mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 02:34:29 +00:00
* fix(gemini/transformation.py): make GET request to get uri details, if cannot be inferred
* fix: fix linting errors
* Revert "fix: fix linting errors"
This reverts commit 926a5a527f
.
* fix(gemini/transformation.py): modalities param support
Partially resolves https://github.com/BerriAI/litellm/issues/9237
* feat(google_ai_studio/): add image generation support
Closes https://github.com/BerriAI/litellm/issues/9237
* fix: fix types
* fix: fix ruff check
132 lines
5.8 KiB
Python
132 lines
5.8 KiB
Python
from typing import Dict, List, Optional
|
|
|
|
import litellm
|
|
from litellm.litellm_core_utils.prompt_templates.factory import (
|
|
convert_generic_image_chunk_to_openai_image_obj,
|
|
convert_to_anthropic_image_obj,
|
|
)
|
|
from litellm.types.llms.openai import AllMessageValues
|
|
from litellm.types.llms.vertex_ai import ContentType, PartType
|
|
|
|
from ...vertex_ai.gemini.transformation import _gemini_convert_messages_with_history
|
|
from ...vertex_ai.gemini.vertex_and_google_ai_studio_gemini import VertexGeminiConfig
|
|
|
|
|
|
class GoogleAIStudioGeminiConfig(VertexGeminiConfig):
|
|
"""
|
|
Reference: https://ai.google.dev/api/rest/v1beta/GenerationConfig
|
|
|
|
The class `GoogleAIStudioGeminiConfig` provides configuration for the Google AI Studio's Gemini API interface. Below are the parameters:
|
|
|
|
- `temperature` (float): This controls the degree of randomness in token selection.
|
|
|
|
- `max_output_tokens` (integer): This sets the limitation for the maximum amount of token in the text output. In this case, the default value is 256.
|
|
|
|
- `top_p` (float): The tokens are selected from the most probable to the least probable until the sum of their probabilities equals the `top_p` value. Default is 0.95.
|
|
|
|
- `top_k` (integer): The value of `top_k` determines how many of the most probable tokens are considered in the selection. For example, a `top_k` of 1 means the selected token is the most probable among all tokens. The default value is 40.
|
|
|
|
- `response_mime_type` (str): The MIME type of the response. The default value is 'text/plain'. Other values - `application/json`.
|
|
|
|
- `response_schema` (dict): Optional. Output response schema of the generated candidate text when response mime type can have schema. Schema can be objects, primitives or arrays and is a subset of OpenAPI schema. If set, a compatible response_mime_type must also be set. Compatible mimetypes: application/json: Schema for JSON response.
|
|
|
|
- `candidate_count` (int): Number of generated responses to return.
|
|
|
|
- `stop_sequences` (List[str]): The set of character sequences (up to 5) that will stop output generation. If specified, the API will stop at the first appearance of a stop sequence. The stop sequence will not be included as part of the response.
|
|
|
|
Note: Please make sure to modify the default parameters as required for your use case.
|
|
"""
|
|
|
|
temperature: Optional[float] = None
|
|
max_output_tokens: Optional[int] = None
|
|
top_p: Optional[float] = None
|
|
top_k: Optional[int] = None
|
|
response_mime_type: Optional[str] = None
|
|
response_schema: Optional[dict] = None
|
|
candidate_count: Optional[int] = None
|
|
stop_sequences: Optional[list] = None
|
|
|
|
def __init__(
|
|
self,
|
|
temperature: Optional[float] = None,
|
|
max_output_tokens: Optional[int] = None,
|
|
top_p: Optional[float] = None,
|
|
top_k: Optional[int] = None,
|
|
response_mime_type: Optional[str] = None,
|
|
response_schema: Optional[dict] = None,
|
|
candidate_count: Optional[int] = None,
|
|
stop_sequences: Optional[list] = None,
|
|
) -> None:
|
|
locals_ = locals().copy()
|
|
for key, value in locals_.items():
|
|
if key != "self" and value is not None:
|
|
setattr(self.__class__, key, value)
|
|
|
|
@classmethod
|
|
def get_config(cls):
|
|
return super().get_config()
|
|
|
|
def get_supported_openai_params(self, model: str) -> List[str]:
|
|
return [
|
|
"temperature",
|
|
"top_p",
|
|
"max_tokens",
|
|
"max_completion_tokens",
|
|
"stream",
|
|
"tools",
|
|
"tool_choice",
|
|
"functions",
|
|
"response_format",
|
|
"n",
|
|
"stop",
|
|
"logprobs",
|
|
"frequency_penalty",
|
|
"modalities",
|
|
]
|
|
|
|
def map_openai_params(
|
|
self,
|
|
non_default_params: Dict,
|
|
optional_params: Dict,
|
|
model: str,
|
|
drop_params: bool,
|
|
) -> Dict:
|
|
if litellm.vertex_ai_safety_settings is not None:
|
|
optional_params["safety_settings"] = litellm.vertex_ai_safety_settings
|
|
return super().map_openai_params(
|
|
model=model,
|
|
non_default_params=non_default_params,
|
|
optional_params=optional_params,
|
|
drop_params=drop_params,
|
|
)
|
|
|
|
def _transform_messages(
|
|
self, messages: List[AllMessageValues]
|
|
) -> List[ContentType]:
|
|
"""
|
|
Google AI Studio Gemini does not support image urls in messages.
|
|
"""
|
|
for message in messages:
|
|
_message_content = message.get("content")
|
|
if _message_content is not None and isinstance(_message_content, list):
|
|
_parts: List[PartType] = []
|
|
for element in _message_content:
|
|
if element.get("type") == "image_url":
|
|
img_element = element
|
|
_image_url: Optional[str] = None
|
|
format: Optional[str] = None
|
|
if isinstance(img_element.get("image_url"), dict):
|
|
_image_url = img_element["image_url"].get("url") # type: ignore
|
|
format = img_element["image_url"].get("format") # type: ignore
|
|
else:
|
|
_image_url = img_element.get("image_url") # type: ignore
|
|
if _image_url and "https://" in _image_url:
|
|
image_obj = convert_to_anthropic_image_obj(
|
|
_image_url, format=format
|
|
)
|
|
img_element["image_url"] = ( # type: ignore
|
|
convert_generic_image_chunk_to_openai_image_obj(
|
|
image_obj
|
|
)
|
|
)
|
|
return _gemini_convert_messages_with_history(messages=messages)
|