API routes [Get Started](../../docs/pass_through/vertex_ai#supported-api-endpoints), [PR](https://github.com/BerriAI/litellm/pull/10084)
|
||||
- **Fireworks AI**
|
||||
1. return tool calling responses in `tool_calls` field (fireworks incorrectly returns this as a json str in content) [PR](https://github.com/BerriAI/litellm/pull/10130)
|
||||
- **Triton**
|
||||
1. Remove fixed remove bad_words / stop words from `/generate` call - [Get Started](../../docs/providers/triton-inference-server#triton-generate---chat-completion), [PR](https://github.com/BerriAI/litellm/pull/10163)
|
||||
- **Other**
|
||||
1. Support for all litellm providers on Responses API (works with Codex) - [Get Started](../../docs/tutorials/openai_codex), [PR](https://github.com/BerriAI/litellm/pull/10132)
|
||||
2. Fix combining multiple tool calls in streaming response - [Get Started](../../docs/completion/stream#helper-function), [PR](https://github.com/BerriAI/litellm/pull/10040)
|
||||
|
||||
|
||||
## Spend Tracking Improvements
|
||||
|
||||
- **Cost Control** - inject cache control points in prompt for cost reduction [Get Started](../../docs/tutorials/prompt_caching), [PR](https://github.com/BerriAI/litellm/pull/10000)
|
||||
- **Spend Tags** - spend tags in headers - support x-litellm-tags even if tag based routing not enabled [Get Started](../../docs/proxy/request_headers#litellm-headers), [PR](https://github.com/BerriAI/litellm/pull/10000)
|
||||
- **Gemini-2.5-flash** - support cost calculation for reasoning tokens [PR](https://github.com/BerriAI/litellm/pull/10141)
|
||||
|
||||
## Management Endpoints / UI
|
||||
- **Users**
|
||||
1. Show created_at and updated_at on users page - [PR](https://github.com/BerriAI/litellm/pull/10033)
|
||||
- **Virtual Keys**
|
||||
1. Filter by key alias - https://github.com/BerriAI/litellm/pull/10085
|
||||
- **Usage Tab**
|
||||
|
||||
1. Team based usage
|
||||
|
||||
- New `LiteLLM_DailyTeamSpend` Table for aggregate team based usage logging - [PR](https://github.com/BerriAI/litellm/pull/10039)
|
||||
|
||||
- New Team based usage dashboard + new `/team/daily/activity` API - [PR](https://github.com/BerriAI/litellm/pull/10081)
|
||||
- Return team alias on /team/daily/activity API - [PR](https://github.com/BerriAI/litellm/pull/10157)
|
||||
- allow internal user view spend for teams they belong to - [PR](https://github.com/BerriAI/litellm/pull/10157)
|
||||
- allow viewing top keys by team - [PR](https://github.com/BerriAI/litellm/pull/10157)
|
||||
|
||||
<Image img={require('../../img/release_notes/new_team_usage.png')}/>
|
||||
|
||||
2. Tag Based Usage
|
||||
- New `LiteLLM_DailyTagSpend` Table for aggregate tag based usage logging - [PR](https://github.com/BerriAI/litellm/pull/10071)
|
||||
- Restrict to only Proxy Admins - [PR](https://github.com/BerriAI/litellm/pull/10157)
|
||||
- allow viewing top keys by tag
|
||||
- Return tags passed in request (i.e. dynamic tags) on `/tag/list` API - [PR](https://github.com/BerriAI/litellm/pull/10157)
|
||||
<Image img={require('../../img/release_notes/new_tag_usage.png')}/>
|
||||
3. Track prompt caching metrics in daily user, team, tag tables - [PR](https://github.com/BerriAI/litellm/pull/10029)
|
||||
4. Show usage by key (on all up, team, and tag usage dashboards) - [PR](https://github.com/BerriAI/litellm/pull/10157)
|
||||
5. swap old usage with new usage tab
|
||||
- **Models**
|
||||
1. Make columns resizable/hideable - [PR](https://github.com/BerriAI/litellm/pull/10119)
|
||||
- **API Playground**
|
||||
1. Allow internal user to call api playground - [PR](https://github.com/BerriAI/litellm/pull/10157)
|
||||
- **SCIM**
|
||||
1. Add LiteLLM SCIM Integration for Team and User management - [Get Started](../../docs/tutorials/scim_litellm), [PR](https://github.com/BerriAI/litellm/pull/10072)
|
||||
|
||||
|
||||
## Logging / Guardrail Integrations
|
||||
- **GCS**
|
||||
1. Fix gcs pub sub logging with env var GCS_PROJECT_ID - [Get Started](../../docs/observability/gcs_bucket_integration#usage), [PR](https://github.com/BerriAI/litellm/pull/10042)
|
||||
- **AIM**
|
||||
1. Add litellm call id passing to Aim guardrails on pre and post-hooks calls - [Get Started](../../docs/proxy/guardrails/aim_security), [PR](https://github.com/BerriAI/litellm/pull/10021)
|
||||
- **Azure blob storage**
|
||||
1. Ensure logging works in high throughput scenarios - [Get Started](../../docs/proxy/logging#azure-blob-storage), [PR](https://github.com/BerriAI/litellm/pull/9962)
|
||||
|
||||
## General Proxy Improvements
|
||||
|
||||
- **Support setting `litellm.modify_params` via env var** [PR](https://github.com/BerriAI/litellm/pull/9964)
|
||||
- **Model Discovery** - Check provider’s `/models` endpoints when calling proxy’s `/v1/models` endpoint - [Get Started](../../docs/proxy/model_discovery), [PR](https://github.com/BerriAI/litellm/pull/9958)
|
||||
- **`/utils/token_counter`** - fix retrieving custom tokenizer for db models - [Get Started](../../docs/proxy/configs#set-custom-tokenizer), [PR](https://github.com/BerriAI/litellm/pull/10047)
|
||||
- **Prisma migrate** - handle existing columns in db table - [PR](https://github.com/BerriAI/litellm/pull/10138)
|
||||
|
|
@ -69,6 +69,7 @@ const sidebars = {
|
|||
"proxy/clientside_auth",
|
||||
"proxy/request_headers",
|
||||
"proxy/response_headers",
|
||||
"proxy/model_discovery",
|
||||
],
|
||||
},
|
||||
{
|
||||
|
@ -101,6 +102,7 @@ const sidebars = {
|
|||
"proxy/admin_ui_sso",
|
||||
"proxy/self_serve",
|
||||
"proxy/public_teams",
|
||||
"tutorials/scim_litellm",
|
||||
"proxy/custom_sso",
|
||||
"proxy/ui_credentials",
|
||||
"proxy/ui_logs"
|
||||
|
@ -330,6 +332,8 @@ const sidebars = {
|
|||
"pass_through/vertex_ai",
|
||||
"pass_through/google_ai_studio",
|
||||
"pass_through/cohere",
|
||||
"pass_through/vllm",
|
||||
"pass_through/mistral",
|
||||
"pass_through/openai_passthrough",
|
||||
"pass_through/anthropic_completion",
|
||||
"pass_through/bedrock",
|
||||
|
@ -407,6 +411,7 @@ const sidebars = {
|
|||
type: "category",
|
||||
label: "Logging & Observability",
|
||||
items: [
|
||||
"observability/agentops_integration",
|
||||
"observability/langfuse_integration",
|
||||
"observability/lunary_integration",
|
||||
"observability/mlflow",
|
||||
|
@ -443,6 +448,7 @@ const sidebars = {
|
|||
label: "Tutorials",
|
||||
items: [
|
||||
"tutorials/openweb_ui",
|
||||
"tutorials/openai_codex",
|
||||
"tutorials/msft_sso",
|
||||
"tutorials/prompt_caching",
|
||||
"tutorials/tag_management",
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
import glob
|
||||
import os
|
||||
import random
|
||||
import re
|
||||
import subprocess
|
||||
import time
|
||||
from pathlib import Path
|
||||
|
@ -82,6 +83,26 @@ class ProxyExtrasDBManager:
|
|||
logger.info(f"Found {len(migration_paths)} migrations at {migrations_dir}")
|
||||
return [Path(p).parent.name for p in migration_paths]
|
||||
|
||||
@staticmethod
|
||||
def _roll_back_migration(migration_name: str):
|
||||
"""Mark a specific migration as rolled back"""
|
||||
subprocess.run(
|
||||
["prisma", "migrate", "resolve", "--rolled-back", migration_name],
|
||||
timeout=60,
|
||||
check=True,
|
||||
capture_output=True,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _resolve_specific_migration(migration_name: str):
|
||||
"""Mark a specific migration as applied"""
|
||||
subprocess.run(
|
||||
["prisma", "migrate", "resolve", "--applied", migration_name],
|
||||
timeout=60,
|
||||
check=True,
|
||||
capture_output=True,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _resolve_all_migrations(migrations_dir: str):
|
||||
"""Mark all existing migrations as applied"""
|
||||
|
@ -141,7 +162,34 @@ class ProxyExtrasDBManager:
|
|||
return True
|
||||
except subprocess.CalledProcessError as e:
|
||||
logger.info(f"prisma db error: {e.stderr}, e: {e.stdout}")
|
||||
if (
|
||||
if "P3009" in e.stderr:
|
||||
# Extract the failed migration name from the error message
|
||||
migration_match = re.search(
|
||||
r"`(\d+_.*)` migration", e.stderr
|
||||
)
|
||||
if migration_match:
|
||||
failed_migration = migration_match.group(1)
|
||||
logger.info(
|
||||
f"Found failed migration: {failed_migration}, marking as rolled back"
|
||||
)
|
||||
# Mark the failed migration as rolled back
|
||||
subprocess.run(
|
||||
[
|
||||
"prisma",
|
||||
"migrate",
|
||||
"resolve",
|
||||
"--rolled-back",
|
||||
failed_migration,
|
||||
],
|
||||
timeout=60,
|
||||
check=True,
|
||||
capture_output=True,
|
||||
text=True,
|
||||
)
|
||||
logger.info(
|
||||
f"✅ Migration {failed_migration} marked as rolled back... retrying"
|
||||
)
|
||||
elif (
|
||||
"P3005" in e.stderr
|
||||
and "database schema is not empty" in e.stderr
|
||||
):
|
||||
|
@ -155,6 +203,29 @@ class ProxyExtrasDBManager:
|
|||
ProxyExtrasDBManager._resolve_all_migrations(migrations_dir)
|
||||
logger.info("✅ All migrations resolved.")
|
||||
return True
|
||||
elif (
|
||||
"P3018" in e.stderr
|
||||
): # PostgreSQL error code for duplicate column
|
||||
logger.info(
|
||||
"Migration already exists, resolving specific migration"
|
||||
)
|
||||
# Extract the migration name from the error message
|
||||
migration_match = re.search(
|
||||
r"Migration name: (\d+_.*)", e.stderr
|
||||
)
|
||||
if migration_match:
|
||||
migration_name = migration_match.group(1)
|
||||
logger.info(f"Rolling back migration {migration_name}")
|
||||
ProxyExtrasDBManager._roll_back_migration(
|
||||
migration_name
|
||||
)
|
||||
logger.info(
|
||||
f"Resolving migration {migration_name} that failed due to existing columns"
|
||||
)
|
||||
ProxyExtrasDBManager._resolve_specific_migration(
|
||||
migration_name
|
||||
)
|
||||
logger.info("✅ Migration resolved.")
|
||||
else:
|
||||
# Use prisma db push with increased timeout
|
||||
subprocess.run(
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
[tool.poetry]
|
||||
name = "litellm-proxy-extras"
|
||||
version = "0.1.10"
|
||||
version = "0.1.11"
|
||||
description = "Additional files for the LiteLLM Proxy. Reduces the size of the main litellm package."
|
||||
authors = ["BerriAI"]
|
||||
readme = "README.md"
|
||||
|
@ -22,7 +22,7 @@ requires = ["poetry-core"]
|
|||
build-backend = "poetry.core.masonry.api"
|
||||
|
||||
[tool.commitizen]
|
||||
version = "0.1.10"
|
||||
version = "0.1.11"
|
||||
version_files = [
|
||||
"pyproject.toml:version",
|
||||
"../requirements.txt:litellm-proxy-extras==",
|
||||
|
|
|
@ -113,6 +113,7 @@ _custom_logger_compatible_callbacks_literal = Literal[
|
|||
"pagerduty",
|
||||
"humanloop",
|
||||
"gcs_pubsub",
|
||||
"agentops",
|
||||
"anthropic_cache_control_hook",
|
||||
]
|
||||
logged_real_time_event_types: Optional[Union[List[str], Literal["*"]]] = None
|
||||
|
@ -128,19 +129,19 @@ prometheus_initialize_budget_metrics: Optional[bool] = False
|
|||
require_auth_for_metrics_endpoint: Optional[bool] = False
|
||||
argilla_batch_size: Optional[int] = None
|
||||
datadog_use_v1: Optional[bool] = False # if you want to use v1 datadog logged payload
|
||||
gcs_pub_sub_use_v1: Optional[
|
||||
bool
|
||||
] = False # if you want to use v1 gcs pubsub logged payload
|
||||
gcs_pub_sub_use_v1: Optional[bool] = (
|
||||
False # if you want to use v1 gcs pubsub logged payload
|
||||
)
|
||||
argilla_transformation_object: Optional[Dict[str, Any]] = None
|
||||
_async_input_callback: List[
|
||||
Union[str, Callable, CustomLogger]
|
||||
] = [] # internal variable - async custom callbacks are routed here.
|
||||
_async_success_callback: List[
|
||||
Union[str, Callable, CustomLogger]
|
||||
] = [] # internal variable - async custom callbacks are routed here.
|
||||
_async_failure_callback: List[
|
||||
Union[str, Callable, CustomLogger]
|
||||
] = [] # internal variable - async custom callbacks are routed here.
|
||||
_async_input_callback: List[Union[str, Callable, CustomLogger]] = (
|
||||
[]
|
||||
) # internal variable - async custom callbacks are routed here.
|
||||
_async_success_callback: List[Union[str, Callable, CustomLogger]] = (
|
||||
[]
|
||||
) # internal variable - async custom callbacks are routed here.
|
||||
_async_failure_callback: List[Union[str, Callable, CustomLogger]] = (
|
||||
[]
|
||||
) # internal variable - async custom callbacks are routed here.
|
||||
pre_call_rules: List[Callable] = []
|
||||
post_call_rules: List[Callable] = []
|
||||
turn_off_message_logging: Optional[bool] = False
|
||||
|
@ -148,18 +149,18 @@ log_raw_request_response: bool = False
|
|||
redact_messages_in_exceptions: Optional[bool] = False
|
||||
redact_user_api_key_info: Optional[bool] = False
|
||||
filter_invalid_headers: Optional[bool] = False
|
||||
add_user_information_to_llm_headers: Optional[
|
||||
bool
|
||||
] = None # adds user_id, team_id, token hash (params from StandardLoggingMetadata) to request headers
|
||||
add_user_information_to_llm_headers: Optional[bool] = (
|
||||
None # adds user_id, team_id, token hash (params from StandardLoggingMetadata) to request headers
|
||||
)
|
||||
store_audit_logs = False # Enterprise feature, allow users to see audit logs
|
||||
### end of callbacks #############
|
||||
|
||||
email: Optional[
|
||||
str
|
||||
] = None # Not used anymore, will be removed in next MAJOR release - https://github.com/BerriAI/litellm/discussions/648
|
||||
token: Optional[
|
||||
str
|
||||
] = None # Not used anymore, will be removed in next MAJOR release - https://github.com/BerriAI/litellm/discussions/648
|
||||
email: Optional[str] = (
|
||||
None # Not used anymore, will be removed in next MAJOR release - https://github.com/BerriAI/litellm/discussions/648
|
||||
)
|
||||
token: Optional[str] = (
|
||||
None # Not used anymore, will be removed in next MAJOR release - https://github.com/BerriAI/litellm/discussions/648
|
||||
)
|
||||
telemetry = True
|
||||
max_tokens: int = DEFAULT_MAX_TOKENS # OpenAI Defaults
|
||||
drop_params = bool(os.getenv("LITELLM_DROP_PARAMS", False))
|
||||
|
@ -235,20 +236,24 @@ enable_loadbalancing_on_batch_endpoints: Optional[bool] = None
|
|||
enable_caching_on_provider_specific_optional_params: bool = (
|
||||
False # feature-flag for caching on optional params - e.g. 'top_k'
|
||||
)
|
||||
caching: bool = False # Not used anymore, will be removed in next MAJOR release - https://github.com/BerriAI/litellm/discussions/648
|
||||
caching_with_models: bool = False # # Not used anymore, will be removed in next MAJOR release - https://github.com/BerriAI/litellm/discussions/648
|
||||
cache: Optional[
|
||||
Cache
|
||||
] = None # cache object <- use this - https://docs.litellm.ai/docs/caching
|
||||
caching: bool = (
|
||||
False # Not used anymore, will be removed in next MAJOR release - https://github.com/BerriAI/litellm/discussions/648
|
||||
)
|
||||
caching_with_models: bool = (
|
||||
False # # Not used anymore, will be removed in next MAJOR release - https://github.com/BerriAI/litellm/discussions/648
|
||||
)
|
||||
cache: Optional[Cache] = (
|
||||
None # cache object <- use this - https://docs.litellm.ai/docs/caching
|
||||
)
|
||||
default_in_memory_ttl: Optional[float] = None
|
||||
default_redis_ttl: Optional[float] = None
|
||||
default_redis_batch_cache_expiry: Optional[float] = None
|
||||
model_alias_map: Dict[str, str] = {}
|
||||
model_group_alias_map: Dict[str, str] = {}
|
||||
max_budget: float = 0.0 # set the max budget across all providers
|
||||
budget_duration: Optional[
|
||||
str
|
||||
] = None # proxy only - resets budget after fixed duration. You can set duration as seconds ("30s"), minutes ("30m"), hours ("30h"), days ("30d").
|
||||
budget_duration: Optional[str] = (
|
||||
None # proxy only - resets budget after fixed duration. You can set duration as seconds ("30s"), minutes ("30m"), hours ("30h"), days ("30d").
|
||||
)
|
||||
default_soft_budget: float = (
|
||||
DEFAULT_SOFT_BUDGET # by default all litellm proxy keys have a soft budget of 50.0
|
||||
)
|
||||
|
@ -257,11 +262,15 @@ forward_traceparent_to_llm_provider: bool = False
|
|||
|
||||
_current_cost = 0.0 # private variable, used if max budget is set
|
||||
error_logs: Dict = {}
|
||||
add_function_to_prompt: bool = False # if function calling not supported by api, append function call details to system prompt
|
||||
add_function_to_prompt: bool = (
|
||||
False # if function calling not supported by api, append function call details to system prompt
|
||||
)
|
||||
client_session: Optional[httpx.Client] = None
|
||||
aclient_session: Optional[httpx.AsyncClient] = None
|
||||
model_fallbacks: Optional[List] = None # Deprecated for 'litellm.fallbacks'
|
||||
model_cost_map_url: str = "https://raw.githubusercontent.com/BerriAI/litellm/main/model_prices_and_context_window.json"
|
||||
model_cost_map_url: str = (
|
||||
"https://raw.githubusercontent.com/BerriAI/litellm/main/model_prices_and_context_window.json"
|
||||
)
|
||||
suppress_debug_info = False
|
||||
dynamodb_table_name: Optional[str] = None
|
||||
s3_callback_params: Optional[Dict] = None
|
||||
|
@ -284,7 +293,9 @@ disable_end_user_cost_tracking_prometheus_only: Optional[bool] = None
|
|||
custom_prometheus_metadata_labels: List[str] = []
|
||||
#### REQUEST PRIORITIZATION ####
|
||||
priority_reservation: Optional[Dict[str, float]] = None
|
||||
force_ipv4: bool = False # when True, litellm will force ipv4 for all LLM requests. Some users have seen httpx ConnectionError when using ipv6.
|
||||
force_ipv4: bool = (
|
||||
False # when True, litellm will force ipv4 for all LLM requests. Some users have seen httpx ConnectionError when using ipv6.
|
||||
)
|
||||
module_level_aclient = AsyncHTTPHandler(
|
||||
timeout=request_timeout, client_alias="module level aclient"
|
||||
)
|
||||
|
@ -298,13 +309,13 @@ fallbacks: Optional[List] = None
|
|||
context_window_fallbacks: Optional[List] = None
|
||||
content_policy_fallbacks: Optional[List] = None
|
||||
allowed_fails: int = 3
|
||||
num_retries_per_request: Optional[
|
||||
int
|
||||
] = None # for the request overall (incl. fallbacks + model retries)
|
||||
num_retries_per_request: Optional[int] = (
|
||||
None # for the request overall (incl. fallbacks + model retries)
|
||||
)
|
||||
####### SECRET MANAGERS #####################
|
||||
secret_manager_client: Optional[
|
||||
Any
|
||||
] = None # list of instantiated key management clients - e.g. azure kv, infisical, etc.
