litellm-mirror/docs/my-website/docs/observability/custom_callback.md

458 lines
15 KiB
Markdown

# Custom Callbacks
## Callback Class
You can create a custom callback class to precisely log events as they occur in litellm.
```python
import litellm
from litellm.integrations.custom_logger import CustomLogger
from litellm import completion, acompletion
class MyCustomHandler(CustomLogger):
def log_pre_api_call(self, model, messages, kwargs):
print(f"Pre-API Call")
def log_post_api_call(self, kwargs, response_obj, start_time, end_time):
print(f"Post-API Call")
def log_stream_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Stream")
def log_success_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Success")
def log_failure_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Failure")
#### ASYNC #### - for acompletion/aembeddings
async def async_log_stream_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Async Streaming")
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Async Success")
async def async_log_failure_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Async Success")
customHandler = MyCustomHandler()
litellm.callbacks = [customHandler]
## sync
response = completion(model="gpt-3.5-turbo", messages=[{ "role": "user", "content": "Hi 👋 - i'm openai"}],
stream=True)
for chunk in response:
continue
## async
import asyncio
def async completion():
response = await acompletion(model="gpt-3.5-turbo", messages=[{ "role": "user", "content": "Hi 👋 - i'm openai"}],
stream=True)
async for chunk in response:
continue
asyncio.run(completion())
```
## Callback Functions
If you just want to log on a specific event (e.g. on input) - you can use callback functions.
You can set custom callbacks to trigger for:
- `litellm.input_callback` - Track inputs/transformed inputs before making the LLM API call
- `litellm.success_callback` - Track inputs/outputs after making LLM API call
- `litellm.failure_callback` - Track inputs/outputs + exceptions for litellm calls
## Defining a Custom Callback Function
Create a custom callback function that takes specific arguments:
```python
def custom_callback(
kwargs, # kwargs to completion
completion_response, # response from completion
start_time, end_time # start/end time
):
# Your custom code here
print("LITELLM: in custom callback function")
print("kwargs", kwargs)
print("completion_response", completion_response)
print("start_time", start_time)
print("end_time", end_time)
```
### Setting the custom callback function
```python
import litellm
litellm.success_callback = [custom_callback]
```
## Using Your Custom Callback Function
```python
import litellm
from litellm import completion
# Assign the custom callback function
litellm.success_callback = [custom_callback]
response = completion(
model="gpt-3.5-turbo",
messages=[
{
"role": "user",
"content": "Hi 👋 - i'm openai"
}
]
)
print(response)
```
## Async Callback Functions
We recommend using the Custom Logger class for async.
```python
from litellm.integrations.custom_logger import CustomLogger
from litellm import acompletion
class MyCustomHandler(CustomLogger):
#### ASYNC ####
async def async_log_stream_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Async Streaming")
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Async Success")
async def async_log_failure_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Async Failure")
import asyncio
customHandler = MyCustomHandler()
litellm.callbacks = [customHandler]
def async completion():
response = await acompletion(model="gpt-3.5-turbo", messages=[{ "role": "user", "content": "Hi 👋 - i'm openai"}],
stream=True)
async for chunk in response:
continue
asyncio.run(completion())
```
**Functions**
If you just want to pass in an async function for logging.
LiteLLM currently supports just async success callback functions for async completion/embedding calls.
```python
import asyncio, litellm
async def async_test_logging_fn(kwargs, completion_obj, start_time, end_time):
print(f"On Async Success!")
async def test_chat_openai():
try:
# litellm.set_verbose = True
litellm.success_callback = [async_test_logging_fn]
response = await litellm.acompletion(model="gpt-3.5-turbo",
messages=[{
"role": "user",
"content": "Hi 👋 - i'm openai"
}],
stream=True)
async for chunk in response:
continue
except Exception as e:
print(e)
pytest.fail(f"An error occurred - {str(e)}")
asyncio.run(test_chat_openai())
```
:::info
We're actively trying to expand this to other event types. [Tell us if you need this!](https://github.com/BerriAI/litellm/issues/1007)
:::
## What's in kwargs?
Notice we pass in a kwargs argument to custom callback.
