litellm-mirror/litellm/proxy/proxy_server.py
2023-09-28 16:24:41 -07:00

88 lines
No EOL
2.7 KiB
Python

import sys, os
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import litellm
print(litellm.__file__)
from fastapi import FastAPI, Request
from fastapi.responses import StreamingResponse
import json
app = FastAPI()
user_api_base = None
user_model = None
user_debug = False
user_max_tokens = None
user_temperature = None
def print_verbose(print_statement):
global user_debug
print(f"user_debug: {user_debug}")
if user_debug:
print(print_statement)
def initialize(model, api_base, debug, temperature, max_tokens):
global user_model, user_api_base, user_debug, user_max_tokens, user_temperature
user_model = model
user_api_base = api_base
user_debug = debug
user_max_tokens = max_tokens
user_temperature = temperature
# if debug:
# litellm.set_verbose = True
# for streaming
def data_generator(response):
print("inside generator")
for chunk in response:
print(f"chunk: {chunk}")
print_verbose(f"returned chunk: {chunk}")
yield f"data: {json.dumps(chunk)}\n\n"
@app.get("/models") # if project requires model list
def model_list():
return dict(
data=[{"id": user_model, "object": "model", "created": 1677610602, "owned_by": "openai"}],
object="list",
)
@app.post("/completions")
async def completion(request: Request):
data = await request.json()
print_verbose(f"data passed in: {data}")
if (user_model is None):
raise ValueError("Proxy model needs to be set")
data["model"] = user_model
if user_api_base:
data["api_base"] = user_api_base
response = litellm.text_completion(**data)
if 'stream' in data and data['stream'] == True: # use generate_responses to stream responses
return StreamingResponse(data_generator(response), media_type='text/event-stream')
return response
@app.post("/chat/completions")
async def chat_completion(request: Request):
data = await request.json()
print_verbose(f"data passed in: {data}")
if (user_model is None):
raise ValueError("Proxy model needs to be set")
data["model"] = user_model
# override with user settings
if user_temperature:
data["temperature"] = user_temperature
if user_max_tokens:
data["max_tokens"] = user_max_tokens
if user_api_base:
data["api_base"] = user_api_base
response = litellm.completion(**data)
if 'stream' in data and data['stream'] == True: # use generate_responses to stream responses
print("reaches stream")
return StreamingResponse(data_generator(response), media_type='text/event-stream')
print_verbose(f"response: {response}")
return response