|
||||
secret_manager_client: Optional[Any] = (
|
||||
None # list of instantiated key management clients - e.g. azure kv, infisical, etc.
|
||||
)
|
||||
_google_kms_resource_name: Optional[str] = None
|
||||
_key_management_system: Optional[KeyManagementSystem] = None
|
||||
_key_management_settings: KeyManagementSettings = KeyManagementSettings()
|
||||
|
@ -405,6 +416,7 @@ deepseek_models: List = []
|
|||
azure_ai_models: List = []
|
||||
jina_ai_models: List = []
|
||||
voyage_models: List = []
|
||||
infinity_models: List = []
|
||||
databricks_models: List = []
|
||||
cloudflare_models: List = []
|
||||
codestral_models: List = []
|
||||
|
@ -546,6 +558,8 @@ def add_known_models():
|
|||
azure_ai_models.append(key)
|
||||
elif value.get("litellm_provider") == "voyage":
|
||||
voyage_models.append(key)
|
||||
elif value.get("litellm_provider") == "infinity":
|
||||
infinity_models.append(key)
|
||||
elif value.get("litellm_provider") == "databricks":
|
||||
databricks_models.append(key)
|
||||
elif value.get("litellm_provider") == "cloudflare":
|
||||
|
@ -634,6 +648,7 @@ model_list = (
|
|||
+ deepseek_models
|
||||
+ azure_ai_models
|
||||
+ voyage_models
|
||||
+ infinity_models
|
||||
+ databricks_models
|
||||
+ cloudflare_models
|
||||
+ codestral_models
|
||||
|
@ -689,6 +704,7 @@ models_by_provider: dict = {
|
|||
"mistral": mistral_chat_models,
|
||||
"azure_ai": azure_ai_models,
|
||||
"voyage": voyage_models,
|
||||
"infinity": infinity_models,
|
||||
"databricks": databricks_models,
|
||||
"cloudflare": cloudflare_models,
|
||||
"codestral": codestral_models,
|
||||
|
@ -936,9 +952,11 @@ from .llms.topaz.image_variations.transformation import TopazImageVariationConfi
|
|||
from litellm.llms.openai.completion.transformation import OpenAITextCompletionConfig
|
||||
from .llms.groq.chat.transformation import GroqChatConfig
|
||||
from .llms.voyage.embedding.transformation import VoyageEmbeddingConfig
|
||||
from .llms.infinity.embedding.transformation import InfinityEmbeddingConfig
|
||||
from .llms.azure_ai.chat.transformation import AzureAIStudioConfig
|
||||
from .llms.mistral.mistral_chat_transformation import MistralConfig
|
||||
from .llms.openai.responses.transformation import OpenAIResponsesAPIConfig
|
||||
from .llms.azure.responses.transformation import AzureOpenAIResponsesAPIConfig
|
||||
from .llms.openai.chat.o_series_transformation import (
|
||||
OpenAIOSeriesConfig as OpenAIO1Config, # maintain backwards compatibility
|
||||
OpenAIOSeriesConfig,
|
||||
|
@ -1055,10 +1073,10 @@ from .types.llms.custom_llm import CustomLLMItem
|
|||
from .types.utils import GenericStreamingChunk
|
||||
|
||||
custom_provider_map: List[CustomLLMItem] = []
|
||||
_custom_providers: List[
|
||||
str
|
||||
] = [] # internal helper util, used to track names of custom providers
|
||||
disable_hf_tokenizer_download: Optional[
|
||||
bool
|
||||
] = None # disable huggingface tokenizer download. Defaults to openai clk100
|
||||
_custom_providers: List[str] = (
|
||||
[]
|
||||
) # internal helper util, used to track names of custom providers
|
||||
disable_hf_tokenizer_download: Optional[bool] = (
|
||||
None # disable huggingface tokenizer download. Defaults to openai clk100
|
||||
)
|
||||
global_disable_no_log_param: bool = False
|
||||
|
|
|
@ -304,6 +304,11 @@ def create_assistants(
|
|||
"response_format": response_format,
|
||||
}
|
||||
|
||||
# only send params that are not None
|
||||
create_assistant_data = {
|
||||
k: v for k, v in create_assistant_data.items() if v is not None
|
||||
}
|
||||
|
||||
response: Optional[Union[Coroutine[Any, Any, Assistant], Assistant]] = None
|
||||
if custom_llm_provider == "openai":
|
||||
api_base = (
|
||||
|
|
|
@ -21,6 +21,10 @@ DEFAULT_MAX_TOKENS = 256 # used when providers need a default
|
|||
MAX_SIZE_PER_ITEM_IN_MEMORY_CACHE_IN_KB = 1024 # 1MB = 1024KB
|
||||
SINGLE_DEPLOYMENT_TRAFFIC_FAILURE_THRESHOLD = 1000 # Minimum number of requests to consider "reasonable traffic". Used for single-deployment cooldown logic.
|
||||
|
||||
DEFAULT_REASONING_EFFORT_LOW_THINKING_BUDGET = 1024
|
||||
DEFAULT_REASONING_EFFORT_MEDIUM_THINKING_BUDGET = 2048
|
||||
DEFAULT_REASONING_EFFORT_HIGH_THINKING_BUDGET = 4096
|
||||
|
||||
########## Networking constants ##############################################################
|
||||
_DEFAULT_TTL_FOR_HTTPX_CLIENTS = 3600 # 1 hour, re-use the same httpx client for 1 hour
|
||||
|
||||
|
|
|
@ -57,6 +57,7 @@ from litellm.llms.vertex_ai.image_generation.cost_calculator import (
|
|||
from litellm.responses.utils import ResponseAPILoggingUtils
|
||||
from litellm.types.llms.openai import (
|
||||
HttpxBinaryResponseContent,
|
||||
ImageGenerationRequestQuality,
|
||||
OpenAIRealtimeStreamList,
|
||||
OpenAIRealtimeStreamResponseBaseObject,
|
||||
OpenAIRealtimeStreamSessionEvents,
|
||||
|
@ -642,9 +643,9 @@ def completion_cost( # noqa: PLR0915
|
|||
or isinstance(completion_response, dict)
|
||||
): # tts returns a custom class
|
||||
if isinstance(completion_response, dict):
|
||||
usage_obj: Optional[
|
||||
Union[dict, Usage]
|
||||
] = completion_response.get("usage", {})
|
||||
usage_obj: Optional[Union[dict, Usage]] = (
|
||||
completion_response.get("usage", {})
|
||||
)
|
||||
else:
|
||||
usage_obj = getattr(completion_response, "usage", {})
|
||||
if isinstance(usage_obj, BaseModel) and not _is_known_usage_objects(
|
||||
|
@ -913,7 +914,7 @@ def completion_cost( # noqa: PLR0915
|
|||
|
||||
|
||||
def get_response_cost_from_hidden_params(
|
||||
hidden_params: Union[dict, BaseModel]
|
||||
hidden_params: Union[dict, BaseModel],
|
||||
) -> Optional[float]:
|
||||
if isinstance(hidden_params, BaseModel):
|
||||
_hidden_params_dict = hidden_params.model_dump()
|
||||
|
@ -1101,30 +1102,37 @@ def default_image_cost_calculator(
|
|||
f"{quality}/{base_model_name}" if quality else base_model_name
|
||||
)
|
||||
|
||||
# gpt-image-1 models use low, medium, high quality. If user did not specify quality, use medium fot gpt-image-1 model family
|
||||
model_name_with_v2_quality = (
|
||||
f"{ImageGenerationRequestQuality.MEDIUM.value}/{base_model_name}"
|
||||
)
|
||||
|
||||
verbose_logger.debug(
|
||||
f"Looking up cost for models: {model_name_with_quality}, {base_model_name}"
|
||||
)
|
||||
|
||||
# Try model with quality first, fall back to base model name
|
||||
if model_name_with_quality in litellm.model_cost:
|
||||
cost_info = litellm.model_cost[model_name_with_quality]
|
||||
elif base_model_name in litellm.model_cost:
|
||||
cost_info = litellm.model_cost[base_model_name]
|
||||
else:
|
||||
# Try without provider prefix
|
||||
model_without_provider = f"{size_str}/{model.split('/')[-1]}"
|
||||
model_with_quality_without_provider = (
|
||||
f"{quality}/{model_without_provider}" if quality else model_without_provider
|
||||
)
|
||||
model_without_provider = f"{size_str}/{model.split('/')[-1]}"
|
||||
model_with_quality_without_provider = (
|
||||
f"{quality}/{model_without_provider}" if quality else model_without_provider
|
||||
)
|
||||
|
||||
if model_with_quality_without_provider in litellm.model_cost:
|
||||
cost_info = litellm.model_cost[model_with_quality_without_provider]
|
||||
elif model_without_provider in litellm.model_cost:
|
||||
cost_info = litellm.model_cost[model_without_provider]
|
||||
else:
|
||||
raise Exception(
|
||||
f"Model not found in cost map. Tried {model_name_with_quality}, {base_model_name}, {model_with_quality_without_provider}, and {model_without_provider}"
|
||||
)
|
||||
# Try model with quality first, fall back to base model name
|
||||
cost_info: Optional[dict] = None
|
||||
models_to_check = [
|
||||
model_name_with_quality,
|
||||
base_model_name,
|
||||
model_name_with_v2_quality,
|
||||
model_with_quality_without_provider,
|
||||
model_without_provider,
|
||||
]
|
||||
for model in models_to_check:
|
||||
if model in litellm.model_cost:
|
||||
cost_info = litellm.model_cost[model]
|
||||
break
|
||||
if cost_info is None:
|
||||
raise Exception(
|
||||
f"Model not found in cost map. Tried checking {models_to_check}"
|
||||
)
|
||||
|
||||
return cost_info["input_cost_per_pixel"] * height * width * n
|
||||
|
||||
|
|
|
@ -45,6 +45,14 @@ class SpanAttributes:
|
|||
"""
|
||||
The name of the model being used.
|
||||
"""
|
||||
LLM_PROVIDER = "llm.provider"
|
||||
"""
|
||||
The provider of the model, such as OpenAI, Azure, Google, etc.
|
||||
"""
|
||||
LLM_SYSTEM = "llm.system"
|
||||
"""
|
||||
The AI product as identified by the client or server
|
||||
"""
|
||||
LLM_PROMPTS = "llm.prompts"
|
||||
"""
|
||||
Prompts provided to a completions API.
|
||||
|
@ -65,15 +73,40 @@ class SpanAttributes:
|
|||
"""
|
||||
Number of tokens in the prompt.
|
||||
"""
|
||||
LLM_TOKEN_COUNT_PROMPT_DETAILS_CACHE_WRITE = "llm.token_count.prompt_details.cache_write"
|
||||
"""
|
||||
Number of tokens in the prompt that were written to cache.
|
||||
"""
|
||||
LLM_TOKEN_COUNT_PROMPT_DETAILS_CACHE_READ = "llm.token_count.prompt_details.cache_read"
|
||||
"""
|
||||
Number of tokens in the prompt that were read from cache.
|
||||
"""
|
||||
LLM_TOKEN_COUNT_PROMPT_DETAILS_AUDIO = "llm.token_count.prompt_details.audio"
|
||||
"""
|
||||
The number of audio input tokens presented in the prompt
|
||||
"""
|
||||
LLM_TOKEN_COUNT_COMPLETION = "llm.token_count.completion"
|
||||
"""
|
||||
Number of tokens in the completion.
|
||||
"""
|
||||
LLM_TOKEN_COUNT_COMPLETION_DETAILS_REASONING = "llm.token_count.completion_details.reasoning"
|
||||
"""
|
||||
Number of tokens used for reasoning steps in the completion.
|
||||
"""
|
||||
LLM_TOKEN_COUNT_COMPLETION_DETAILS_AUDIO = "llm.token_count.completion_details.audio"
|
||||
"""
|
||||
The number of audio input tokens generated by the model
|
||||
"""
|
||||
LLM_TOKEN_COUNT_TOTAL = "llm.token_count.total"
|
||||
"""
|
||||
Total number of tokens, including both prompt and completion.
|
||||
"""
|
||||
|
||||
LLM_TOOLS = "llm.tools"
|
||||
"""
|
||||
List of tools that are advertised to the LLM to be able to call
|
||||
"""
|
||||
|
||||
TOOL_NAME = "tool.name"
|
||||
"""
|
||||
Name of the tool being used.
|
||||
|
@ -112,6 +145,19 @@ class SpanAttributes:
|
|||
The id of the user
|
||||
"""
|
||||
|
||||
PROMPT_VENDOR = "prompt.vendor"
|
||||
"""
|
||||
The vendor or origin of the prompt, e.g. a prompt library, a specialized service, etc.
|
||||
"""
|
||||
PROMPT_ID = "prompt.id"
|
||||
"""
|
||||
A vendor-specific id used to locate the prompt.
|
||||
"""
|
||||
PROMPT_URL = "prompt.url"
|
||||
"""
|
||||
A vendor-specific url used to locate the prompt.
|
||||
"""
|
||||
|
||||
|
||||
class MessageAttributes:
|
||||
"""
|
||||
|
@ -151,6 +197,10 @@ class MessageAttributes:
|
|||
The JSON string representing the arguments passed to the function
|
||||
during a function call.
|
||||
"""
|
||||
MESSAGE_TOOL_CALL_ID = "message.tool_call_id"
|
||||
"""
|
||||
The id of the tool call.
|
||||
"""
|
||||
|
||||
|
||||
class MessageContentAttributes:
|
||||
|
@ -186,6 +236,25 @@ class ImageAttributes:
|
|||
"""
|
||||
|
||||
|
||||
class AudioAttributes:
|
||||
"""
|
||||
Attributes for audio
|
||||
"""
|
||||
|
||||
AUDIO_URL = "audio.url"
|
||||
"""
|
||||
The url to an audio file
|
||||
"""
|
||||
AUDIO_MIME_TYPE = "audio.mime_type"
|
||||
"""
|
||||
The mime type of the audio file
|
||||
"""
|
||||
AUDIO_TRANSCRIPT = "audio.transcript"
|
||||
"""
|
||||
The transcript of the audio file
|
||||
"""
|
||||
|
||||
|
||||
class DocumentAttributes:
|
||||
"""
|
||||
Attributes for a document.
|
||||
|
@ -257,6 +326,10 @@ class ToolCallAttributes:
|
|||
Attributes for a tool call
|
||||
"""
|
||||
|
||||
TOOL_CALL_ID = "tool_call.id"
|
||||
"""
|
||||
The id of the tool call.
|
||||
"""
|
||||
TOOL_CALL_FUNCTION_NAME = "tool_call.function.name"
|
||||
"""
|
||||
The name of function that is being called during a tool call.
|
||||
|
@ -268,6 +341,18 @@ class ToolCallAttributes:
|
|||
"""
|
||||
|
||||
|
||||
class ToolAttributes:
|
||||
"""
|
||||
Attributes for a tools
|
||||
"""
|
||||
|
||||
TOOL_JSON_SCHEMA = "tool.json_schema"
|
||||
"""
|
||||
The json schema of a tool input, It is RECOMMENDED that this be in the
|
||||
OpenAI tool calling format: https://platform.openai.com/docs/assistants/tools
|
||||
"""
|
||||
|
||||
|
||||
class OpenInferenceSpanKindValues(Enum):
|
||||
TOOL = "TOOL"
|
||||
CHAIN = "CHAIN"
|
||||
|
@ -284,3 +369,21 @@ class OpenInferenceSpanKindValues(Enum):
|
|||
class OpenInferenceMimeTypeValues(Enum):
|
||||
TEXT = "text/plain"
|
||||
JSON = "application/json"
|
||||
|
||||
|
||||
class OpenInferenceLLMSystemValues(Enum):
|
||||
OPENAI = "openai"
|
||||
ANTHROPIC = "anthropic"
|
||||
COHERE = "cohere"
|
||||
MISTRALAI = "mistralai"
|
||||
VERTEXAI = "vertexai"
|
||||
|
||||
|
||||
class OpenInferenceLLMProviderValues(Enum):
|
||||
OPENAI = "openai"
|
||||
ANTHROPIC = "anthropic"
|
||||
COHERE = "cohere"
|
||||
MISTRALAI = "mistralai"
|
||||
GOOGLE = "google"
|
||||
AZURE = "azure"
|
||||
AWS = "aws"
|
||||
|
|
3
litellm/integrations/agentops/__init__.py
Normal file
|
@ -0,0 +1,3 @@
|
|||
from .agentops import AgentOps
|
||||
|
||||
__all__ = ["AgentOps"]
|
118
litellm/integrations/agentops/agentops.py
Normal file
|
@ -0,0 +1,118 @@
|
|||
"""
|
||||
AgentOps integration for LiteLLM - Provides OpenTelemetry tracing for LLM calls
|
||||
"""
|
||||
import os
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional, Dict, Any
|
||||
from litellm.integrations.opentelemetry import OpenTelemetry, OpenTelemetryConfig
|
||||
from litellm.llms.custom_httpx.http_handler import _get_httpx_client
|
||||
|
||||
@dataclass
|
||||
class AgentOpsConfig:
|
||||
endpoint: str = "https://otlp.agentops.cloud/v1/traces"
|
||||
api_key: Optional[str] = None
|
||||
service_name: Optional[str] = None
|
||||
deployment_environment: Optional[str] = None
|
||||
auth_endpoint: str = "https://api.agentops.ai/v3/auth/token"
|
||||
|
||||
@classmethod
|
||||
def from_env(cls):
|
||||
return cls(
|
||||
endpoint="https://otlp.agentops.cloud/v1/traces",
|
||||
api_key=os.getenv("AGENTOPS_API_KEY"),
|
||||
service_name=os.getenv("AGENTOPS_SERVICE_NAME", "agentops"),
|
||||
deployment_environment=os.getenv("AGENTOPS_ENVIRONMENT", "production"),
|
||||
auth_endpoint="https://api.agentops.ai/v3/auth/token"
|
||||
)
|
||||
|
||||
class AgentOps(OpenTelemetry):
|
||||
"""
|
||||
AgentOps integration - built on top of OpenTelemetry
|
||||
|
||||
Example usage:
|
||||
```python
|
||||
import litellm
|
||||
|
||||
litellm.success_callback = ["agentops"]
|
||||
|
||||
response = litellm.completion(
|
||||
model="gpt-3.5-turbo",
|
||||
messages=[{"role": "user", "content": "Hello, how are you?"}],
|
||||
)
|
||||
```
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
config: Optional[AgentOpsConfig] = None,
|
||||
):
|
||||
if config is None:
|
||||
config = AgentOpsConfig.from_env()
|
||||
|
||||
# Prefetch JWT token for authentication
|
||||
jwt_token = None
|
||||
project_id = None
|
||||
if config.api_key:
|
||||
try:
|
||||
response = self._fetch_auth_token(config.api_key, config.auth_endpoint)
|
||||
jwt_token = response.get("token")
|
||||
project_id = response.get("project_id")
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
headers = f"Authorization=Bearer {jwt_token}" if jwt_token else None
|
||||
|
||||
otel_config = OpenTelemetryConfig(
|
||||
exporter="otlp_http",
|
||||
endpoint=config.endpoint,
|
||||
headers=headers
|
||||
)
|
||||
|
||||
# Initialize OpenTelemetry with our config
|
||||
super().__init__(
|
||||
config=otel_config,
|
||||
callback_name="agentops"
|
||||
)
|
||||
|
||||
# Set AgentOps-specific resource attributes
|
||||
resource_attrs = {
|
||||
"service.name": config.service_name or "litellm",
|
||||
"deployment.environment": config.deployment_environment or "production",
|
||||
"telemetry.sdk.name": "agentops",
|
||||
}
|
||||
|
||||
if project_id:
|
||||
resource_attrs["project.id"] = project_id
|
||||
|
||||
self.resource_attributes = resource_attrs
|
||||
|
||||
def _fetch_auth_token(self, api_key: str, auth_endpoint: str) -> Dict[str, Any]:
|
||||
"""
|
||||
Fetch JWT authentication token from AgentOps API
|
||||
|
||||
Args:
|
||||
api_key: AgentOps API key
|
||||
auth_endpoint: Authentication endpoint
|
||||
|
||||
Returns:
|
||||
Dict containing JWT token and project ID
|
||||
"""
|
||||
headers = {
|
||||
"Content-Type": "application/json",
|
||||
"Connection": "keep-alive",
|
||||
}
|
||||
|
||||
client = _get_httpx_client()
|
||||
try:
|
||||
response = client.post(
|
||||
url=auth_endpoint,
|
||||
headers=headers,
|
||||
json={"api_key": api_key},
|
||||
timeout=10
|
||||
)
|
||||
|
||||
if response.status_code != 200:
|
||||
raise Exception(f"Failed to fetch auth token: {response.text}")
|
||||
|
||||
return response.json()
|
||||
finally:
|
||||
client.close()
|
|
@ -1,3 +1,4 @@
|
|||
import json
|
||||
from typing import TYPE_CHECKING, Any, Optional, Union
|
||||
|
||||
from litellm._logging import verbose_logger
|
||||
|
@ -12,36 +13,141 @@ else:
|
|||
Span = Any
|
||||
|
||||
|
||||
def set_attributes(span: Span, kwargs, response_obj):
|
||||
def cast_as_primitive_value_type(value) -> Union[str, bool, int, float]:
|
||||
"""
|
||||
Converts a value to an OTEL-supported primitive for Arize/Phoenix observability.