```python
def custom_callback(
kwargs, # kwargs to completion
completion_response, # response from completion
start_time, end_time # start/end time
):
# Your custom code here
print("LITELLM: in custom callback function")
print("kwargs", kwargs)
print("completion_response", completion_response)
print("start_time", start_time)
print("end_time", end_time)
```
This is a dictionary containing all the model-call details (the params we receive, the values we send to the http endpoint, the response we receive, stacktrace in case of errors, etc.).
This is all logged in the [model_call_details via our Logger](https://github.com/BerriAI/litellm/blob/fc757dc1b47d2eb9d0ea47d6ad224955b705059d/litellm/utils.py#L246).
Here's exactly what you can expect in the kwargs dictionary:
```shell
### DEFAULT PARAMS ###
"model": self.model,
"messages": self.messages,
"optional_params": self.optional_params, # model-specific params passed in
"litellm_params": self.litellm_params, # litellm-specific params passed in (e.g. metadata passed to completion call)
"start_time": self.start_time, # datetime object of when call was started
### PRE-API CALL PARAMS ### (check via kwargs["log_event_type"]="pre_api_call")
"input" = input # the exact prompt sent to the LLM API
"api_key" = api_key # the api key used for that LLM API
"additional_args" = additional_args # any additional details for that API call (e.g. contains optional params sent)
### POST-API CALL PARAMS ### (check via kwargs["log_event_type"]="post_api_call")
"original_response" = original_response # the original http response received (saved via response.text)
### ON-SUCCESS PARAMS ### (check via kwargs["log_event_type"]="successful_api_call")
"complete_streaming_response" = complete_streaming_response # the complete streamed response (only set if `completion(..stream=True)`)
"end_time" = end_time # datetime object of when call was completed
### ON-FAILURE PARAMS ### (check via kwargs["log_event_type"]="failed_api_call")
"exception" = exception # the Exception raised
"traceback_exception" = traceback_exception # the traceback generated via `traceback.format_exc()`
"end_time" = end_time # datetime object of when call was completed
```
### Cache hits
Cache hits are logged in success events as `kwarg["cache_hit"]`.
Here's an example of accessing it:
```python
import litellm
from litellm.integrations.custom_logger import CustomLogger
from litellm import completion, acompletion, Cache
class MyCustomHandler(CustomLogger):
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Success")
print(f"Value of Cache hit: {kwargs['cache_hit']"})
async def test_async_completion_azure_caching():
customHandler_caching = MyCustomHandler()
litellm.cache = Cache(type="redis", host=os.environ['REDIS_HOST'], port=os.environ['REDIS_PORT'], password=os.environ['REDIS_PASSWORD'])
litellm.callbacks = [customHandler_caching]
unique_time = time.time()
response1 = await litellm.acompletion(model="azure/chatgpt-v-2",
messages=[{
"role": "user",
"content": f"Hi 👋 - i'm async azure {unique_time}"
}],
caching=True)
await asyncio.sleep(1)
print(f"customHandler_caching.states pre-cache hit: {customHandler_caching.states}")
response2 = await litellm.acompletion(model="azure/chatgpt-v-2",
messages=[{
"role": "user",
"content": f"Hi 👋 - i'm async azure {unique_time}"
}],
caching=True)
await asyncio.sleep(1) # success callbacks are done in parallel
print(f"customHandler_caching.states post-cache hit: {customHandler_caching.states}")
assert len(customHandler_caching.errors) == 0
assert len(customHandler_caching.states) == 4 # pre, post, success, success
```
### Get complete streaming response
LiteLLM will pass you the complete streaming response in the final streaming chunk as part of the kwargs for your custom callback function.