|
||||
"""
|
||||
if value is None:
|
||||
return ""
|
||||
if isinstance(value, (str, bool, int, float)):
|
||||
return value
|
||||
try:
|
||||
return str(value)
|
||||
except Exception:
|
||||
return ""
|
||||
|
||||
|
||||
def safe_set_attribute(span: Span, key: str, value: Any):
|
||||
"""
|
||||
Sets a span attribute safely with OTEL-compliant primitive typing for Arize/Phoenix.
|
||||
"""
|
||||
primitive_value = cast_as_primitive_value_type(value)
|
||||
span.set_attribute(key, primitive_value)
|
||||
|
||||
|
||||
def set_attributes(span: Span, kwargs, response_obj): # noqa: PLR0915
|
||||
"""
|
||||
Populates span with OpenInference-compliant LLM attributes for Arize and Phoenix tracing.
|
||||
"""
|
||||
from litellm.integrations._types.open_inference import (
|
||||
MessageAttributes,
|
||||
OpenInferenceSpanKindValues,
|
||||
SpanAttributes,
|
||||
ToolCallAttributes,
|
||||
)
|
||||
|
||||
try:
|
||||
optional_params = kwargs.get("optional_params", {})
|
||||
litellm_params = kwargs.get("litellm_params", {})
|
||||
standard_logging_payload: Optional[StandardLoggingPayload] = kwargs.get(
|
||||
"standard_logging_object"
|
||||
)
|
||||
if standard_logging_payload is None:
|
||||
raise ValueError("standard_logging_object not found in kwargs")
|
||||
|
||||
#############################################
|
||||
############ LLM CALL METADATA ##############
|
||||
#############################################
|
||||
|
||||
if standard_logging_payload and (
|
||||
metadata := standard_logging_payload["metadata"]
|
||||
):
|
||||
span.set_attribute(SpanAttributes.METADATA, safe_dumps(metadata))
|
||||
# Set custom metadata for observability and trace enrichment.
|
||||
metadata = (
|
||||
standard_logging_payload.get("metadata")
|
||||
if standard_logging_payload
|
||||
else None
|
||||
)
|
||||
if metadata is not None:
|
||||
safe_set_attribute(span, SpanAttributes.METADATA, safe_dumps(metadata))
|
||||
|
||||
#############################################
|
||||
########## LLM Request Attributes ###########
|
||||
#############################################
|
||||
|
||||
# The name of the LLM a request is being made to
|
||||
# The name of the LLM a request is being made to.
|
||||
if kwargs.get("model"):
|
||||
span.set_attribute(SpanAttributes.LLM_MODEL_NAME, kwargs.get("model"))
|
||||
safe_set_attribute(
|
||||
span,
|
||||
SpanAttributes.LLM_MODEL_NAME,
|
||||
kwargs.get("model"),
|
||||
)
|
||||
|
||||
span.set_attribute(
|
||||
# The LLM request type.
|
||||
safe_set_attribute(
|
||||
span,
|
||||
"llm.request.type",
|
||||
standard_logging_payload["call_type"],
|
||||
)
|
||||
|
||||
# The Generative AI Provider: Azure, OpenAI, etc.
|
||||
safe_set_attribute(
|
||||
span,
|
||||
SpanAttributes.LLM_PROVIDER,
|
||||
litellm_params.get("custom_llm_provider", "Unknown"),
|
||||
)
|
||||
|
||||
# The maximum number of tokens the LLM generates for a request.
|
||||
if optional_params.get("max_tokens"):
|
||||
safe_set_attribute(
|
||||
span,
|
||||
"llm.request.max_tokens",
|
||||
optional_params.get("max_tokens"),
|
||||
)
|
||||
|
||||
# The temperature setting for the LLM request.
|
||||
if optional_params.get("temperature"):
|
||||
safe_set_attribute(
|
||||
span,
|
||||
"llm.request.temperature",
|
||||
optional_params.get("temperature"),
|
||||
)
|
||||
|
||||
# The top_p sampling setting for the LLM request.
|
||||
if optional_params.get("top_p"):
|
||||
safe_set_attribute(
|
||||
span,
|
||||
"llm.request.top_p",
|
||||
optional_params.get("top_p"),
|
||||
)
|
||||
|
||||
# Indicates whether response is streamed.
|
||||
safe_set_attribute(
|
||||
span,
|
||||
"llm.is_streaming",
|
||||
str(optional_params.get("stream", False)),
|
||||
)
|
||||
|
||||
# Logs the user ID if present.
|
||||
if optional_params.get("user"):
|
||||
safe_set_attribute(
|
||||
span,
|
||||
"llm.user",
|
||||
optional_params.get("user"),
|
||||
)
|
||||
|
||||
# The unique identifier for the completion.
|
||||
if response_obj and response_obj.get("id"):
|
||||
safe_set_attribute(span, "llm.response.id", response_obj.get("id"))
|
||||
|
||||
# The model used to generate the response.
|
||||
if response_obj and response_obj.get("model"):
|
||||
safe_set_attribute(
|
||||
span,
|
||||
"llm.response.model",
|
||||
response_obj.get("model"),
|
||||
)
|
||||
|
||||
# Required by OpenInference to mark span as LLM kind.
|
||||
safe_set_attribute(
|
||||
span,
|
||||
SpanAttributes.OPENINFERENCE_SPAN_KIND,
|
||||
OpenInferenceSpanKindValues.LLM.value,
|
||||
)
|
||||
|
@ -50,77 +156,132 @@ def set_attributes(span: Span, kwargs, response_obj):
|
|||
# for /chat/completions
|
||||
# https://docs.arize.com/arize/large-language-models/tracing/semantic-conventions
|
||||
if messages:
|
||||
span.set_attribute(
|
||||
last_message = messages[-1]
|
||||
safe_set_attribute(
|
||||
span,
|
||||
SpanAttributes.INPUT_VALUE,
|
||||
messages[-1].get("content", ""), # get the last message for input
|
||||
last_message.get("content", ""),
|
||||
)
|
||||
|
||||
# LLM_INPUT_MESSAGES shows up under `input_messages` tab on the span page
|
||||
# LLM_INPUT_MESSAGES shows up under `input_messages` tab on the span page.
|
||||
for idx, msg in enumerate(messages):
|
||||
# Set the role per message
|
||||
span.set_attribute(
|
||||
f"{SpanAttributes.LLM_INPUT_MESSAGES}.{idx}.{MessageAttributes.MESSAGE_ROLE}",
|
||||
msg["role"],
|
||||
prefix = f"{SpanAttributes.LLM_INPUT_MESSAGES}.{idx}"
|
||||
# Set the role per message.
|
||||
safe_set_attribute(
|
||||
span, f"{prefix}.{MessageAttributes.MESSAGE_ROLE}", msg.get("role")
|
||||
)
|
||||
# Set the content per message
|
||||
span.set_attribute(
|
||||
f"{SpanAttributes.LLM_INPUT_MESSAGES}.{idx}.{MessageAttributes.MESSAGE_CONTENT}",
|
||||
# Set the content per message.
|
||||
safe_set_attribute(
|
||||
span,
|
||||
f"{prefix}.{MessageAttributes.MESSAGE_CONTENT}",
|
||||
msg.get("content", ""),
|
||||
)
|
||||
|
||||
if standard_logging_payload and (
|
||||
model_params := standard_logging_payload["model_parameters"]
|
||||
):
|
||||
# Capture tools (function definitions) used in the LLM call.
|
||||
tools = optional_params.get("tools")
|
||||
if tools:
|
||||
for idx, tool in enumerate(tools):
|
||||
function = tool.get("function")
|
||||
if not function:
|
||||
continue
|
||||
prefix = f"{SpanAttributes.LLM_TOOLS}.{idx}"
|
||||
safe_set_attribute(
|
||||
span, f"{prefix}.{SpanAttributes.TOOL_NAME}", function.get("name")
|
||||
)
|
||||
safe_set_attribute(
|
||||
span,
|
||||
f"{prefix}.{SpanAttributes.TOOL_DESCRIPTION}",
|
||||
function.get("description"),
|
||||
)
|
||||
safe_set_attribute(
|
||||
span,
|
||||
f"{prefix}.{SpanAttributes.TOOL_PARAMETERS}",
|
||||
json.dumps(function.get("parameters")),
|
||||
)
|
||||
|
||||
# Capture tool calls made during function-calling LLM flows.
|
||||
functions = optional_params.get("functions")
|
||||
if functions:
|
||||
for idx, function in enumerate(functions):
|
||||
prefix = f"{MessageAttributes.MESSAGE_TOOL_CALLS}.{idx}"
|
||||
safe_set_attribute(
|
||||
span,
|
||||
f"{prefix}.{ToolCallAttributes.TOOL_CALL_FUNCTION_NAME}",
|
||||
function.get("name"),
|
||||
)
|
||||
|
||||
# Capture invocation parameters and user ID if available.
|
||||
model_params = (
|
||||
standard_logging_payload.get("model_parameters")
|
||||
if standard_logging_payload
|
||||
else None
|
||||
)
|
||||
if model_params:
|
||||
# The Generative AI Provider: Azure, OpenAI, etc.
|
||||
span.set_attribute(
|
||||
SpanAttributes.LLM_INVOCATION_PARAMETERS, safe_dumps(model_params)
|
||||
safe_set_attribute(
|
||||
span,
|
||||
SpanAttributes.LLM_INVOCATION_PARAMETERS,
|
||||
safe_dumps(model_params),
|
||||
)
|
||||
|
||||
if model_params.get("user"):
|
||||
user_id = model_params.get("user")
|
||||
if user_id is not None:
|
||||
span.set_attribute(SpanAttributes.USER_ID, user_id)
|
||||
safe_set_attribute(span, SpanAttributes.USER_ID, user_id)
|
||||
|
||||
#############################################
|
||||
########## LLM Response Attributes ##########
|
||||
# https://docs.arize.com/arize/large-language-models/tracing/semantic-conventions
|
||||
#############################################
|
||||
if hasattr(response_obj, "get"):
|
||||
for choice in response_obj.get("choices", []):
|
||||
response_message = choice.get("message", {})
|
||||
span.set_attribute(
|
||||
SpanAttributes.OUTPUT_VALUE, response_message.get("content", "")
|
||||
)
|
||||
|
||||
# This shows up under `output_messages` tab on the span page
|
||||
# This code assumes a single response
|
||||
span.set_attribute(
|
||||
f"{SpanAttributes.LLM_OUTPUT_MESSAGES}.0.{MessageAttributes.MESSAGE_ROLE}",
|
||||
response_message.get("role"),
|
||||
)
|
||||
span.set_attribute(
|
||||
f"{SpanAttributes.LLM_OUTPUT_MESSAGES}.0.{MessageAttributes.MESSAGE_CONTENT}",
|
||||
# Captures response tokens, message, and content.
|
||||
if hasattr(response_obj, "get"):
|
||||
for idx, choice in enumerate(response_obj.get("choices", [])):
|
||||
response_message = choice.get("message", {})
|
||||
safe_set_attribute(
|
||||
span,
|
||||
SpanAttributes.OUTPUT_VALUE,
|
||||
response_message.get("content", ""),
|
||||
)
|
||||
|
||||
usage = response_obj.get("usage")
|
||||
# This shows up under `output_messages` tab on the span page.
|
||||
prefix = f"{SpanAttributes.LLM_OUTPUT_MESSAGES}.{idx}"
|
||||
safe_set_attribute(
|
||||
span,
|
||||
f"{prefix}.{MessageAttributes.MESSAGE_ROLE}",
|
||||
response_message.get("role"),
|
||||
)
|
||||
safe_set_attribute(
|
||||
span,
|
||||
f"{prefix}.{MessageAttributes.MESSAGE_CONTENT}",
|
||||
response_message.get("content", ""),
|
||||
)
|
||||
|
||||
# Token usage info.
|
||||
usage = response_obj and response_obj.get("usage")
|
||||
if usage:
|
||||
span.set_attribute(
|
||||
safe_set_attribute(
|
||||
span,
|
||||
SpanAttributes.LLM_TOKEN_COUNT_TOTAL,
|
||||
usage.get("total_tokens"),
|
||||
)
|
||||
|
||||
# The number of tokens used in the LLM response (completion).
|
||||
span.set_attribute(
|
||||
safe_set_attribute(
|
||||
span,
|
||||
SpanAttributes.LLM_TOKEN_COUNT_COMPLETION,
|
||||
usage.get("completion_tokens"),
|
||||
)
|
||||
|
||||
# The number of tokens used in the LLM prompt.
|
||||
span.set_attribute(
|
||||
safe_set_attribute(
|
||||
span,
|
||||
SpanAttributes.LLM_TOKEN_COUNT_PROMPT,
|
||||
usage.get("prompt_tokens"),
|
||||
)
|
||||
pass
|
||||
|
||||
except Exception as e:
|
||||
verbose_logger.error(f"Error setting arize attributes: {e}")
|
||||
verbose_logger.error(
|
||||
f"[Arize/Phoenix] Failed to set OpenInference span attributes: {e}"
|
||||
)
|
||||
if hasattr(span, "record_exception"):
|
||||
span.record_exception(e)
|
||||
|
|
|
@ -13,10 +13,15 @@ import uuid
|
|||
from datetime import datetime
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
import httpx
|
||||
|
||||
import litellm
|
||||
from litellm._logging import verbose_logger
|
||||
from litellm.integrations.custom_batch_logger import CustomBatchLogger
|
||||
from litellm.integrations.datadog.datadog import DataDogLogger
|
||||
from litellm.litellm_core_utils.prompt_templates.common_utils import (
|
||||
handle_any_messages_to_chat_completion_str_messages_conversion,
|
||||
)
|
||||
from litellm.llms.custom_httpx.http_handler import (
|
||||
get_async_httpx_client,
|
||||
httpxSpecialProvider,
|
||||
|
@ -106,7 +111,6 @@ class DataDogLLMObsLogger(DataDogLogger, CustomBatchLogger):
|
|||
},
|
||||
)
|
||||
|
||||
response.raise_for_status()
|
||||
if response.status_code != 202:
|
||||
raise Exception(
|
||||
f"DataDogLLMObs: Unexpected response - status_code: {response.status_code}, text: {response.text}"
|
||||
|
@ -116,6 +120,10 @@ class DataDogLLMObsLogger(DataDogLogger, CustomBatchLogger):
|
|||
f"DataDogLLMObs: Successfully sent batch - status_code: {response.status_code}"
|
||||
)
|
||||
self.log_queue.clear()
|
||||
except httpx.HTTPStatusError as e:
|
||||
verbose_logger.exception(
|
||||
f"DataDogLLMObs: Error sending batch - {e.response.text}"
|
||||
)
|
||||
except Exception as e:
|
||||
verbose_logger.exception(f"DataDogLLMObs: Error sending batch - {str(e)}")
|
||||
|
||||
|
@ -133,7 +141,11 @@ class DataDogLLMObsLogger(DataDogLogger, CustomBatchLogger):
|
|||
|
||||
metadata = kwargs.get("litellm_params", {}).get("metadata", {})
|
||||
|
||||
input_meta = InputMeta(messages=messages) # type: ignore
|
||||
input_meta = InputMeta(
|
||||
messages=handle_any_messages_to_chat_completion_str_messages_conversion(
|
||||
messages
|
||||
)
|
||||
)
|
||||
output_meta = OutputMeta(messages=self._get_response_messages(response_obj))
|
||||
|
||||
meta = Meta(
|
||||
|
|
|
@ -311,6 +311,9 @@ def exception_type( # type: ignore # noqa: PLR0915
|
|||
elif (
|
||||
"invalid_request_error" in error_str
|
||||
and "content_policy_violation" in error_str
|
||||
) or (
|
||||
"Invalid prompt" in error_str
|
||||
and "violating our usage policy" in error_str
|
||||
):
|
||||
exception_mapping_worked = True
|
||||
raise ContentPolicyViolationError(
|
||||
|
|
|
@ -221,6 +221,8 @@ def get_supported_openai_params( # noqa: PLR0915
|
|||
return litellm.PredibaseConfig().get_supported_openai_params(model=model)
|
||||
elif custom_llm_provider == "voyage":
|
||||
return litellm.VoyageEmbeddingConfig().get_supported_openai_params(model=model)
|
||||
elif custom_llm_provider == "infinity":
|
||||
return litellm.InfinityEmbeddingConfig().get_supported_openai_params(model=model)
|
||||
elif custom_llm_provider == "triton":
|
||||
if request_type == "embeddings":
|
||||
return litellm.TritonEmbeddingConfig().get_supported_openai_params(
|
||||
|
|
|
@ -28,6 +28,7 @@ from litellm._logging import _is_debugging_on, verbose_logger
|
|||
from litellm.batches.batch_utils import _handle_completed_batch
|
||||
from litellm.caching.caching import DualCache, InMemoryCache
|
||||
from litellm.caching.caching_handler import LLMCachingHandler
|
||||
|
||||
from litellm.constants import (
|
||||
DEFAULT_MOCK_RESPONSE_COMPLETION_TOKEN_COUNT,
|
||||
DEFAULT_MOCK_RESPONSE_PROMPT_TOKEN_COUNT,
|
||||
|
@ -36,6 +37,7 @@ from litellm.cost_calculator import (
|
|||
RealtimeAPITokenUsageProcessor,
|
||||
_select_model_name_for_cost_calc,
|
||||
)
|
||||
from litellm.integrations.agentops import AgentOps
|
||||
from litellm.integrations.anthropic_cache_control_hook import AnthropicCacheControlHook
|
||||
from litellm.integrations.arize.arize import ArizeLogger
|
||||
from litellm.integrations.custom_guardrail import CustomGuardrail
|
||||
|
@ -2685,7 +2687,15 @@ def _init_custom_logger_compatible_class( # noqa: PLR0915
|
|||
"""
|
||||
try:
|
||||
custom_logger_init_args = custom_logger_init_args or {}
|
||||
if logging_integration == "lago":
|
||||
if logging_integration == "agentops": # Add AgentOps initialization
|
||||
for callback in _in_memory_loggers:
|
||||
if isinstance(callback, AgentOps):
|
||||
return callback # type: ignore
|
||||
|
||||
agentops_logger = AgentOps()
|
||||
_in_memory_loggers.append(agentops_logger)
|
||||
return agentops_logger # type: ignore
|
||||
elif logging_integration == "lago":
|
||||
for callback in _in_memory_loggers:
|
||||
if isinstance(callback, LagoLogger):
|
||||
return callback # type: ignore
|
||||
|
|
|
@ -265,8 +265,10 @@ def generic_cost_per_token(
|
|||
)
|
||||
|
||||
## CALCULATE OUTPUT COST
|
||||
text_tokens = usage.completion_tokens
|
||||
text_tokens = 0
|
||||
audio_tokens = 0
|
||||
reasoning_tokens = 0
|
||||
is_text_tokens_total = False
|
||||
if usage.completion_tokens_details is not None:
|
||||
audio_tokens = (
|
||||
cast(
|
||||
|
@ -280,9 +282,20 @@ def generic_cost_per_token(
|
|||
Optional[int],
|
||||
getattr(usage.completion_tokens_details, "text_tokens", None),
|
||||
)
|
||||
or usage.completion_tokens # default to completion tokens, if this field is not set
|
||||
or 0 # default to completion tokens, if this field is not set
|
||||
)
|
||||
reasoning_tokens = (
|
||||
cast(
|
||||
Optional[int],
|
||||
getattr(usage.completion_tokens_details, "reasoning_tokens", 0),
|
||||
)
|
||||
or 0
|
||||
)
|
||||
|
||||
if text_tokens == 0:
|
||||
text_tokens = usage.completion_tokens
|
||||
if text_tokens == usage.completion_tokens:
|
||||
is_text_tokens_total = True
|
||||
## TEXT COST
|
||||
completion_cost = float(text_tokens) * completion_base_cost
|
||||
|
||||
|
@ -290,12 +303,26 @@ def generic_cost_per_token(
|
|||
"output_cost_per_audio_token"
|
||||
)
|
||||
|
||||
_output_cost_per_reasoning_token: Optional[float] = model_info.get(
|
||||
"output_cost_per_reasoning_token"
|
||||
)
|
||||
|
||||
## AUDIO COST
|
||||
if (
|
||||
_output_cost_per_audio_token is not None
|
||||
and audio_tokens is not None
|
||||
and audio_tokens > 0
|
||||
):
|
||||
if not is_text_tokens_total and audio_tokens is not None and audio_tokens > 0:
|
||||
_output_cost_per_audio_token = (
|
||||
_output_cost_per_audio_token
|
||||
if _output_cost_per_audio_token is not None
|
||||
else completion_base_cost
|
||||
)
|
||||
completion_cost += float(audio_tokens) * _output_cost_per_audio_token
|
||||
|
||||
## REASONING COST
|
||||
if not is_text_tokens_total and reasoning_tokens and reasoning_tokens > 0:
|
||||
_output_cost_per_reasoning_token = (
|
||||
_output_cost_per_reasoning_token
|
||||
if _output_cost_per_reasoning_token is not None
|
||||
else completion_base_cost
|
||||
)
|
||||
completion_cost += float(reasoning_tokens) * _output_cost_per_reasoning_token
|
||||
|
||||
return prompt_cost, completion_cost
|
||||
|
|
|
@ -14,6 +14,7 @@ from litellm.types.llms.openai import ChatCompletionThinkingBlock
|
|||
from litellm.types.utils import (
|
||||
ChatCompletionDeltaToolCall,
|
||||
ChatCompletionMessageToolCall,
|
||||
ChatCompletionRedactedThinkingBlock,
|
||||
Choices,
|
||||
Delta,
|
||||
EmbeddingResponse,
|
||||
|
@ -486,7 +487,14 @@ def convert_to_model_response_object( # noqa: PLR0915
|
|||
)
|
||||
|
||||
# Handle thinking models that display `thinking_blocks` within `content`
|
||||
thinking_blocks: Optional[List[ChatCompletionThinkingBlock]] = None
|
||||
thinking_blocks: Optional[
|
||||
List[
|
||||
Union[
|
||||
ChatCompletionThinkingBlock,
|
||||
ChatCompletionRedactedThinkingBlock,
|
||||
]
|
||||
]
|
||||
] = None
|
||||
if "thinking_blocks" in choice["message"]:
|
||||
thinking_blocks = choice["message"]["thinking_blocks"]
|
||||
provider_specific_fields["thinking_blocks"] = thinking_blocks
|
||||
|
|
|
@ -75,6 +75,10 @@ class ModelParamHelper:
|
|||
combined_kwargs = combined_kwargs.difference(exclude_kwargs)
|
||||
return combined_kwargs
|
||||
|
||||
@staticmethod
|
||||
def get_litellm_provider_specific_params_for_chat_params() -> Set[str]:
|
||||
return set(["thinking"])
|
||||
|
||||
@staticmethod
|
||||
def _get_litellm_supported_chat_completion_kwargs() -> Set[str]:
|
||||
"""
|
||||
|
@ -82,11 +86,18 @@ class ModelParamHelper:
|
|||
|
||||
This follows the OpenAI API Spec
|
||||
"""
|
||||
all_chat_completion_kwargs = set(
|
||||
non_streaming_params: Set[str] = set(
|
||||
getattr(CompletionCreateParamsNonStreaming, "__annotations__", {}).keys()
|
||||
).union(
|
||||
set(getattr(CompletionCreateParamsStreaming, "__annotations__", {}).keys())
|
||||
)
|
||||
streaming_params: Set[str] = set(
|
||||
getattr(CompletionCreateParamsStreaming, "__annotations__", {}).keys()
|
||||
)
|
||||
litellm_provider_specific_params: Set[str] = (
|
||||
ModelParamHelper.get_litellm_provider_specific_params_for_chat_params()
|
||||
)
|
||||
all_chat_completion_kwargs: Set[str] = non_streaming_params.union(
|
||||
streaming_params
|
||||
).union(litellm_provider_specific_params)
|
||||
return all_chat_completion_kwargs
|
||||
|
||||
@staticmethod
|
||||
|
|
|
@ -6,7 +6,7 @@ import io
|
|||
import mimetypes
|
||||
import re
|
||||
from os import PathLike
|
||||
from typing import Dict, List, Literal, Mapping, Optional, Union, cast
|
||||
from typing import Any, Dict, List, Literal, Mapping, Optional, Union, cast
|
||||
|
||||
from litellm.types.llms.openai import (
|
||||
AllMessageValues,
|
||||
|
@ -32,6 +32,35 @@ DEFAULT_ASSISTANT_CONTINUE_MESSAGE = ChatCompletionAssistantMessage(
|
|||
)
|
||||
|
||||
|
||||
def handle_any_messages_to_chat_completion_str_messages_conversion(
|
||||
messages: Any,
|
||||
) -> List[Dict[str, str]]:
|
||||
"""
|
||||
Handles any messages to chat completion str messages conversion
|
||||
|
||||
Relevant Issue: https://github.com/BerriAI/litellm/issues/9494
|
||||
"""
|
||||
import json
|
||||
|
||||
if isinstance(messages, list):
|
||||
try:
|
||||
return cast(
|
||||
List[Dict[str, str]],
|
||||
handle_messages_with_content_list_to_str_conversion(messages),
|
||||
)
|
||||
except Exception:
|
||||
return [{"input": json.dumps(message, default=str)} for message in messages]
|
||||
elif isinstance(messages, dict):
|
||||
try:
|
||||
return [{"input": json.dumps(messages, default=str)}]
|
||||
except Exception:
|
||||
return [{"input": str(messages)}]
|
||||
elif isinstance(messages, str):
|
||||
return [{"input": messages}]
|
||||
else:
|
||||
return [{"input": str(messages)}]
|
||||
|
||||
|
||||
def handle_messages_with_content_list_to_str_conversion(
|
||||
messages: List[AllMessageValues],
|
||||
) -> List[AllMessageValues]:
|
||||
|
@ -471,3 +500,59 @@ def unpack_defs(schema, defs):
|
|||
unpack_defs(ref, defs)
|
||||
value["items"] = ref
|
||||
continue
|
||||
|
||||
|
||||
def _get_image_mime_type_from_url(url: str) -> Optional[str]:
|
||||
"""
|
||||
Get mime type for common image URLs
|
||||
See gemini mime types: https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/image-understanding#image-requirements
|
||||
|
||||
Supported by Gemini:
|
||||
application/pdf
|
||||
audio/mpeg
|
||||
audio/mp3
|
||||
audio/wav
|
||||
image/png
|
||||
image/jpeg
|
||||
image/webp
|
||||
text/plain
|
||||
video/mov
|
||||
video/mpeg
|
||||
video/mp4
|
||||
video/mpg
|
||||
video/avi
|
||||
video/wmv
|
||||
video/mpegps
|
||||
video/flv
|
||||
"""
|
||||
url = url.lower()
|
||||
|
||||
# Map file extensions to mime types
|
||||
mime_types = {
|
||||
# Images
|
||||
(".jpg", ".jpeg"): "image/jpeg",
|
||||
(".png",): "image/png",
|
||||
(".webp",): "image/webp",
|
||||
# Videos
|
||||
(".mp4",): "video/mp4",
|
||||
(".mov",): "video/mov",
|
||||
(".mpeg", ".mpg"): "video/mpeg",
|
||||
(".avi",): "video/avi",
|
||||
(".wmv",): "video/wmv",
|
||||
(".mpegps",): "video/mpegps",
|
||||
(".flv",): "video/flv",
|
||||
# Audio
|
||||
(".mp3",): "audio/mp3",
|
||||
(".wav",): "audio/wav",
|
||||
(".mpeg",): "audio/mpeg",
|
||||
# Documents
|
||||
(".pdf",): "application/pdf",
|
||||
(".txt",): "text/plain",
|
||||
}
|
||||
|
||||
# Check each extension group against the URL
|
||||
for extensions, mime_type in mime_types.items():
|
||||
if any(url.endswith(ext) for ext in extensions):
|
||||
return mime_type
|
||||
|
||||
return None
|
||||
|
|
|
@ -2258,6 +2258,14 @@ def _parse_content_type(content_type: str) -> str:
|
|||
return m.get_content_type()
|
||||
|
||||
|
||||
def _parse_mime_type(base64_data: str) -> Optional[str]:
|
||||
mime_type_match = re.match(r"data:(.*?);base64", base64_data)
|
||||
if mime_type_match:
|
||||
return mime_type_match.group(1)
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
class BedrockImageProcessor:
|
||||
"""Handles both sync and async image processing for Bedrock conversations."""
|
||||
|
||||
|
|
|
@ -29,6 +29,7 @@ from litellm.types.llms.anthropic import (
|
|||
UsageDelta,
|
||||
)
|
||||
from litellm.types.llms.openai import (
|
||||
ChatCompletionRedactedThinkingBlock,
|
||||
ChatCompletionThinkingBlock,
|
||||
ChatCompletionToolCallChunk,
|
||||
)
|
||||
|
@ -501,18 +502,19 @@ class ModelResponseIterator:
|
|||
) -> Tuple[
|
||||
str,
|
||||
Optional[ChatCompletionToolCallChunk],
|
||||
List[ChatCompletionThinkingBlock],
|
||||
List[Union[ChatCompletionThinkingBlock, ChatCompletionRedactedThinkingBlock]],
|
||||
Dict[str, Any],
|
||||
]:
|
||||
"""
|
||||
Helper function to handle the content block delta
|
||||
"""
|
||||
|
||||
text = ""
|
||||
tool_use: Optional[ChatCompletionToolCallChunk] = None
|
||||
provider_specific_fields = {}
|
||||
content_block = ContentBlockDelta(**chunk) # type: ignore
|
||||
thinking_blocks: List[ChatCompletionThinkingBlock] = []
|
||||
thinking_blocks: List[
|
||||
Union[ChatCompletionThinkingBlock, ChatCompletionRedactedThinkingBlock]
|
||||
] = []
|
||||
|
||||
self.content_blocks.append(content_block)
|
||||
if "text" in content_block["delta"]:
|
||||
|
@ -541,20 +543,25 @@ class ModelResponseIterator:
|
|||
)
|
||||
]
|
||||
provider_specific_fields["thinking_blocks"] = thinking_blocks
|
||||
|
||||
return text, tool_use, thinking_blocks, provider_specific_fields
|
||||
|
||||
def _handle_reasoning_content(
|
||||
self, thinking_blocks: List[ChatCompletionThinkingBlock]
|
||||
self,
|
||||
thinking_blocks: List[
|
||||
Union[ChatCompletionThinkingBlock, ChatCompletionRedactedThinkingBlock]
|
||||
],
|
||||
) -> Optional[str]:
|
||||
"""
|
||||
Handle the reasoning content
|
||||
"""
|
||||
reasoning_content = None
|
||||
for block in thinking_blocks:
|
||||
thinking_content = cast(Optional[str], block.get("thinking"))
|
||||
if reasoning_content is None:
|
||||
reasoning_content = ""
|
||||
if "thinking" in block:
|
||||
reasoning_content += block["thinking"]
|
||||
if thinking_content is not None:
|
||||
reasoning_content += thinking_content
|
||||
return reasoning_content
|
||||
|
||||
def chunk_parser(self, chunk: dict) -> ModelResponseStream:
|
||||
|
@ -567,7 +574,13 @@ class ModelResponseIterator:
|
|||
usage: Optional[Usage] = None
|
||||
provider_specific_fields: Dict[str, Any] = {}
|
||||
reasoning_content: Optional[str] = None
|
||||
thinking_blocks: Optional[List[ChatCompletionThinkingBlock]] = None
|
||||
thinking_blocks: Optional[
|
||||
List[
|
||||
Union[
|
||||
ChatCompletionThinkingBlock, ChatCompletionRedactedThinkingBlock
|
||||
]
|
||||
]
|
||||
] = None
|
||||
|
||||
index = int(chunk.get("index", 0))
|
||||
if type_chunk == "content_block_delta":
|
||||
|
@ -605,6 +618,15 @@ class ModelResponseIterator:
|
|||
},
|
||||
"index": self.tool_index,
|
||||
}
|
||||
elif (
|
||||
content_block_start["content_block"]["type"] == "redacted_thinking"
|
||||
):
|
||||
thinking_blocks = [
|
||||
ChatCompletionRedactedThinkingBlock(
|
||||
type="redacted_thinking",
|
||||
data=content_block_start["content_block"]["data"],
|
||||
)
|
||||
]
|
||||
elif type_chunk == "content_block_stop":
|
||||
ContentBlockStop(**chunk) # type: ignore
|
||||
# check if tool call content block
|
||||
|
|
|
@ -7,6 +7,9 @@ import httpx
|
|||
import litellm
|
||||
from litellm.constants import (
|
||||
DEFAULT_ANTHROPIC_CHAT_MAX_TOKENS,
|
||||
DEFAULT_REASONING_EFFORT_HIGH_THINKING_BUDGET,
|
||||
DEFAULT_REASONING_EFFORT_LOW_THINKING_BUDGET,
|
||||
DEFAULT_REASONING_EFFORT_MEDIUM_THINKING_BUDGET,
|
||||
RESPONSE_FORMAT_TOOL_NAME,
|
||||
)
|
||||
from litellm.litellm_core_utils.core_helpers import map_finish_reason
|
||||
|
@ -27,6 +30,7 @@ from litellm.types.llms.openai import (
|
|||
REASONING_EFFORT,
|
||||
AllMessageValues,
|
||||
ChatCompletionCachedContent,
|
||||
ChatCompletionRedactedThinkingBlock,
|
||||
ChatCompletionSystemMessage,
|
||||
ChatCompletionThinkingBlock,
|
||||
ChatCompletionToolCallChunk,
|
||||
|
@ -276,11 +280,20 @@ class AnthropicConfig(AnthropicModelInfo, BaseConfig):
|
|||
if reasoning_effort is None:
|
||||
return None
|
||||
elif reasoning_effort == "low":
|
||||
return AnthropicThinkingParam(type="enabled", budget_tokens=1024)
|
||||
return AnthropicThinkingParam(
|
||||
type="enabled",
|
||||
budget_tokens=DEFAULT_REASONING_EFFORT_LOW_THINKING_BUDGET,
|
||||
)
|
||||
elif reasoning_effort == "medium":
|
||||
return AnthropicThinkingParam(type="enabled", budget_tokens=2048)
|
||||
return AnthropicThinkingParam(
|
||||
type="enabled",
|
||||
budget_tokens=DEFAULT_REASONING_EFFORT_MEDIUM_THINKING_BUDGET,
|
||||
)
|
||||
elif reasoning_effort == "high":
|
||||
return AnthropicThinkingParam(type="enabled", budget_tokens=4096)
|
||||
return AnthropicThinkingParam(
|
||||
type="enabled",
|
||||
budget_tokens=DEFAULT_REASONING_EFFORT_HIGH_THINKING_BUDGET,
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Unmapped reasoning effort: {reasoning_effort}")
|
||||
|
||||
|
@ -563,13 +576,21 @@ class AnthropicConfig(AnthropicModelInfo, BaseConfig):
|
|||
) -> Tuple[
|
||||
str,
|
||||
Optional[List[Any]],
|
||||
Optional[List[ChatCompletionThinkingBlock]],
|
||||
Optional[
|
||||
List[
|
||||
Union[ChatCompletionThinkingBlock, ChatCompletionRedactedThinkingBlock]
|
||||
]
|
||||
],
|
||||
Optional[str],
|
||||
List[ChatCompletionToolCallChunk],
|
||||
]:
|
||||
text_content = ""
|
||||
citations: Optional[List[Any]] = None
|
||||
thinking_blocks: Optional[List[ChatCompletionThinkingBlock]] = None
|
||||
thinking_blocks: Optional[
|
||||
List[
|
||||
Union[ChatCompletionThinkingBlock, ChatCompletionRedactedThinkingBlock]
|
||||
]
|
||||
] = None
|
||||
reasoning_content: Optional[str] = None
|
||||
tool_calls: List[ChatCompletionToolCallChunk] = []
|
||||
for idx, content in enumerate(completion_response["content"]):
|
||||
|
@ -588,20 +609,30 @@ class AnthropicConfig(AnthropicModelInfo, BaseConfig):
|
|||
index=idx,
|
||||
)
|
||||
)
|
||||
## CITATIONS
|
||||
if content.get("citations", None) is not None:
|
||||
if citations is None:
|
||||
citations = []
|
||||
citations.append(content["citations"])
|
||||
if content.get("thinking", None) is not None:
|
||||
|
||||
elif content.get("thinking", None) is not None:
|
||||
if thinking_blocks is None:
|
||||
thinking_blocks = []
|
||||
thinking_blocks.append(cast(ChatCompletionThinkingBlock, content))
|
||||
elif content["type"] == "redacted_thinking":
|
||||
if thinking_blocks is None:
|
||||
thinking_blocks = []
|
||||
thinking_blocks.append(
|
||||
cast(ChatCompletionRedactedThinkingBlock, content)
|
||||
)
|
||||
|
||||
## CITATIONS
|
||||
if content.get("citations") is not None:
|
||||
if citations is None:
|
||||
citations = []
|
||||
citations.append(content["citations"])
|
||||
if thinking_blocks is not None:
|
||||
reasoning_content = ""
|
||||
for block in thinking_blocks:
|
||||
if "thinking" in block:
|
||||
reasoning_content += block["thinking"]
|
||||
thinking_content = cast(Optional[str], block.get("thinking"))
|
||||
if thinking_content is not None:
|
||||
reasoning_content += thinking_content
|
||||
|
||||
return text_content, citations, thinking_blocks, reasoning_content, tool_calls
|
||||
|
||||
def calculate_usage(
|
||||
|
@ -691,7 +722,13 @@ class AnthropicConfig(AnthropicModelInfo, BaseConfig):
|
|||
else:
|
||||
text_content = ""
|
||||
citations: Optional[List[Any]] = None
|
||||
thinking_blocks: Optional[List[ChatCompletionThinkingBlock]] = None
|
||||
thinking_blocks: Optional[
|
||||
List[
|
||||
Union[
|
||||
ChatCompletionThinkingBlock, ChatCompletionRedactedThinkingBlock
|
||||
]
|
||||
]
|
||||
] = None
|
||||
reasoning_content: Optional[str] = None
|
||||
tool_calls: List[ChatCompletionToolCallChunk] = []
|
||||
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
"""
|
||||
- call /messages on Anthropic API
|
||||
- Make streaming + non-streaming request - just pass it through direct to Anthropic. No need to do anything special here
|
||||
- Make streaming + non-streaming request - just pass it through direct to Anthropic. No need to do anything special here
|
||||
- Ensure requests are logged in the DB - stream + non-stream
|
||||
|
||||
"""
|
||||
|
@ -43,7 +43,9 @@ class AnthropicMessagesHandler:
|
|||
from litellm.proxy.pass_through_endpoints.success_handler import (
|
||||
PassThroughEndpointLogging,
|
||||
)
|
||||
from litellm.proxy.pass_through_endpoints.types import EndpointType
|
||||
from litellm.types.passthrough_endpoints.pass_through_endpoints import (
|
||||
EndpointType,
|
||||
)
|
||||
|
||||
# Create success handler object
|
||||
passthrough_success_handler_obj = PassThroughEndpointLogging()
|
||||
|
@ -98,11 +100,11 @@ async def anthropic_messages(
|
|||
api_base=optional_params.api_base,
|
||||
api_key=optional_params.api_key,
|
||||
)
|
||||
anthropic_messages_provider_config: Optional[
|
||||
BaseAnthropicMessagesConfig
|
||||
] = ProviderConfigManager.get_provider_anthropic_messages_config(
|
||||
model=model,
|
||||
provider=litellm.LlmProviders(_custom_llm_provider),
|
||||
anthropic_messages_provider_config: Optional[BaseAnthropicMessagesConfig] = (
|
||||
ProviderConfigManager.get_provider_anthropic_messages_config(
|
||||
model=model,
|
||||
provider=litellm.LlmProviders(_custom_llm_provider),
|
||||
)
|
||||
)
|
||||
if anthropic_messages_provider_config is None:
|
||||
raise ValueError(
|
||||
|
|
|
@ -288,6 +288,7 @@ class AzureAssistantsAPI(BaseAzureLLM):
|
|||
timeout=timeout,
|
||||
max_retries=max_retries,
|
||||
client=client,
|
||||
litellm_params=litellm_params,
|
||||
)
|
||||
|
||||
thread_message: OpenAIMessage = openai_client.beta.threads.messages.create( # type: ignore
|
||||
|
|
|
@ -79,7 +79,7 @@ class AzureOpenAIO1Config(OpenAIOSeriesConfig):
|
|||
return True
|
||||
|
||||
def is_o_series_model(self, model: str) -> bool:
|
||||
return "o1" in model or "o3" in model or "o_series/" in model
|
||||
return "o1" in model or "o3" in model or "o4" in model or "o_series/" in model
|
||||
|
||||
def transform_request(
|
||||
self,
|
||||
|
|
172
litellm/llms/azure/responses/transformation.py
Normal file
|
@ -0,0 +1,172 @@
|
|||
from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple, cast
|
||||
|
||||
import httpx
|
||||
|
||||
import litellm
|
||||
from litellm._logging import verbose_logger
|
||||
from litellm.llms.openai.responses.transformation import OpenAIResponsesAPIConfig
|
||||
from litellm.secret_managers.main import get_secret_str
|
||||
from litellm.types.llms.openai import *
|
||||
from litellm.types.responses.main import *
|
||||
from litellm.types.router import GenericLiteLLMParams
|
||||
from litellm.utils import _add_path_to_api_base
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj
|
||||
|
||||
LiteLLMLoggingObj = _LiteLLMLoggingObj
|
||||
else:
|
||||
LiteLLMLoggingObj = Any
|
||||
|
||||
|
||||
class AzureOpenAIResponsesAPIConfig(OpenAIResponsesAPIConfig):
|
||||
def validate_environment(
|
||||
self,
|
||||
headers: dict,
|
||||
model: str,
|
||||
api_key: Optional[str] = None,
|
||||
) -> dict:
|
||||
api_key = (
|
||||
api_key
|
||||
or litellm.api_key
|
||||
or litellm.azure_key
|
||||
or get_secret_str("AZURE_OPENAI_API_KEY")
|
||||
or get_secret_str("AZURE_API_KEY")
|
||||
)
|
||||
|
||||
headers.update(
|
||||
{
|
||||
"Authorization": f"Bearer {api_key}",
|
||||
}
|
||||
)
|
||||
return headers
|
||||
|
||||
def get_complete_url(
|
||||
self,
|
||||
api_base: Optional[str],
|
||||
litellm_params: dict,
|
||||
) -> str:
|
||||
"""
|
||||
Constructs a complete URL for the API request.