```python
# litellm.set_verbose = False
def custom_callback(
kwargs, # kwargs to completion
completion_response, # response from completion
start_time, end_time # start/end time
):
# print(f"streaming response: {completion_response}")
if "complete_streaming_response" in kwargs:
print(f"Complete Streaming Response: {kwargs['complete_streaming_response']}")
# Assign the custom callback function
litellm.success_callback = [custom_callback]
response = completion(model="claude-instant-1", messages=messages, stream=True)
for idx, chunk in enumerate(response):
pass
```
### Log additional metadata
LiteLLM accepts a metadata dictionary in the completion call. You can pass additional metadata into your completion call via `completion(..., metadata={"key": "value"})`.
Since this is a [litellm-specific param](https://github.com/BerriAI/litellm/blob/b6a015404eed8a0fa701e98f4581604629300ee3/litellm/main.py#L235), it's accessible via kwargs["litellm_params"]
```python
from litellm import completion
import os, litellm
## set ENV variables
os.environ["OPENAI_API_KEY"] = "your-api-key"
messages = [{ "content": "Hello, how are you?","role": "user"}]
def custom_callback(
kwargs, # kwargs to completion
completion_response, # response from completion
start_time, end_time # start/end time
):
print(kwargs["litellm_params"]["metadata"])
# Assign the custom callback function
litellm.success_callback = [custom_callback]
response = litellm.completion(model="gpt-3.5-turbo", messages=messages, metadata={"hello": "world"})
```
## Examples
### Custom Callback to track costs for Streaming + Non-Streaming
```python
def track_cost_callback(
kwargs, # kwargs to completion
completion_response, # response from completion
start_time, end_time # start/end time
):
try:
# init logging config
logging.basicConfig(
filename='cost.log',
level=logging.INFO,
format='%(asctime)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S'
)
# check if it has collected an entire stream response
if "complete_streaming_response" in kwargs:
# for tracking streaming cost we pass the "messages" and the output_text to litellm.completion_cost
completion_response=kwargs["complete_streaming_response"]
input_text = kwargs["messages"]
output_text = completion_response["choices"][0]["message"]["content"]
response_cost = litellm.completion_cost(
model = kwargs["model"],
messages = input_text,
completion=output_text
)
print("streaming response_cost", response_cost)
logging.info(f"Model {kwargs['model']} Cost: ${response_cost:.8f}")
# for non streaming responses
else:
# we pass the completion_response obj
if kwargs["stream"] != True:
response_cost = litellm.completion_cost(completion_response=completion_response)
print("regular response_cost", response_cost)
logging.info(f"Model {completion_response.model} Cost: ${response_cost:.8f}")
except:
pass
# Assign the custom callback function
litellm.success_callback = [track_cost_callback]
response = completion(
model="gpt-3.5-turbo",
messages=[
{
"role": "user",
"content": "Hi 👋 - i'm openai"
}
]
)
print(response)
```
### Custom Callback to log transformed Input to LLMs
```python
def get_transformed_inputs(
kwargs,
):
params_to_model = kwargs["additional_args"]["complete_input_dict"]
print("params to model", params_to_model)
litellm.input_callback = [get_transformed_inputs]
def test_chat_openai():
try:
response = completion(model="claude-2",
messages=[{
"role": "user",
"content": "Hi 👋 - i'm openai"
}])
print(response)
except Exception as e:
print(e)
pass
```
#### Output
```shell
params to model {'model': 'claude-2', 'prompt': "\n\nHuman: Hi 👋 - i'm openai\n\nAssistant: ", 'max_tokens_to_sample': 256}
```
### Custom Callback to write to Mixpanel
```python
import mixpanel
import litellm
from litellm import completion
def custom_callback(
kwargs, # kwargs to completion
completion_response, # response from completion
start_time, end_time # start/end time
):
# Your custom code here
mixpanel.track("LLM Response", {"llm_response": completion_response})
# Assign the custom callback function
litellm.success_callback = [custom_callback]
response = completion(
model="gpt-3.5-turbo",
messages=[
{
"role": "user",
"content": "Hi 👋 - i'm openai"
}
]
)
print(response)
```