|
||||
|
||||
Args:
|
||||
- api_base: Base URL, e.g.,
|
||||
"https://litellm8397336933.openai.azure.com"
|
||||
OR
|
||||
"https://litellm8397336933.openai.azure.com/openai/responses?api-version=2024-05-01-preview"
|
||||
- model: Model name.
|
||||
- optional_params: Additional query parameters, including "api_version".
|
||||
- stream: If streaming is required (optional).
|
||||
|
||||
Returns:
|
||||
- A complete URL string, e.g.,
|
||||
"https://litellm8397336933.openai.azure.com/openai/responses?api-version=2024-05-01-preview"
|
||||
"""
|
||||
api_base = api_base or litellm.api_base or get_secret_str("AZURE_API_BASE")
|
||||
if api_base is None:
|
||||
raise ValueError(
|
||||
f"api_base is required for Azure AI Studio. Please set the api_base parameter. Passed `api_base={api_base}`"
|
||||
)
|
||||
original_url = httpx.URL(api_base)
|
||||
|
||||
# Extract api_version or use default
|
||||
api_version = cast(Optional[str], litellm_params.get("api_version"))
|
||||
|
||||
# Create a new dictionary with existing params
|
||||
query_params = dict(original_url.params)
|
||||
|
||||
# Add api_version if needed
|
||||
if "api-version" not in query_params and api_version:
|
||||
query_params["api-version"] = api_version
|
||||
|
||||
# Add the path to the base URL
|
||||
if "/openai/responses" not in api_base:
|
||||
new_url = _add_path_to_api_base(
|
||||
api_base=api_base, ending_path="/openai/responses"
|
||||
)
|
||||
else:
|
||||
new_url = api_base
|
||||
|
||||
# Use the new query_params dictionary
|
||||
final_url = httpx.URL(new_url).copy_with(params=query_params)
|
||||
|
||||
return str(final_url)
|
||||
|
||||
#########################################################
|
||||
########## DELETE RESPONSE API TRANSFORMATION ##############
|
||||
#########################################################
|
||||
def _construct_url_for_response_id_in_path(
|
||||
self, api_base: str, response_id: str
|
||||
) -> str:
|
||||
"""
|
||||
Constructs a URL for the API request with the response_id in the path.
|
||||
"""
|
||||
from urllib.parse import urlparse, urlunparse
|
||||
|
||||
# Parse the URL to separate its components
|
||||
parsed_url = urlparse(api_base)
|
||||
|
||||
# Insert the response_id at the end of the path component
|
||||
# Remove trailing slash if present to avoid double slashes
|
||||
path = parsed_url.path.rstrip("/")
|
||||
new_path = f"{path}/{response_id}"
|
||||
|
||||
# Reconstruct the URL with all original components but with the modified path
|
||||
constructed_url = urlunparse(
|
||||
(
|
||||
parsed_url.scheme, # http, https
|
||||
parsed_url.netloc, # domain name, port
|
||||
new_path, # path with response_id added
|
||||
parsed_url.params, # parameters
|
||||
parsed_url.query, # query string
|
||||
parsed_url.fragment, # fragment
|
||||
)
|
||||
)
|
||||
return constructed_url
|
||||
|
||||
def transform_delete_response_api_request(
|
||||
self,
|
||||
response_id: str,
|
||||
api_base: str,
|
||||
litellm_params: GenericLiteLLMParams,
|
||||
headers: dict,
|
||||
) -> Tuple[str, Dict]:
|
||||
"""
|
||||
Transform the delete response API request into a URL and data
|
||||
|
||||
Azure OpenAI API expects the following request:
|
||||
- DELETE /openai/responses/{response_id}?api-version=xxx
|
||||
|
||||
This function handles URLs with query parameters by inserting the response_id
|
||||
at the correct location (before any query parameters).
|
||||
"""
|
||||
delete_url = self._construct_url_for_response_id_in_path(
|
||||
api_base=api_base, response_id=response_id
|
||||
)
|
||||
|
||||
data: Dict = {}
|
||||
verbose_logger.debug(f"delete response url={delete_url}")
|
||||
return delete_url, data
|
||||
|
||||
#########################################################
|
||||
########## GET RESPONSE API TRANSFORMATION ###############
|
||||
#########################################################
|
||||
def transform_get_response_api_request(
|
||||
self,
|
||||
response_id: str,
|
||||
api_base: str,
|
||||
litellm_params: GenericLiteLLMParams,
|
||||
headers: dict,
|
||||
) -> Tuple[str, Dict]:
|
||||
"""
|
||||
Transform the get response API request into a URL and data
|
||||
|
||||
OpenAI API expects the following request
|
||||
- GET /v1/responses/{response_id}
|
||||
"""
|
||||
get_url = self._construct_url_for_response_id_in_path(
|
||||
api_base=api_base, response_id=response_id
|
||||
)
|
||||
data: Dict = {}
|
||||
verbose_logger.debug(f"get response url={get_url}")
|
||||
return get_url, data
|
|
@ -1,3 +1,4 @@
|
|||
import enum
|
||||
from typing import Any, List, Optional, Tuple, cast
|
||||
from urllib.parse import urlparse
|
||||
|
||||
|
@ -19,6 +20,10 @@ from litellm.types.utils import ModelResponse, ProviderField
|
|||
from litellm.utils import _add_path_to_api_base, supports_tool_choice
|
||||
|
||||
|
||||
class AzureFoundryErrorStrings(str, enum.Enum):
|
||||
SET_EXTRA_PARAMETERS_TO_PASS_THROUGH = "Set extra-parameters to 'pass-through'"
|
||||
|
||||
|
||||
class AzureAIStudioConfig(OpenAIConfig):
|
||||
def get_supported_openai_params(self, model: str) -> List:
|
||||
model_supports_tool_choice = True # azure ai supports this by default
|
||||
|
@ -240,12 +245,18 @@ class AzureAIStudioConfig(OpenAIConfig):
|
|||
) -> bool:
|
||||
should_drop_params = litellm_params.get("drop_params") or litellm.drop_params
|
||||
error_text = e.response.text
|
||||
|
||||
if should_drop_params and "Extra inputs are not permitted" in error_text:
|
||||
return True
|
||||
elif (
|
||||
"unknown field: parameter index is not a valid field" in error_text
|
||||
): # remove index from tool calls
|
||||
return True
|
||||
elif (
|
||||
AzureFoundryErrorStrings.SET_EXTRA_PARAMETERS_TO_PASS_THROUGH.value
|
||||
in error_text
|
||||
): # remove extra-parameters from tool calls
|
||||
return True
|
||||
return super().should_retry_llm_api_inside_llm_translation_on_http_error(
|
||||
e=e, litellm_params=litellm_params
|
||||
)
|
||||
|
@ -265,5 +276,46 @@ class AzureAIStudioConfig(OpenAIConfig):
|
|||
litellm.remove_index_from_tool_calls(
|
||||
messages=_messages,
|
||||
)
|
||||
elif (
|
||||
AzureFoundryErrorStrings.SET_EXTRA_PARAMETERS_TO_PASS_THROUGH.value
|
||||
in e.response.text
|
||||
):
|
||||
request_data = self._drop_extra_params_from_request_data(
|
||||
request_data, e.response.text
|
||||
)
|
||||
data = drop_params_from_unprocessable_entity_error(e=e, data=request_data)
|
||||
return data
|
||||
|
||||
def _drop_extra_params_from_request_data(
|
||||
self, request_data: dict, error_text: str
|
||||
) -> dict:
|
||||
params_to_drop = self._extract_params_to_drop_from_error_text(error_text)
|
||||
if params_to_drop:
|
||||
for param in params_to_drop:
|
||||
if param in request_data:
|
||||
request_data.pop(param, None)
|
||||
return request_data
|
||||
|
||||
def _extract_params_to_drop_from_error_text(
|
||||
self, error_text: str
|
||||
) -> Optional[List[str]]:
|
||||
"""
|
||||
Error text looks like this"
|
||||
"Extra parameters ['stream_options', 'extra-parameters'] are not allowed when extra-parameters is not set or set to be 'error'.
|
||||
"""
|
||||
import re
|
||||
|
||||
# Extract parameters within square brackets
|
||||
match = re.search(r"\[(.*?)\]", error_text)
|
||||
if not match:
|
||||
return []
|
||||
|
||||
# Parse the extracted string into a list of parameter names
|
||||
params_str = match.group(1)
|
||||
params = []
|
||||
for param in params_str.split(","):
|
||||
# Clean up the parameter name (remove quotes, spaces)
|
||||
clean_param = param.strip().strip("'").strip('"')
|
||||
if clean_param:
|
||||
params.append(clean_param)
|
||||
return params
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
import types
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import TYPE_CHECKING, Any, Dict, Optional, Union
|
||||
from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple, Union
|
||||
|
||||
import httpx
|
||||
|
||||
|
@ -10,6 +10,7 @@ from litellm.types.llms.openai import (
|
|||
ResponsesAPIResponse,
|
||||
ResponsesAPIStreamingResponse,
|
||||
)
|
||||
from litellm.types.responses.main import *
|
||||
from litellm.types.router import GenericLiteLLMParams
|
||||
|
||||
if TYPE_CHECKING:
|
||||
|
@ -73,8 +74,7 @@ class BaseResponsesAPIConfig(ABC):
|
|||
def get_complete_url(
|
||||
self,
|
||||
api_base: Optional[str],
|
||||
model: str,
|
||||
stream: Optional[bool] = None,
|
||||
litellm_params: dict,
|
||||
) -> str:
|
||||
"""
|
||||
OPTIONAL
|
||||
|
@ -119,6 +119,56 @@ class BaseResponsesAPIConfig(ABC):
|
|||
"""
|
||||
pass
|
||||
|
||||
#########################################################
|
||||
########## DELETE RESPONSE API TRANSFORMATION ##############
|
||||
#########################################################
|
||||
@abstractmethod
|
||||
def transform_delete_response_api_request(
|
||||
self,
|
||||
response_id: str,
|
||||
api_base: str,
|
||||
litellm_params: GenericLiteLLMParams,
|
||||
headers: dict,
|
||||
) -> Tuple[str, Dict]:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def transform_delete_response_api_response(
|
||||
self,
|
||||
raw_response: httpx.Response,
|
||||
logging_obj: LiteLLMLoggingObj,
|
||||
) -> DeleteResponseResult:
|
||||
pass
|
||||
|
||||
#########################################################
|
||||
########## END DELETE RESPONSE API TRANSFORMATION #######
|
||||
#########################################################
|
||||
|
||||
#########################################################
|
||||
########## GET RESPONSE API TRANSFORMATION ###############
|
||||
#########################################################
|
||||
@abstractmethod
|
||||
def transform_get_response_api_request(
|
||||
self,
|
||||
response_id: str,
|
||||
api_base: str,
|
||||
litellm_params: GenericLiteLLMParams,
|
||||
headers: dict,
|
||||
) -> Tuple[str, Dict]:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def transform_get_response_api_response(
|
||||
self,
|
||||
raw_response: httpx.Response,
|
||||
logging_obj: LiteLLMLoggingObj,
|
||||
) -> ResponsesAPIResponse:
|
||||
pass
|
||||
|
||||
#########################################################
|
||||
########## END GET RESPONSE API TRANSFORMATION ##########
|
||||
#########################################################
|
||||
|
||||
def get_error_class(
|
||||
self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers]
|
||||
) -> BaseLLMException:
|
||||
|
|
|
@ -22,6 +22,7 @@ from litellm.llms.base_llm.chat.transformation import BaseConfig, BaseLLMExcepti
|
|||
from litellm.types.llms.bedrock import *
|
||||
from litellm.types.llms.openai import (
|
||||
AllMessageValues,
|
||||
ChatCompletionRedactedThinkingBlock,
|
||||
ChatCompletionResponseMessage,
|
||||
ChatCompletionSystemMessage,
|
||||
ChatCompletionThinkingBlock,
|
||||
|
@ -106,6 +107,15 @@ class AmazonConverseConfig(BaseConfig):
|
|||
"response_format",
|
||||
]
|
||||
|
||||
if (
|
||||
"arn" in model
|
||||
): # we can't infer the model from the arn, so just add all params
|
||||
supported_params.append("tools")
|
||||
supported_params.append("tool_choice")
|
||||
supported_params.append("thinking")
|
||||
supported_params.append("reasoning_effort")
|
||||
return supported_params
|
||||
|
||||
## Filter out 'cross-region' from model name
|
||||
base_model = BedrockModelInfo.get_base_model(model)
|
||||
|
||||
|
@ -375,25 +385,27 @@ class AmazonConverseConfig(BaseConfig):
|
|||
system_content_blocks: List[SystemContentBlock] = []
|
||||
for idx, message in enumerate(messages):
|
||||
if message["role"] == "system":
|
||||
_system_content_block: Optional[SystemContentBlock] = None
|
||||
_cache_point_block: Optional[SystemContentBlock] = None
|
||||
if isinstance(message["content"], str) and len(message["content"]) > 0:
|
||||
_system_content_block = SystemContentBlock(text=message["content"])
|
||||
_cache_point_block = self._get_cache_point_block(
|
||||
system_prompt_indices.append(idx)
|
||||
if isinstance(message["content"], str) and message["content"]:
|
||||
system_content_blocks.append(
|
||||
SystemContentBlock(text=message["content"])
|
||||
)
|
||||
cache_block = self._get_cache_point_block(
|
||||
message, block_type="system"
|
||||
)
|
||||
if cache_block:
|
||||
system_content_blocks.append(cache_block)
|
||||
elif isinstance(message["content"], list):
|
||||
for m in message["content"]:
|
||||
if m.get("type", "") == "text" and len(m["text"]) > 0:
|
||||
_system_content_block = SystemContentBlock(text=m["text"])
|
||||
_cache_point_block = self._get_cache_point_block(
|
||||
if m.get("type") == "text" and m.get("text"):
|
||||
system_content_blocks.append(
|
||||
SystemContentBlock(text=m["text"])
|
||||
)
|
||||
cache_block = self._get_cache_point_block(
|
||||
m, block_type="system"
|
||||
)
|
||||
if _system_content_block is not None:
|
||||
system_content_blocks.append(_system_content_block)
|
||||
if _cache_point_block is not None:
|
||||
system_content_blocks.append(_cache_point_block)
|
||||
system_prompt_indices.append(idx)
|
||||
if cache_block:
|
||||
system_content_blocks.append(cache_block)
|
||||
if len(system_prompt_indices) > 0:
|
||||
for idx in reversed(system_prompt_indices):
|
||||
messages.pop(idx)
|
||||
|
@ -627,9 +639,11 @@ class AmazonConverseConfig(BaseConfig):
|
|||
|
||||
def _transform_thinking_blocks(
|
||||
self, thinking_blocks: List[BedrockConverseReasoningContentBlock]
|
||||
) -> List[ChatCompletionThinkingBlock]:
|
||||
) -> List[Union[ChatCompletionThinkingBlock, ChatCompletionRedactedThinkingBlock]]:
|
||||
"""Return a consistent format for thinking blocks between Anthropic and Bedrock."""
|
||||
thinking_blocks_list: List[ChatCompletionThinkingBlock] = []
|
||||
thinking_blocks_list: List[
|
||||
Union[ChatCompletionThinkingBlock, ChatCompletionRedactedThinkingBlock]
|
||||
] = []
|
||||
for block in thinking_blocks:
|
||||
if "reasoningText" in block:
|
||||
_thinking_block = ChatCompletionThinkingBlock(type="thinking")
|
||||
|
@ -640,6 +654,11 @@ class AmazonConverseConfig(BaseConfig):
|
|||
if _signature is not None:
|
||||
_thinking_block["signature"] = _signature
|
||||
thinking_blocks_list.append(_thinking_block)
|
||||
elif "redactedContent" in block:
|
||||
_redacted_block = ChatCompletionRedactedThinkingBlock(
|
||||
type="redacted_thinking", data=block["redactedContent"]
|
||||
)
|
||||
thinking_blocks_list.append(_redacted_block)
|
||||
return thinking_blocks_list
|
||||
|
||||
def _transform_usage(self, usage: ConverseTokenUsageBlock) -> Usage:
|
||||
|
|
|
@ -50,6 +50,7 @@ from litellm.llms.custom_httpx.http_handler import (
|
|||
)
|
||||
from litellm.types.llms.bedrock import *
|
||||
from litellm.types.llms.openai import (
|
||||
ChatCompletionRedactedThinkingBlock,
|
||||
ChatCompletionThinkingBlock,
|
||||
ChatCompletionToolCallChunk,
|
||||
ChatCompletionToolCallFunctionChunk,
|
||||
|
@ -1255,19 +1256,33 @@ class AWSEventStreamDecoder:
|
|||
|
||||
def translate_thinking_blocks(
|
||||
self, thinking_block: BedrockConverseReasoningContentBlockDelta
|
||||
) -> Optional[List[ChatCompletionThinkingBlock]]:
|
||||
) -> Optional[
|
||||
List[Union[ChatCompletionThinkingBlock, ChatCompletionRedactedThinkingBlock]]
|
||||
]:
|
||||
"""
|
||||
Translate the thinking blocks to a string
|
||||
"""
|
||||
|
||||
thinking_blocks_list: List[ChatCompletionThinkingBlock] = []
|
||||
_thinking_block = ChatCompletionThinkingBlock(type="thinking")
|
||||
thinking_blocks_list: List[
|
||||
Union[ChatCompletionThinkingBlock, ChatCompletionRedactedThinkingBlock]
|
||||
] = []
|
||||
_thinking_block: Optional[
|
||||
Union[ChatCompletionThinkingBlock, ChatCompletionRedactedThinkingBlock]
|
||||
] = None
|
||||
|
||||
if "text" in thinking_block:
|
||||
_thinking_block = ChatCompletionThinkingBlock(type="thinking")
|
||||
_thinking_block["thinking"] = thinking_block["text"]
|
||||
elif "signature" in thinking_block:
|
||||
_thinking_block = ChatCompletionThinkingBlock(type="thinking")
|
||||
_thinking_block["signature"] = thinking_block["signature"]
|
||||
_thinking_block["thinking"] = "" # consistent with anthropic response
|
||||
thinking_blocks_list.append(_thinking_block)
|
||||
elif "redactedContent" in thinking_block:
|
||||
_thinking_block = ChatCompletionRedactedThinkingBlock(
|
||||
type="redacted_thinking", data=thinking_block["redactedContent"]
|
||||
)
|
||||
if _thinking_block is not None:
|
||||
thinking_blocks_list.append(_thinking_block)
|
||||
return thinking_blocks_list
|
||||
|
||||
def converse_chunk_parser(self, chunk_data: dict) -> ModelResponseStream:
|
||||
|
@ -1279,31 +1294,44 @@ class AWSEventStreamDecoder:
|
|||
usage: Optional[Usage] = None
|
||||
provider_specific_fields: dict = {}
|
||||
reasoning_content: Optional[str] = None
|
||||
thinking_blocks: Optional[List[ChatCompletionThinkingBlock]] = None
|
||||
thinking_blocks: Optional[
|
||||
List[
|
||||
Union[
|
||||
ChatCompletionThinkingBlock, ChatCompletionRedactedThinkingBlock
|
||||
]
|
||||
]
|
||||
] = None
|
||||
|
||||
index = int(chunk_data.get("contentBlockIndex", 0))
|
||||
if "start" in chunk_data:
|
||||
start_obj = ContentBlockStartEvent(**chunk_data["start"])
|
||||
self.content_blocks = [] # reset
|
||||
if (
|
||||
start_obj is not None
|
||||
and "toolUse" in start_obj
|
||||
and start_obj["toolUse"] is not None
|
||||
):
|
||||
## check tool name was formatted by litellm
|
||||
_response_tool_name = start_obj["toolUse"]["name"]
|
||||
response_tool_name = get_bedrock_tool_name(
|
||||
response_tool_name=_response_tool_name
|
||||
)
|
||||
tool_use = {
|
||||
"id": start_obj["toolUse"]["toolUseId"],
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": response_tool_name,
|
||||
"arguments": "",
|
||||
},
|
||||
"index": index,
|
||||
}
|
||||
if start_obj is not None:
|
||||
if "toolUse" in start_obj and start_obj["toolUse"] is not None:
|
||||
## check tool name was formatted by litellm
|
||||
_response_tool_name = start_obj["toolUse"]["name"]
|
||||
response_tool_name = get_bedrock_tool_name(
|
||||
response_tool_name=_response_tool_name
|
||||
)
|
||||
tool_use = {
|
||||
"id": start_obj["toolUse"]["toolUseId"],
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": response_tool_name,
|
||||
"arguments": "",
|
||||
},
|
||||
"index": index,
|
||||
}
|
||||
elif (
|
||||
"reasoningContent" in start_obj
|
||||
and start_obj["reasoningContent"] is not None
|
||||
): # redacted thinking can be in start object
|
||||
thinking_blocks = self.translate_thinking_blocks(
|
||||
start_obj["reasoningContent"]
|
||||
)
|
||||
provider_specific_fields = {
|
||||
"reasoningContent": start_obj["reasoningContent"],
|
||||
}
|
||||
elif "delta" in chunk_data:
|
||||
delta_obj = ContentBlockDeltaEvent(**chunk_data["delta"])
|
||||
self.content_blocks.append(delta_obj)
|
||||
|
|
|
@ -650,6 +650,49 @@ class HTTPHandler:
|
|||
except Exception as e:
|
||||
raise e
|
||||
|
||||
def delete(
|
||||
self,
|
||||
url: str,
|
||||
data: Optional[Union[dict, str]] = None, # type: ignore
|
||||
json: Optional[dict] = None,
|
||||
params: Optional[dict] = None,
|
||||
headers: Optional[dict] = None,
|
||||
timeout: Optional[Union[float, httpx.Timeout]] = None,
|
||||
stream: bool = False,
|
||||
):
|
||||
try:
|
||||
if timeout is not None:
|
||||
req = self.client.build_request(
|
||||
"DELETE", url, data=data, json=json, params=params, headers=headers, timeout=timeout # type: ignore
|
||||
)
|
||||
else:
|
||||
req = self.client.build_request(
|
||||
"DELETE", url, data=data, json=json, params=params, headers=headers # type: ignore
|
||||
)
|
||||
response = self.client.send(req, stream=stream)
|
||||
response.raise_for_status()
|
||||
return response
|
||||
except httpx.TimeoutException:
|
||||
raise litellm.Timeout(
|
||||
message=f"Connection timed out after {timeout} seconds.",
|
||||
model="default-model-name",
|
||||
llm_provider="litellm-httpx-handler",
|
||||
)
|
||||
except httpx.HTTPStatusError as e:
|
||||
if stream is True:
|
||||
setattr(e, "message", mask_sensitive_info(e.response.read()))
|
||||
setattr(e, "text", mask_sensitive_info(e.response.read()))
|
||||
else:
|
||||
error_text = mask_sensitive_info(e.response.text)
|
||||
setattr(e, "message", error_text)
|
||||
setattr(e, "text", error_text)
|
||||
|
||||
setattr(e, "status_code", e.response.status_code)
|
||||
|
||||
raise e
|
||||
except Exception as e:
|
||||
raise e
|
||||
|
||||
def __del__(self) -> None:
|
||||
try:
|
||||
self.close()
|
||||
|
|
|
@ -36,6 +36,7 @@ from litellm.types.llms.openai import (
|
|||
ResponsesAPIResponse,
|
||||
)
|
||||
from litellm.types.rerank import OptionalRerankParams, RerankResponse
|
||||
from litellm.types.responses.main import DeleteResponseResult
|
||||
from litellm.types.router import GenericLiteLLMParams
|
||||
from litellm.types.utils import EmbeddingResponse, FileTypes, TranscriptionResponse
|
||||
from litellm.utils import CustomStreamWrapper, ModelResponse, ProviderConfigManager
|
||||
|
@ -229,13 +230,17 @@ class BaseLLMHTTPHandler:
|
|||
api_key: Optional[str] = None,
|
||||
headers: Optional[dict] = {},
|
||||
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
|
||||
provider_config: Optional[BaseConfig] = None,
|
||||
):
|
||||
json_mode: bool = optional_params.pop("json_mode", False)
|
||||
extra_body: Optional[dict] = optional_params.pop("extra_body", None)
|
||||
fake_stream = fake_stream or optional_params.pop("fake_stream", False)
|
||||
|
||||
provider_config = ProviderConfigManager.get_provider_chat_config(
|
||||
model=model, provider=litellm.LlmProviders(custom_llm_provider)
|
||||
provider_config = (
|
||||
provider_config
|
||||
or ProviderConfigManager.get_provider_chat_config(
|
||||
model=model, provider=litellm.LlmProviders(custom_llm_provider)
|
||||
)
|
||||
)
|
||||
if provider_config is None:
|
||||
raise ValueError(
|
||||
|
@ -462,7 +467,7 @@ class BaseLLMHTTPHandler:
|
|||
)
|
||||
|
||||
if fake_stream is True:
|
||||
model_response: (ModelResponse) = provider_config.transform_response(
|
||||
model_response: ModelResponse = provider_config.transform_response(
|
||||
model=model,
|
||||
raw_response=response,
|
||||
model_response=litellm.ModelResponse(),
|
||||
|
@ -595,7 +600,7 @@ class BaseLLMHTTPHandler:
|
|||
)
|
||||
|
||||
if fake_stream is True:
|
||||
model_response: (ModelResponse) = provider_config.transform_response(
|
||||
model_response: ModelResponse = provider_config.transform_response(
|
||||
model=model,
|
||||
raw_response=response,
|
||||
model_response=litellm.ModelResponse(),
|
||||
|
@ -1011,6 +1016,7 @@ class BaseLLMHTTPHandler:
|
|||
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
|
||||
_is_async: bool = False,
|
||||
fake_stream: bool = False,
|
||||
litellm_metadata: Optional[Dict[str, Any]] = None,
|
||||
) -> Union[
|
||||
ResponsesAPIResponse,
|
||||
BaseResponsesAPIStreamingIterator,
|
||||
|
@ -1037,6 +1043,7 @@ class BaseLLMHTTPHandler:
|
|||
timeout=timeout,
|
||||
client=client if isinstance(client, AsyncHTTPHandler) else None,
|
||||
fake_stream=fake_stream,
|
||||
litellm_metadata=litellm_metadata,
|
||||
)
|
||||
|
||||
if client is None or not isinstance(client, HTTPHandler):
|
||||
|
@ -1055,9 +1062,12 @@ class BaseLLMHTTPHandler:
|
|||
if extra_headers:
|
||||
headers.update(extra_headers)
|
||||
|
||||
# Check if streaming is requested
|
||||
stream = response_api_optional_request_params.get("stream", False)
|
||||
|
||||
api_base = responses_api_provider_config.get_complete_url(
|
||||
api_base=litellm_params.api_base,
|
||||
model=model,
|
||||
litellm_params=dict(litellm_params),
|
||||
)
|
||||
|
||||
data = responses_api_provider_config.transform_responses_api_request(
|
||||
|
@ -1079,9 +1089,6 @@ class BaseLLMHTTPHandler:
|
|||
},
|
||||
)
|
||||
|
||||
# Check if streaming is requested
|
||||
stream = response_api_optional_request_params.get("stream", False)
|
||||
|
||||
try:
|
||||
if stream:
|
||||
# For streaming, use stream=True in the request
|
||||
|
@ -1105,6 +1112,8 @@ class BaseLLMHTTPHandler:
|
|||
model=model,
|
||||
logging_obj=logging_obj,
|
||||
responses_api_provider_config=responses_api_provider_config,
|
||||
litellm_metadata=litellm_metadata,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
)
|
||||
|
||||
return SyncResponsesAPIStreamingIterator(
|
||||
|
@ -1112,6 +1121,8 @@ class BaseLLMHTTPHandler:
|
|||
model=model,
|
||||
logging_obj=logging_obj,
|
||||
responses_api_provider_config=responses_api_provider_config,
|
||||
litellm_metadata=litellm_metadata,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
)
|
||||
else:
|
||||
# For non-streaming requests
|
||||
|
@ -1148,6 +1159,7 @@ class BaseLLMHTTPHandler:
|
|||
timeout: Optional[Union[float, httpx.Timeout]] = None,
|
||||
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
|
||||
fake_stream: bool = False,
|
||||
litellm_metadata: Optional[Dict[str, Any]] = None,
|
||||
) -> Union[ResponsesAPIResponse, BaseResponsesAPIStreamingIterator]:
|
||||
"""
|
||||
Async version of the responses API handler.
|
||||
|
@ -1170,9 +1182,12 @@ class BaseLLMHTTPHandler:
|
|||
if extra_headers:
|
||||
headers.update(extra_headers)
|
||||
|
||||
# Check if streaming is requested
|
||||
stream = response_api_optional_request_params.get("stream", False)
|
||||
|
||||
api_base = responses_api_provider_config.get_complete_url(
|
||||
api_base=litellm_params.api_base,
|
||||
model=model,
|
||||
litellm_params=dict(litellm_params),
|
||||
)
|
||||
|
||||
data = responses_api_provider_config.transform_responses_api_request(
|
||||
|
@ -1193,8 +1208,6 @@ class BaseLLMHTTPHandler:
|
|||
"headers": headers,
|
||||
},
|
||||
)
|
||||
# Check if streaming is requested
|
||||
stream = response_api_optional_request_params.get("stream", False)
|
||||
|
||||
try:
|
||||
if stream:
|
||||
|
@ -1221,6 +1234,8 @@ class BaseLLMHTTPHandler:
|
|||
model=model,
|
||||
logging_obj=logging_obj,
|
||||
responses_api_provider_config=responses_api_provider_config,
|
||||
litellm_metadata=litellm_metadata,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
)
|
||||
|
||||
# Return the streaming iterator
|
||||
|
@ -1229,6 +1244,8 @@ class BaseLLMHTTPHandler:
|
|||
model=model,
|
||||
logging_obj=logging_obj,
|
||||
responses_api_provider_config=responses_api_provider_config,
|
||||
litellm_metadata=litellm_metadata,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
)
|
||||
else:
|
||||
# For non-streaming, proceed as before
|
||||
|
@ -1252,6 +1269,319 @@ class BaseLLMHTTPHandler:
|
|||
logging_obj=logging_obj,
|
||||
)
|
||||
|
||||
async def async_delete_response_api_handler(
|
||||
self,
|
||||
response_id: str,
|
||||
responses_api_provider_config: BaseResponsesAPIConfig,
|
||||
litellm_params: GenericLiteLLMParams,
|
||||
logging_obj: LiteLLMLoggingObj,
|
||||
custom_llm_provider: Optional[str],
|
||||
extra_headers: Optional[Dict[str, Any]] = None,
|
||||
extra_body: Optional[Dict[str, Any]] = None,
|
||||
timeout: Optional[Union[float, httpx.Timeout]] = None,
|
||||
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
|
||||
_is_async: bool = False,
|
||||
) -> DeleteResponseResult:
|
||||
"""
|
||||
Async version of the delete response API handler.
|
||||
Uses async HTTP client to make requests.
|
||||
"""
|
||||
if client is None or not isinstance(client, AsyncHTTPHandler):
|
||||
async_httpx_client = get_async_httpx_client(
|
||||
llm_provider=litellm.LlmProviders(custom_llm_provider),
|
||||
params={"ssl_verify": litellm_params.get("ssl_verify", None)},
|
||||
)
|
||||
else:
|
||||
async_httpx_client = client
|
||||
|
||||
headers = responses_api_provider_config.validate_environment(
|
||||
api_key=litellm_params.api_key,
|
||||
headers=extra_headers or {},
|
||||
model="None",
|
||||
)
|
||||
|
||||
if extra_headers:
|
||||
headers.update(extra_headers)
|
||||
|
||||
api_base = responses_api_provider_config.get_complete_url(
|
||||
api_base=litellm_params.api_base,
|
||||
litellm_params=dict(litellm_params),
|
||||
)
|
||||
|
||||
url, data = responses_api_provider_config.transform_delete_response_api_request(
|
||||
response_id=response_id,
|
||||
api_base=api_base,
|
||||
litellm_params=litellm_params,
|
||||
headers=headers,
|
||||
)
|
||||
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input=input,
|
||||
api_key="",
|
||||
additional_args={
|
||||
"complete_input_dict": data,
|
||||
"api_base": api_base,
|
||||
"headers": headers,
|
||||
},
|
||||
)
|
||||
|
||||
try:
|
||||
response = await async_httpx_client.delete(
|
||||
url=url, headers=headers, data=json.dumps(data), timeout=timeout
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
raise self._handle_error(
|
||||
e=e,
|
||||
provider_config=responses_api_provider_config,
|
||||
)
|
||||
|
||||
return responses_api_provider_config.transform_delete_response_api_response(
|
||||
raw_response=response,
|
||||
logging_obj=logging_obj,
|
||||
)
|
||||
|
||||
def delete_response_api_handler(
|
||||
self,
|
||||
response_id: str,
|
||||
responses_api_provider_config: BaseResponsesAPIConfig,
|
||||
litellm_params: GenericLiteLLMParams,
|
||||
logging_obj: LiteLLMLoggingObj,
|
||||
custom_llm_provider: Optional[str],
|
||||
extra_headers: Optional[Dict[str, Any]] = None,
|
||||
extra_body: Optional[Dict[str, Any]] = None,
|
||||
timeout: Optional[Union[float, httpx.Timeout]] = None,
|
||||
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
|
||||
_is_async: bool = False,
|
||||
) -> Union[DeleteResponseResult, Coroutine[Any, Any, DeleteResponseResult]]:
|
||||
"""
|
||||
Async version of the responses API handler.
|
||||
Uses async HTTP client to make requests.
|
||||
"""
|
||||
if _is_async:
|
||||
return self.async_delete_response_api_handler(
|
||||
response_id=response_id,
|
||||
responses_api_provider_config=responses_api_provider_config,
|
||||
litellm_params=litellm_params,
|
||||
logging_obj=logging_obj,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
extra_headers=extra_headers,
|
||||
extra_body=extra_body,
|
||||
timeout=timeout,
|
||||
client=client,
|
||||
)
|
||||
if client is None or not isinstance(client, HTTPHandler):
|
||||
sync_httpx_client = _get_httpx_client(
|
||||
params={"ssl_verify": litellm_params.get("ssl_verify", None)}
|
||||
)
|
||||
else:
|
||||
sync_httpx_client = client
|
||||
|
||||
headers = responses_api_provider_config.validate_environment(
|
||||
api_key=litellm_params.api_key,
|
||||
headers=extra_headers or {},
|
||||
model="None",
|
||||
)
|
||||
|
||||
if extra_headers:
|
||||
headers.update(extra_headers)
|
||||
|
||||
api_base = responses_api_provider_config.get_complete_url(
|
||||
api_base=litellm_params.api_base,
|
||||
litellm_params=dict(litellm_params),
|
||||
)
|
||||
|
||||
url, data = responses_api_provider_config.transform_delete_response_api_request(
|
||||
response_id=response_id,
|
||||
api_base=api_base,
|
||||
litellm_params=litellm_params,
|
||||
headers=headers,
|
||||
)
|
||||
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input=input,
|
||||
api_key="",
|
||||
additional_args={
|
||||
"complete_input_dict": data,
|
||||
"api_base": api_base,
|
||||
"headers": headers,
|
||||
},
|
||||
)
|
||||
|
||||
try:
|
||||
response = sync_httpx_client.delete(
|
||||
url=url, headers=headers, data=json.dumps(data), timeout=timeout
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
raise self._handle_error(
|
||||
e=e,
|
||||
provider_config=responses_api_provider_config,
|
||||
)
|
||||
|
||||
return responses_api_provider_config.transform_delete_response_api_response(
|
||||
raw_response=response,
|
||||
logging_obj=logging_obj,
|
||||
)
|
||||
|
||||
def get_responses(
|
||||
self,
|
||||
response_id: str,
|
||||
responses_api_provider_config: BaseResponsesAPIConfig,
|
||||
litellm_params: GenericLiteLLMParams,
|
||||
logging_obj: LiteLLMLoggingObj,
|
||||
custom_llm_provider: Optional[str] = None,
|
||||
extra_headers: Optional[Dict[str, Any]] = None,
|
||||
extra_body: Optional[Dict[str, Any]] = None,
|
||||
timeout: Optional[Union[float, httpx.Timeout]] = None,
|
||||
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
|
||||
_is_async: bool = False,
|
||||
) -> Union[ResponsesAPIResponse, Coroutine[Any, Any, ResponsesAPIResponse]]:
|
||||
"""
|
||||
Get a response by ID
|
||||
Uses GET /v1/responses/{response_id} endpoint in the responses API
|
||||
"""
|
||||
if _is_async:
|
||||
return self.async_get_responses(
|
||||
response_id=response_id,
|
||||
responses_api_provider_config=responses_api_provider_config,
|
||||
litellm_params=litellm_params,
|
||||
logging_obj=logging_obj,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
extra_headers=extra_headers,
|
||||
extra_body=extra_body,
|
||||
timeout=timeout,
|
||||
client=client,
|
||||
)
|
||||
|
||||
if client is None or not isinstance(client, HTTPHandler):
|
||||
sync_httpx_client = _get_httpx_client(
|
||||
params={"ssl_verify": litellm_params.get("ssl_verify", None)}
|
||||
)
|
||||
else:
|
||||
sync_httpx_client = client
|
||||
|
||||
headers = responses_api_provider_config.validate_environment(
|
||||
api_key=litellm_params.api_key,
|
||||
headers=extra_headers or {},
|
||||
model="None",
|
||||
)
|
||||
|
||||
if extra_headers:
|
||||
headers.update(extra_headers)
|
||||
|
||||
api_base = responses_api_provider_config.get_complete_url(
|
||||
api_base=litellm_params.api_base,
|
||||
litellm_params=dict(litellm_params),
|
||||
)
|
||||
|
||||
url, data = responses_api_provider_config.transform_get_response_api_request(
|
||||
response_id=response_id,
|
||||
api_base=api_base,
|
||||
litellm_params=litellm_params,
|
||||
headers=headers,
|
||||
)
|
||||
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input="",
|
||||
api_key="",
|
||||
additional_args={
|
||||
"complete_input_dict": data,
|
||||
"api_base": api_base,
|
||||
"headers": headers,
|
||||
},
|
||||
)
|
||||
|
||||
try:
|
||||
response = sync_httpx_client.get(
|
||||
url=url, headers=headers, params=data
|
||||
)
|
||||
except Exception as e:
|
||||
raise self._handle_error(
|
||||
e=e,
|
||||
provider_config=responses_api_provider_config,
|
||||
)
|
||||
|
||||
return responses_api_provider_config.transform_get_response_api_response(
|
||||
raw_response=response,
|
||||
logging_obj=logging_obj,
|
||||
)
|
||||
|
||||
async def async_get_responses(
|
||||
self,
|
||||
response_id: str,
|
||||
responses_api_provider_config: BaseResponsesAPIConfig,
|
||||
litellm_params: GenericLiteLLMParams,
|
||||
logging_obj: LiteLLMLoggingObj,
|
||||
custom_llm_provider: Optional[str] = None,
|
||||
extra_headers: Optional[Dict[str, Any]] = None,
|
||||
extra_body: Optional[Dict[str, Any]] = None,
|
||||
timeout: Optional[Union[float, httpx.Timeout]] = None,
|
||||
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
|
||||
) -> ResponsesAPIResponse:
|
||||
"""
|
||||
Async version of get_responses
|
||||
"""
|
||||
if client is None or not isinstance(client, AsyncHTTPHandler):
|
||||
async_httpx_client = get_async_httpx_client(
|
||||
llm_provider=litellm.LlmProviders(custom_llm_provider),
|
||||
params={"ssl_verify": litellm_params.get("ssl_verify", None)},
|
||||
)
|
||||
else:
|
||||
async_httpx_client = client
|
||||
|
||||
headers = responses_api_provider_config.validate_environment(
|
||||
api_key=litellm_params.api_key,
|
||||
headers=extra_headers or {},
|
||||
model="None",
|
||||
)
|
||||
|
||||
if extra_headers:
|
||||
headers.update(extra_headers)
|
||||
|
||||
api_base = responses_api_provider_config.get_complete_url(
|
||||
api_base=litellm_params.api_base,
|
||||
litellm_params=dict(litellm_params),
|
||||
)
|
||||
|
||||
url, data = responses_api_provider_config.transform_get_response_api_request(
|
||||
response_id=response_id,
|
||||
api_base=api_base,
|
||||
litellm_params=litellm_params,
|
||||
headers=headers,
|
||||
)
|
||||
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input="",
|
||||
api_key="",
|
||||
additional_args={
|
||||
"complete_input_dict": data,
|
||||
"api_base": api_base,
|
||||
"headers": headers,
|
||||
},
|
||||
)
|
||||
|
||||
try:
|
||||
response = await async_httpx_client.get(
|
||||
url=url, headers=headers, params=data
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
verbose_logger.exception(f"Error retrieving response: {e}")
|
||||
raise self._handle_error(
|
||||
e=e,
|
||||
provider_config=responses_api_provider_config,
|
||||
)
|
||||
|
||||
return responses_api_provider_config.transform_get_response_api_response(
|
||||
raw_response=response,
|
||||
logging_obj=logging_obj,
|
||||
)
|
||||
|
||||
def create_file(
|
||||
self,
|
||||
create_file_data: CreateFileRequest,
|
||||
|
|
|
@ -37,6 +37,7 @@ from litellm.types.llms.databricks import (
|
|||
)
|
||||
from litellm.types.llms.openai import (
|
||||
AllMessageValues,
|
||||
ChatCompletionRedactedThinkingBlock,
|
||||
ChatCompletionThinkingBlock,
|
||||
ChatCompletionToolChoiceFunctionParam,
|
||||
ChatCompletionToolChoiceObjectParam,
|
||||
|
@ -314,13 +315,24 @@ class DatabricksConfig(DatabricksBase, OpenAILikeChatConfig, AnthropicConfig):
|
|||
@staticmethod
|
||||
def extract_reasoning_content(
|
||||
content: Optional[AllDatabricksContentValues],
|
||||
) -> Tuple[Optional[str], Optional[List[ChatCompletionThinkingBlock]]]:
|
||||
) -> Tuple[
|
||||
Optional[str],
|
||||
Optional[
|
||||
List[
|
||||
Union[ChatCompletionThinkingBlock, ChatCompletionRedactedThinkingBlock]
|
||||
]
|
||||
],
|
||||
]:
|
||||
"""
|
||||
Extract and return the reasoning content and thinking blocks
|
||||
"""
|
||||
if content is None:
|
||||
return None, None
|
||||
thinking_blocks: Optional[List[ChatCompletionThinkingBlock]] = None
|
||||
thinking_blocks: Optional[
|
||||
List[
|
||||
Union[ChatCompletionThinkingBlock, ChatCompletionRedactedThinkingBlock]
|
||||
]
|
||||
] = None
|
||||
reasoning_content: Optional[str] = None
|
||||
if isinstance(content, list):
|
||||
for item in content:
|
||||
|
|
|
@ -1,15 +1,33 @@
|
|||
from typing import List, Literal, Optional, Tuple, Union, cast
|
||||
import json
|
||||
import uuid
|
||||
from typing import Any, List, Literal, Optional, Tuple, Union, cast
|
||||
|
||||
import httpx
|
||||
|
||||
import litellm
|
||||
from litellm.constants import RESPONSE_FORMAT_TOOL_NAME
|
||||
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
|
||||
from litellm.litellm_core_utils.llm_response_utils.get_headers import (
|
||||
get_response_headers,
|
||||
)
|
||||
from litellm.secret_managers.main import get_secret_str
|
||||
from litellm.types.llms.openai import (
|
||||
AllMessageValues,
|
||||
ChatCompletionImageObject,
|
||||
ChatCompletionToolParam,
|
||||
OpenAIChatCompletionToolParam,
|
||||
)
|
||||
from litellm.types.utils import ProviderSpecificModelInfo
|
||||
from litellm.types.utils import (
|
||||
ChatCompletionMessageToolCall,
|
||||
Choices,
|
||||
Function,
|
||||
Message,
|
||||
ModelResponse,
|
||||
ProviderSpecificModelInfo,
|
||||
)
|
||||
|
||||
from ...openai.chat.gpt_transformation import OpenAIGPTConfig
|
||||
from ..common_utils import FireworksAIException
|
||||
|
||||
|
||||
class FireworksAIConfig(OpenAIGPTConfig):
|
||||
|
@ -219,6 +237,94 @@ class FireworksAIConfig(OpenAIGPTConfig):
|
|||
headers=headers,
|
||||
)
|
||||
|
||||
def _handle_message_content_with_tool_calls(
|
||||
self,
|
||||
message: Message,
|
||||
tool_calls: Optional[List[ChatCompletionToolParam]],
|
||||
) -> Message:
|
||||
"""
|
||||
Fireworks AI sends tool calls in the content field instead of tool_calls
|
||||
|
||||
Relevant Issue: https://github.com/BerriAI/litellm/issues/7209#issuecomment-2813208780
|
||||
"""
|
||||
if (
|
||||
tool_calls is not None
|
||||
and message.content is not None
|
||||
and message.tool_calls is None
|
||||
):
|
||||
try:
|
||||
function = Function(**json.loads(message.content))
|
||||
if function.name != RESPONSE_FORMAT_TOOL_NAME and function.name in [
|
||||
tool["function"]["name"] for tool in tool_calls
|
||||
]:
|
||||
tool_call = ChatCompletionMessageToolCall(
|
||||
function=function, id=str(uuid.uuid4()), type="function"
|
||||
)
|
||||
message.tool_calls = [tool_call]
|
||||
|
||||
message.content = None
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
return message
|
||||
|
||||
def transform_response(
|
||||
self,
|
||||
model: str,
|
||||
raw_response: httpx.Response,
|
||||
model_response: ModelResponse,
|
||||
logging_obj: LiteLLMLoggingObj,
|
||||
request_data: dict,
|
||||
messages: List[AllMessageValues],
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
encoding: Any,
|
||||
api_key: Optional[str] = None,
|
||||
json_mode: Optional[bool] = None,
|
||||
) -> ModelResponse:
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=messages,
|
||||
api_key=api_key,
|
||||
original_response=raw_response.text,
|
||||
additional_args={"complete_input_dict": request_data},
|
||||
)
|
||||
|
||||
## RESPONSE OBJECT
|
||||
try:
|
||||
completion_response = raw_response.json()
|
||||
except Exception as e:
|
||||
response_headers = getattr(raw_response, "headers", None)
|
||||
raise FireworksAIException(
|
||||
message="Unable to get json response - {}, Original Response: {}".format(
|
||||
str(e), raw_response.text
|
||||
),
|
||||
status_code=raw_response.status_code,
|
||||
headers=response_headers,
|
||||
)
|
||||
|
||||
raw_response_headers = dict(raw_response.headers)
|
||||
|
||||
additional_headers = get_response_headers(raw_response_headers)
|
||||
|
||||
response = ModelResponse(**completion_response)
|
||||
|
||||
if response.model is not None:
|
||||
response.model = "fireworks_ai/" + response.model
|
||||
|
||||
## FIREWORKS AI sends tool calls in the content field instead of tool_calls
|
||||
for choice in response.choices:
|
||||
cast(
|
||||
Choices, choice
|
||||
).message = self._handle_message_content_with_tool_calls(
|
||||
message=cast(Choices, choice).message,
|
||||
tool_calls=optional_params.get("tools", None),
|
||||
)
|
||||
|
||||
response._hidden_params = {"additional_headers": additional_headers}
|
||||
|
||||
return response
|
||||
|
||||
def _get_openai_compatible_provider_info(
|
||||
self, api_base: Optional[str], api_key: Optional[str]
|
||||
) -> Tuple[Optional[str], Optional[str]]:
|
||||
|
|
|
@ -7,6 +7,7 @@ from litellm.litellm_core_utils.prompt_templates.factory import (
|
|||
)
|
||||
from litellm.types.llms.openai import AllMessageValues
|
||||
from litellm.types.llms.vertex_ai import ContentType, PartType
|
||||
from litellm.utils import supports_reasoning
|
||||
|
||||
from ...vertex_ai.gemini.transformation import _gemini_convert_messages_with_history
|
||||
from ...vertex_ai.gemini.vertex_and_google_ai_studio_gemini import VertexGeminiConfig
|
||||
|
@ -67,7 +68,7 @@ class GoogleAIStudioGeminiConfig(VertexGeminiConfig):
|
|||
return super().get_config()
|
||||
|
||||
def get_supported_openai_params(self, model: str) -> List[str]:
|
||||
return [
|
||||
supported_params = [
|
||||
"temperature",
|
||||
"top_p",
|
||||
"max_tokens",
|
||||
|
@ -83,6 +84,10 @@ class GoogleAIStudioGeminiConfig(VertexGeminiConfig):
|
|||
"frequency_penalty",
|
||||
"modalities",
|
||||
]
|
||||
if supports_reasoning(model):
|
||||
supported_params.append("reasoning_effort")
|
||||
supported_params.append("thinking")
|
||||
return supported_params
|
||||
|
||||
def map_openai_params(
|
||||
self,
|
||||
|
|
|
@ -2,9 +2,19 @@
|
|||
Translate from OpenAI's `/v1/chat/completions` to VLLM's `/v1/chat/completions`
|
||||
"""
|
||||
|
||||
from typing import Optional, Tuple
|
||||
from typing import List, Optional, Tuple, cast
|
||||
|
||||
from litellm.litellm_core_utils.prompt_templates.common_utils import (
|
||||
_get_image_mime_type_from_url,
|
||||
)
|
||||
from litellm.litellm_core_utils.prompt_templates.factory import _parse_mime_type
|
||||
from litellm.secret_managers.main import get_secret_str
|
||||
from litellm.types.llms.openai import (
|
||||
AllMessageValues,
|
||||
ChatCompletionFileObject,
|
||||
ChatCompletionVideoObject,
|
||||
ChatCompletionVideoUrlObject,
|
||||
)
|
||||
|
||||
from ....utils import _remove_additional_properties, _remove_strict_from_schema
|
||||
from ...openai.chat.gpt_transformation import OpenAIGPTConfig
|
||||
|
@ -38,3 +48,71 @@ class HostedVLLMChatConfig(OpenAIGPTConfig):
|
|||
api_key or get_secret_str("HOSTED_VLLM_API_KEY") or "fake-api-key"
|
||||
) # vllm does not require an api key
|
||||
return api_base, dynamic_api_key
|
||||
|
||||
def _is_video_file(self, content_item: ChatCompletionFileObject) -> bool:
|
||||
"""
|
||||
Check if the file is a video
|
||||
|
||||
- format: video/<extension>
|
||||
- file_data: base64 encoded video data
|
||||
- file_id: infer mp4 from extension
|
||||
"""
|
||||
file = content_item.get("file", {})
|
||||
format = file.get("format")
|
||||
file_data = file.get("file_data")
|
||||
file_id = file.get("file_id")
|
||||
if content_item.get("type") != "file":
|
||||
return False
|
||||
if format and format.startswith("video/"):
|
||||
return True
|
||||
elif file_data:
|
||||
mime_type = _parse_mime_type(file_data)
|
||||
if mime_type and mime_type.startswith("video/"):
|
||||
return True
|
||||
elif file_id:
|
||||
mime_type = _get_image_mime_type_from_url(file_id)
|
||||
if mime_type and mime_type.startswith("video/"):
|
||||
return True
|
||||
return False
|
||||
|
||||
def _convert_file_to_video_url(
|
||||
self, content_item: ChatCompletionFileObject
|
||||
) -> ChatCompletionVideoObject:
|
||||
file = content_item.get("file", {})
|
||||
file_id = file.get("file_id")
|
||||
file_data = file.get("file_data")
|
||||
|
||||
if file_id:
|
||||
return ChatCompletionVideoObject(
|
||||
type="video_url", video_url=ChatCompletionVideoUrlObject(url=file_id)
|
||||
)
|
||||
elif file_data:
|
||||
return ChatCompletionVideoObject(
|
||||
type="video_url", video_url=ChatCompletionVideoUrlObject(url=file_data)
|
||||
)
|
||||
raise ValueError("file_id or file_data is required")
|
||||
|
||||
def _transform_messages(
|
||||
self, messages: List[AllMessageValues], model: str
|
||||
) -> List[AllMessageValues]:
|
||||
"""
|
||||
Support translating video files from file_id or file_data to video_url
|
||||
"""
|
||||
for message in messages:
|
||||
if message["role"] == "user":
|
||||
message_content = message.get("content")
|
||||
if message_content and isinstance(message_content, list):
|
||||
replaced_content_items: List[
|
||||
Tuple[int, ChatCompletionFileObject]
|
||||
] = []
|
||||
for idx, content_item in enumerate(message_content):
|
||||
if content_item.get("type") == "file":
|
||||
content_item = cast(ChatCompletionFileObject, content_item)
|
||||
if self._is_video_file(content_item):
|
||||
replaced_content_items.append((idx, content_item))
|
||||
for idx, content_item in replaced_content_items:
|
||||
message_content[idx] = self._convert_file_to_video_url(
|
||||
content_item
|
||||
)
|
||||
transformed_messages = super()._transform_messages(messages, model)
|
||||
return transformed_messages
|
||||
|
|
|
@ -1,10 +1,16 @@
|
|||
from typing import Union
|
||||
import httpx
|
||||
|
||||
from litellm.llms.base_llm.chat.transformation import BaseLLMException
|
||||
|
||||
|
||||
class InfinityError(BaseLLMException):
|
||||
def __init__(self, status_code, message):
|
||||
def __init__(
|
||||
self,
|
||||
status_code: int,
|
||||
message: str,
|
||||
headers: Union[dict, httpx.Headers] = {}
|
||||
):
|
||||
self.status_code = status_code
|
||||
self.message = message
|
||||
self.request = httpx.Request(
|
||||
|
@ -16,4 +22,5 @@ class InfinityError(BaseLLMException):
|
|||
message=message,
|
||||
request=self.request,
|
||||
response=self.response,
|
||||
headers=headers,
|
||||
) # Call the base class constructor with the parameters it needs
|
5
litellm/llms/infinity/embedding/handler.py
Normal file
|
@ -0,0 +1,5 @@
|
|||
"""
|
||||
Infinity Embedding - uses `llm_http_handler.py` to make httpx requests
|
||||
|
||||
Request/Response transformation is handled in `transformation.py`
|
||||
"""
|
141
litellm/llms/infinity/embedding/transformation.py
Normal file
|
@ -0,0 +1,141 @@
|
|||
from typing import List, Optional, Union
|
||||
|
||||
import httpx
|
||||
|
||||
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
|
||||
from litellm.llms.base_llm.chat.transformation import BaseLLMException
|
||||
from litellm.llms.base_llm.embedding.transformation import BaseEmbeddingConfig
|
||||
from litellm.secret_managers.main import get_secret_str
|
||||
from litellm.types.llms.openai import AllEmbeddingInputValues, AllMessageValues
|
||||
from litellm.types.utils import EmbeddingResponse, Usage
|
||||
|
||||
from ..common_utils import InfinityError
|
||||
|
||||
|
||||
class InfinityEmbeddingConfig(BaseEmbeddingConfig):
|
||||
"""
|
||||
Reference: https://infinity.modal.michaelfeil.eu/docs
|
||||
"""
|
||||
|
||||
def __init__(self) -> None:
|
||||
pass
|
||||
|
||||
def get_complete_url(
|
||||
self,
|
||||
api_base: Optional[str],
|
||||
api_key: Optional[str],
|
||||
model: str,
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
stream: Optional[bool] = None,
|
||||
) -> str:
|
||||
if api_base is None:
|
||||
raise ValueError("api_base is required for Infinity embeddings")
|
||||
# Remove trailing slashes and ensure clean base URL
|
||||
api_base = api_base.rstrip("/")
|
||||
if not api_base.endswith("/embeddings"):
|
||||
api_base = f"{api_base}/embeddings"
|
||||
return api_base
|
||||
|
||||
def validate_environment(
|
||||
self,
|
||||
headers: dict,
|
||||
model: str,
|
||||
messages: List[AllMessageValues],
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
api_key: Optional[str] = None,
|
||||
api_base: Optional[str] = None,
|
||||
) -> dict:
|
||||
if api_key is None:
|
||||
api_key = get_secret_str("INFINITY_API_KEY")
|
||||
|
||||
default_headers = {
|
||||
"Authorization": f"Bearer {api_key}",
|
||||
"accept": "application/json",
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
|
||||
# If 'Authorization' is provided in headers, it overrides the default.
|
||||
if "Authorization" in headers:
|
||||
default_headers["Authorization"] = headers["Authorization"]
|
||||
|
||||
# Merge other headers, overriding any default ones except Authorization
|
||||
return {**default_headers, **headers}
|
||||
|
||||
def get_supported_openai_params(self, model: str) -> list:
|
||||
return [
|
||||
"encoding_format",
|
||||
"modality",
|
||||
"dimensions",
|
||||
]
|
||||
|
||||
def map_openai_params(
|
||||
self,
|
||||
non_default_params: dict,
|
||||
optional_params: dict,
|
||||
model: str,
|
||||
drop_params: bool,
|
||||
) -> dict:
|
||||
"""
|
||||
Map OpenAI params to Infinity params
|
||||
|
||||
Reference: https://infinity.modal.michaelfeil.eu/docs
|
||||
"""
|
||||
if "encoding_format" in non_default_params:
|
||||
optional_params["encoding_format"] = non_default_params["encoding_format"]
|
||||
if "modality" in non_default_params:
|
||||
optional_params["modality"] = non_default_params["modality"]
|
||||
if "dimensions" in non_default_params:
|
||||
optional_params["output_dimension"] = non_default_params["dimensions"]
|
||||
return optional_params
|
||||
|
||||
def transform_embedding_request(
|
||||
self,
|
||||
model: str,
|
||||
input: AllEmbeddingInputValues,
|
||||
optional_params: dict,
|
||||
headers: dict,
|
||||
) -> dict:
|
||||
return {
|
||||
"input": input,
|
||||
"model": model,
|
||||
**optional_params,
|
||||
}
|
||||
|
||||
def transform_embedding_response(
|
||||
self,
|
||||
model: str,
|
||||
raw_response: httpx.Response,
|
||||
model_response: EmbeddingResponse,
|
||||
logging_obj: LiteLLMLoggingObj,
|
||||
api_key: Optional[str] = None,
|
||||
request_data: dict = {},
|
||||
optional_params: dict = {},
|
||||
litellm_params: dict = {},
|
||||
) -> EmbeddingResponse:
|
||||
try:
|
||||
raw_response_json = raw_response.json()
|
||||
except Exception:
|
||||
raise InfinityError(
|
||||
message=raw_response.text, status_code=raw_response.status_code
|
||||
)
|
||||
|
||||
# model_response.usage
|
||||
model_response.model = raw_response_json.get("model")
|
||||
model_response.data = raw_response_json.get("data")
|
||||
model_response.object = raw_response_json.get("object")
|
||||
|
||||
usage = Usage(
|
||||
prompt_tokens=raw_response_json.get("usage", {}).get("prompt_tokens", 0),
|
||||
total_tokens=raw_response_json.get("usage", {}).get("total_tokens", 0),
|
||||
)
|
||||
model_response.usage = usage
|
||||
return model_response
|
||||
|
||||
def get_error_class(
|
||||
self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers]
|
||||
) -> BaseLLMException:
|
||||
return InfinityError(
|
||||
message=error_message, status_code=status_code, headers=headers
|
||||
)
|
|
@ -22,7 +22,7 @@ from litellm.types.rerank import (
|
|||
RerankTokens,
|
||||
)
|
||||
|
||||
from .common_utils import InfinityError
|
||||
from ..common_utils import InfinityError
|
||||
|
||||
|
||||
class InfinityRerankConfig(CohereRerankConfig):
|
||||
|
|
|
@ -13,6 +13,7 @@ class LiteLLMProxyChatConfig(OpenAIGPTConfig):
|
|||
def get_supported_openai_params(self, model: str) -> List:
|
||||
list = super().get_supported_openai_params(model)
|
||||
list.append("thinking")
|
||||
list.append("reasoning_effort")
|
||||
return list
|
||||
|
||||
def _map_openai_params(
|
||||
|
|
|
@ -7,6 +7,7 @@ from litellm._logging import verbose_logger
|
|||
from litellm.llms.base_llm.responses.transformation import BaseResponsesAPIConfig
|
||||
from litellm.secret_managers.main import get_secret_str
|
||||
from litellm.types.llms.openai import *
|
||||
from litellm.types.responses.main import *
|
||||
from litellm.types.router import GenericLiteLLMParams
|
||||
|
||||
from ..common_utils import OpenAIError
|
||||
|
@ -110,8 +111,7 @@ class OpenAIResponsesAPIConfig(BaseResponsesAPIConfig):
|
|||
def get_complete_url(
|
||||
self,
|
||||
api_base: Optional[str],
|
||||
model: str,
|
||||
stream: Optional[bool] = None,
|
||||
litellm_params: dict,
|
||||
) -> str:
|
||||
"""
|
||||
Get the endpoint for OpenAI responses API
|
||||
|
@ -187,7 +187,7 @@ class OpenAIResponsesAPIConfig(BaseResponsesAPIConfig):
|
|||
|
||||
model_class = event_models.get(cast(ResponsesAPIStreamEvents, event_type))
|
||||
if not model_class:
|
||||
raise ValueError(f"Unknown event type: {event_type}")
|
||||
return GenericEvent
|
||||
|
||||
return model_class
|
||||
|
||||
|
@ -214,3 +214,75 @@ class OpenAIResponsesAPIConfig(BaseResponsesAPIConfig):
|
|||
f"Error getting model info in OpenAIResponsesAPIConfig: {e}"
|
||||
)
|
||||
return False
|
||||
|
||||
#########################################################
|
||||
########## DELETE RESPONSE API TRANSFORMATION ##############
|
||||
#########################################################
|
||||
def transform_delete_response_api_request(
|
||||
self,
|
||||
response_id: str,
|
||||
api_base: str,
|
||||
litellm_params: GenericLiteLLMParams,
|
||||
headers: dict,
|
||||
) -> Tuple[str, Dict]:
|
||||
"""
|
||||
Transform the delete response API request into a URL and data
|
||||
|
||||
OpenAI API expects the following request
|
||||
- DELETE /v1/responses/{response_id}
|
||||
"""
|
||||
url = f"{api_base}/{response_id}"
|
||||
data: Dict = {}
|
||||
return url, data
|
||||
|
||||
def transform_delete_response_api_response(
|
||||
self,
|
||||
raw_response: httpx.Response,
|
||||
logging_obj: LiteLLMLoggingObj,
|
||||
) -> DeleteResponseResult:
|
||||
"""
|
||||
Transform the delete response API response into a DeleteResponseResult
|
||||
"""
|
||||
try:
|
||||
raw_response_json = raw_response.json()
|
||||
except Exception:
|
||||
raise OpenAIError(
|
||||
message=raw_response.text, status_code=raw_response.status_code
|
||||
)
|
||||
return DeleteResponseResult(**raw_response_json)
|
||||
|
||||
#########################################################
|
||||
########## GET RESPONSE API TRANSFORMATION ###############
|
||||
#########################################################
|
||||
def transform_get_response_api_request(
|
||||
self,
|
||||
response_id: str,
|
||||
api_base: str,
|
||||
litellm_params: GenericLiteLLMParams,
|
||||
headers: dict,
|
||||
) -> Tuple[str, Dict]:
|
||||
"""
|
||||
Transform the get response API request into a URL and data
|
||||
|
||||
OpenAI API expects the following request
|
||||
- GET /v1/responses/{response_id}
|
||||
"""
|
||||
url = f"{api_base}/{response_id}"
|
||||
data: Dict = {}
|
||||
return url, data
|
||||
|
||||
def transform_get_response_api_response(
|
||||
self,
|
||||
raw_response: httpx.Response,
|
||||
logging_obj: LiteLLMLoggingObj,
|
||||
) -> ResponsesAPIResponse:
|
||||
"""
|
||||
Transform the get response API response into a ResponsesAPIResponse
|
||||
"""
|
||||
try:
|
||||
raw_response_json = raw_response.json()
|
||||
except Exception:
|
||||
raise OpenAIError(
|
||||
message=raw_response.text, status_code=raw_response.status_code
|
||||
)
|
||||
return ResponsesAPIResponse(**raw_response_json)
|
||||
|
|
|
@ -201,8 +201,6 @@ class TritonGenerateConfig(TritonConfig):
|
|||
"max_tokens": int(
|
||||
optional_params.get("max_tokens", DEFAULT_MAX_TOKENS_FOR_TRITON)
|
||||
),
|
||||
"bad_words": [""],
|
||||
"stop_words": [""],
|
||||
},
|
||||
"stream": bool(stream),
|
||||
}
|
||||
|
|
|
@ -12,6 +12,9 @@ from pydantic import BaseModel
|
|||
|
||||
import litellm
|
||||
from litellm._logging import verbose_logger
|
||||
from litellm.litellm_core_utils.prompt_templates.common_utils import (
|
||||
_get_image_mime_type_from_url,
|
||||
)
|
||||
from litellm.litellm_core_utils.prompt_templates.factory import (
|
||||
convert_to_anthropic_image_obj,
|
||||
convert_to_gemini_tool_call_invoke,
|
||||
|
@ -99,62 +102,6 @@ def _process_gemini_image(image_url: str, format: Optional[str] = None) -> PartT
|
|||
raise e
|
||||
|
||||
|
||||
def _get_image_mime_type_from_url(url: str) -> Optional[str]:
|
||||
"""
|
||||
Get mime type for common image URLs
|
||||
See gemini mime types: https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/image-understanding#image-requirements
|
||||
|
||||
Supported by Gemini:
|
||||
application/pdf
|
||||
audio/mpeg
|
||||
audio/mp3
|
||||
audio/wav
|
||||
image/png
|
||||
image/jpeg
|
||||
image/webp
|
||||
text/plain
|
||||
video/mov
|
||||
video/mpeg
|
||||
video/mp4
|
||||
video/mpg
|
||||
video/avi
|
||||
video/wmv
|
||||
video/mpegps
|
||||
video/flv
|
||||
"""
|
||||
url = url.lower()
|
||||
|
||||
# Map file extensions to mime types
|
||||
mime_types = {
|
||||
# Images
|
||||
(".jpg", ".jpeg"): "image/jpeg",
|
||||
(".png",): "image/png",
|
||||
(".webp",): "image/webp",
|
||||
# Videos
|
||||
(".mp4",): "video/mp4",
|
||||
(".mov",): "video/mov",
|
||||
(".mpeg", ".mpg"): "video/mpeg",
|
||||
(".avi",): "video/avi",
|
||||
(".wmv",): "video/wmv",
|
||||
(".mpegps",): "video/mpegps",
|
||||
(".flv",): "video/flv",
|
||||
# Audio
|
||||
(".mp3",): "audio/mp3",
|
||||
(".wav",): "audio/wav",
|
||||
(".mpeg",): "audio/mpeg",
|
||||
# Documents
|
||||
(".pdf",): "application/pdf",
|
||||
(".txt",): "text/plain",
|
||||
}
|
||||
|
||||
# Check each extension group against the URL
|
||||
for extensions, mime_type in mime_types.items():
|
||||
if any(url.endswith(ext) for ext in extensions):
|
||||
return mime_type
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def _gemini_convert_messages_with_history( # noqa: PLR0915
|
||||
messages: List[AllMessageValues],
|
||||
) -> List[ContentType]:
|
||||
|
@ -269,6 +216,11 @@ def _gemini_convert_messages_with_history( # noqa: PLR0915
|
|||
msg_dict = messages[msg_i] # type: ignore
|
||||
assistant_msg = ChatCompletionAssistantMessage(**msg_dict) # type: ignore
|
||||
_message_content = assistant_msg.get("content", None)
|
||||
reasoning_content = assistant_msg.get("reasoning_content", None)
|
||||
if reasoning_content is not None:
|
||||
assistant_content.append(
|
||||
PartType(thought=True, text=reasoning_content)
|
||||
)
|
||||
if _message_content is not None and isinstance(_message_content, list):
|
||||
_parts = []
|
||||
for element in _message_content:
|
||||
|
@ -276,6 +228,7 @@ def _gemini_convert_messages_with_history( # noqa: PLR0915
|
|||
if element["type"] == "text":
|
||||
_part = PartType(text=element["text"])
|
||||
_parts.append(_part)
|
||||
|
||||
assistant_content.extend(_parts)
|
||||
elif (
|
||||
_message_content is not None
|
||||
|
|
|
@ -24,6 +24,11 @@ import litellm
|
|||
import litellm.litellm_core_utils
|
||||
import litellm.litellm_core_utils.litellm_logging
|
||||
from litellm import verbose_logger
|
||||
from litellm.constants import (
|
||||
DEFAULT_REASONING_EFFORT_HIGH_THINKING_BUDGET,
|
||||
DEFAULT_REASONING_EFFORT_LOW_THINKING_BUDGET,
|
||||
DEFAULT_REASONING_EFFORT_MEDIUM_THINKING_BUDGET,
|
||||
)
|
||||
from litellm.litellm_core_utils.core_helpers import map_finish_reason
|
||||
from litellm.llms.base_llm.chat.transformation import BaseConfig, BaseLLMException
|
||||
from litellm.llms.custom_httpx.http_handler import (
|
||||
|
@ -31,6 +36,7 @@ from litellm.llms.custom_httpx.http_handler import (
|
|||
HTTPHandler,
|
||||
get_async_httpx_client,
|
||||
)
|
||||
from litellm.types.llms.anthropic import AnthropicThinkingParam
|
||||
from litellm.types.llms.openai import (
|
||||
AllMessageValues,
|
||||
ChatCompletionResponseMessage,
|
||||
|
@ -45,11 +51,13 @@ from litellm.types.llms.vertex_ai import (
|
|||
ContentType,
|
||||
FunctionCallingConfig,
|
||||
FunctionDeclaration,
|
||||
GeminiThinkingConfig,
|
||||
GenerateContentResponseBody,
|
||||
HttpxPartType,
|
||||
LogprobsResult,
|
||||
ToolConfig,
|
||||
Tools,
|
||||
UsageMetadata,
|
||||
)
|
||||
from litellm.types.utils import (
|
||||
ChatCompletionTokenLogprob,
|
||||
|
@ -59,7 +67,7 @@ from litellm.types.utils import (
|
|||
TopLogprob,
|
||||
Usage,
|
||||
)
|
||||
from litellm.utils import CustomStreamWrapper, ModelResponse
|
||||
from litellm.utils import CustomStreamWrapper, ModelResponse, supports_reasoning
|
||||
|
||||
from ....utils import _remove_additional_properties, _remove_strict_from_schema
|
||||
from ..common_utils import VertexAIError, _build_vertex_schema
|
||||
|
@ -190,7 +198,7 @@ class VertexGeminiConfig(VertexAIBaseConfig, BaseConfig):
|
|||
return super().get_config()
|
||||
|
||||
def get_supported_openai_params(self, model: str) -> List[str]:
|
||||
return [
|
||||
supported_params = [
|
||||
"temperature",
|
||||
"top_p",
|
||||
"max_tokens",
|
||||
|
@ -210,6 +218,10 @@ class VertexGeminiConfig(VertexAIBaseConfig, BaseConfig):
|
|||
"top_logprobs",
|
||||
"modalities",
|
||||
]
|
||||
if supports_reasoning(model):
|
||||
supported_params.append("reasoning_effort")
|
||||
supported_params.append("thinking")
|
||||
return supported_params
|
||||
|
||||
def map_tool_choice_values(
|
||||
self, model: str, tool_choice: Union[str, dict]
|
||||
|
@ -313,10 +325,14 @@ class VertexGeminiConfig(VertexAIBaseConfig, BaseConfig):
|
|||
if isinstance(old_schema, list):
|
||||
for item in old_schema:
|
||||
if isinstance(item, dict):
|
||||
item = _build_vertex_schema(parameters=item, add_property_ordering=True)
|
||||
item = _build_vertex_schema(
|
||||
parameters=item, add_property_ordering=True
|
||||
)
|
||||
|
||||
elif isinstance(old_schema, dict):
|
||||
old_schema = _build_vertex_schema(parameters=old_schema, add_property_ordering=True)
|
||||
old_schema = _build_vertex_schema(
|
||||
parameters=old_schema, add_property_ordering=True
|
||||
)
|
||||
return old_schema
|
||||
|
||||
def apply_response_schema_transformation(self, value: dict, optional_params: dict):
|
||||
|
@ -343,6 +359,43 @@ class VertexGeminiConfig(VertexAIBaseConfig, BaseConfig):
|
|||
value=optional_params["response_schema"]
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _map_reasoning_effort_to_thinking_budget(
|
||||
reasoning_effort: str,
|
||||
) -> GeminiThinkingConfig:
|
||||
if reasoning_effort == "low":
|
||||
return {
|
||||
"thinkingBudget": DEFAULT_REASONING_EFFORT_LOW_THINKING_BUDGET,
|
||||
"includeThoughts": True,
|
||||
}
|
||||
elif reasoning_effort == "medium":
|
||||
return {
|
||||
"thinkingBudget": DEFAULT_REASONING_EFFORT_MEDIUM_THINKING_BUDGET,
|
||||
"includeThoughts": True,
|
||||
}
|
||||
elif reasoning_effort == "high":
|
||||
return {
|
||||
"thinkingBudget": DEFAULT_REASONING_EFFORT_HIGH_THINKING_BUDGET,
|
||||
"includeThoughts": True,
|
||||
}
|
||||
else:
|
||||
raise ValueError(f"Invalid reasoning effort: {reasoning_effort}")
|
||||
|
||||
@staticmethod
|
||||
def _map_thinking_param(
|
||||
thinking_param: AnthropicThinkingParam,
|
||||
) -> GeminiThinkingConfig:
|
||||
thinking_enabled = thinking_param.get("type") == "enabled"
|
||||
thinking_budget = thinking_param.get("budget_tokens")
|
||||
|
||||
params: GeminiThinkingConfig = {}
|
||||
if thinking_enabled:
|
||||
params["includeThoughts"] = True
|
||||
if thinking_budget is not None and isinstance(thinking_budget, int):
|
||||
params["thinkingBudget"] = thinking_budget
|
||||
|
||||
return params
|
||||
|
||||
def map_openai_params(
|
||||
self,
|
||||
non_default_params: Dict,
|
||||
|
@ -399,6 +452,16 @@ class VertexGeminiConfig(VertexAIBaseConfig, BaseConfig):
|
|||
optional_params["tool_choice"] = _tool_choice_value
|
||||
elif param == "seed":
|
||||
optional_params["seed"] = value
|
||||
elif param == "reasoning_effort" and isinstance(value, str):
|
||||
optional_params[
|
||||
"thinkingConfig"
|
||||
] = VertexGeminiConfig._map_reasoning_effort_to_thinking_budget(value)
|
||||
elif param == "thinking":
|
||||
optional_params[
|
||||
"thinkingConfig"
|
||||
] = VertexGeminiConfig._map_thinking_param(
|
||||
cast(AnthropicThinkingParam, value)
|
||||
)
|
||||
elif param == "modalities" and isinstance(value, list):
|
||||
response_modalities = []
|
||||
for modality in value:
|
||||
|
@ -514,19 +577,28 @@ class VertexGeminiConfig(VertexAIBaseConfig, BaseConfig):
|
|||
|
||||
def get_assistant_content_message(
|
||||
self, parts: List[HttpxPartType]
|
||||
) -> Optional[str]:
|
||||
_content_str = ""
|
||||
) -> Tuple[Optional[str], Optional[str]]:
|
||||
content_str: Optional[str] = None
|
||||
reasoning_content_str: Optional[str] = None
|
||||
for part in parts:
|
||||
_content_str = ""
|
||||
if "text" in part:
|
||||
_content_str += part["text"]
|
||||
elif "inlineData" in part: # base64 encoded image
|
||||
_content_str += "data:{};base64,{}".format(
|
||||
part["inlineData"]["mimeType"], part["inlineData"]["data"]
|
||||
)
|
||||
if len(_content_str) > 0:
|
||||
if part.get("thought") is True:
|
||||
if reasoning_content_str is None:
|
||||
reasoning_content_str = ""
|
||||
reasoning_content_str += _content_str
|
||||
else:
|
||||
if content_str is None:
|
||||
content_str = ""
|
||||
content_str += _content_str
|
||||
|
||||
if _content_str:
|
||||
return _content_str
|
||||
return None
|
||||
return content_str, reasoning_content_str
|
||||
|
||||
def _transform_parts(
|
||||
self,
|
||||
|
@ -669,6 +741,23 @@ class VertexGeminiConfig(VertexAIBaseConfig, BaseConfig):
|
|||
|
||||
return model_response
|
||||
|
||||
def is_candidate_token_count_inclusive(self, usage_metadata: UsageMetadata) -> bool:
|
||||
"""
|
||||
Check if the candidate token count is inclusive of the thinking token count
|
||||
|
||||
if prompttokencount + candidatesTokenCount == totalTokenCount, then the candidate token count is inclusive of the thinking token count
|
||||
|
||||
else the candidate token count is exclusive of the thinking token count
|
||||
|
||||
Addresses - https://github.com/BerriAI/litellm/pull/10141#discussion_r2052272035
|
||||
"""
|
||||
if usage_metadata.get("promptTokenCount", 0) + usage_metadata.get(
|
||||
"candidatesTokenCount", 0
|
||||
) == usage_metadata.get("totalTokenCount", 0):
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
def _calculate_usage(
|
||||
self,
|
||||
completion_response: GenerateContentResponseBody,
|
||||
|
@ -677,6 +766,7 @@ class VertexGeminiConfig(VertexAIBaseConfig, BaseConfig):
|
|||
audio_tokens: Optional[int] = None
|
||||
text_tokens: Optional[int] = None
|
||||
prompt_tokens_details: Optional[PromptTokensDetailsWrapper] = None
|
||||
reasoning_tokens: Optional[int] = None
|
||||
if "cachedContentTokenCount" in completion_response["usageMetadata"]:
|
||||
cached_tokens = completion_response["usageMetadata"][
|
||||
"cachedContentTokenCount"
|
||||
|
@ -687,22 +777,35 @@ class VertexGeminiConfig(VertexAIBaseConfig, BaseConfig):
|
|||
audio_tokens = detail["tokenCount"]
|
||||
elif detail["modality"] == "TEXT":
|
||||
text_tokens = detail["tokenCount"]
|
||||
|
||||
if "thoughtsTokenCount" in completion_response["usageMetadata"]:
|
||||
reasoning_tokens = completion_response["usageMetadata"][
|
||||
"thoughtsTokenCount"
|
||||
]
|
||||
prompt_tokens_details = PromptTokensDetailsWrapper(
|
||||
cached_tokens=cached_tokens,
|
||||
audio_tokens=audio_tokens,
|
||||
text_tokens=text_tokens,
|
||||
)
|
||||
|
||||
completion_tokens = completion_response["usageMetadata"].get(
|
||||
"candidatesTokenCount", 0
|
||||
)
|
||||
if (
|
||||
not self.is_candidate_token_count_inclusive(
|
||||
completion_response["usageMetadata"]
|
||||
)
|
||||
and reasoning_tokens
|
||||
):
|
||||
completion_tokens = reasoning_tokens + completion_tokens
|
||||
## GET USAGE ##
|
||||
usage = Usage(
|
||||
prompt_tokens=completion_response["usageMetadata"].get(
|
||||
"promptTokenCount", 0
|
||||
),
|
||||
completion_tokens=completion_response["usageMetadata"].get(
|
||||
"candidatesTokenCount", 0
|
||||
),
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=completion_response["usageMetadata"].get("totalTokenCount", 0),
|
||||
prompt_tokens_details=prompt_tokens_details,
|
||||
reasoning_tokens=reasoning_tokens,
|
||||
)
|
||||
|
||||
return usage
|
||||
|
@ -731,11 +834,16 @@ class VertexGeminiConfig(VertexAIBaseConfig, BaseConfig):
|
|||
citation_metadata.append(candidate["citationMetadata"])
|
||||
|
||||
if "parts" in candidate["content"]:
|
||||
chat_completion_message[
|
||||
"content"
|
||||
] = VertexGeminiConfig().get_assistant_content_message(
|
||||
(
|
||||
content,
|
||||
reasoning_content,
|
||||
) = VertexGeminiConfig().get_assistant_content_message(
|
||||
parts=candidate["content"]["parts"]
|
||||
)
|
||||
if content is not None:
|
||||
chat_completion_message["content"] = content
|
||||
if reasoning_content is not None:
|
||||
chat_completion_message["reasoning_content"] = reasoning_content
|
||||
|
||||
functions, tools = self._transform_parts(
|
||||
parts=candidate["content"]["parts"],
|
||||
|
|
|
@ -38,7 +38,7 @@ def generate_iam_token(api_key=None, **params) -> str:
|
|||
headers = {}
|
||||
headers["Content-Type"] = "application/x-www-form-urlencoded"
|
||||
if api_key is None:
|
||||
api_key = get_secret_str("WX_API_KEY") or get_secret_str("WATSONX_API_KEY")
|
||||
api_key = get_secret_str("WX_API_KEY") or get_secret_str("WATSONX_API_KEY") or get_secret_str("WATSONX_APIKEY")
|
||||
if api_key is None:
|
||||
raise ValueError("API key is required")
|
||||
headers["Accept"] = "application/json"
|
||||
|
|