litellm-mirror/docs/my-website/docs/completion/stream.md
2024-12-30 21:06:34 -08:00

150 lines
No EOL
4.5 KiB
Markdown

import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# Streaming + Async
| Feature | LiteLLM SDK | LiteLLM Proxy |
|---------|-------------|---------------|
| Streaming | ✅ [start here](#streaming-responses) | ✅ [start here](../proxy/user_keys#streaming) |
| Async | ✅ [start here](#async-completion) | ✅ [start here](../proxy/user_keys#streaming) |
| Async Streaming | ✅ [start here](#async-streaming) | ✅ [start here](../proxy/user_keys#streaming) |
## Streaming Responses
LiteLLM supports streaming the model response back by passing `stream=True` as an argument to the completion function
### Usage
```python
from litellm import completion
messages = [{"role": "user", "content": "Hey, how's it going?"}]
response = completion(model="gpt-3.5-turbo", messages=messages, stream=True)
for part in response:
print(part.choices[0].delta.content or "")
```
### Helper function
LiteLLM also exposes a helper function to rebuild the complete streaming response from the list of chunks.
```python
from litellm import completion
messages = [{"role": "user", "content": "Hey, how's it going?"}]
response = completion(model="gpt-3.5-turbo", messages=messages, stream=True)
for chunk in response:
chunks.append(chunk)
print(litellm.stream_chunk_builder(chunks, messages=messages))
```
## Async Completion
Asynchronous Completion with LiteLLM. LiteLLM provides an asynchronous version of the completion function called `acompletion`
### Usage
```python
from litellm import acompletion
import asyncio
async def test_get_response():
user_message = "Hello, how are you?"
messages = [{"content": user_message, "role": "user"}]
response = await acompletion(model="gpt-3.5-turbo", messages=messages)
return response
response = asyncio.run(test_get_response())
print(response)
```
## Async Streaming
We've implemented an `__anext__()` function in the streaming object returned. This enables async iteration over the streaming object.
### Usage
Here's an example of using it with openai.
```python
from litellm import acompletion
import asyncio, os, traceback
async def completion_call():
try:
print("test acompletion + streaming")
response = await acompletion(
model="gpt-3.5-turbo",
messages=[{"content": "Hello, how are you?", "role": "user"}],
stream=True
)
print(f"response: {response}")
async for chunk in response:
print(chunk)
except:
print(f"error occurred: {traceback.format_exc()}")
pass
asyncio.run(completion_call())
```
## Error Handling - Infinite Loops
Sometimes a model might enter an infinite loop, and keep repeating the same chunks - [e.g. issue](https://github.com/BerriAI/litellm/issues/5158)
Break out of it with:
```python
litellm.REPEATED_STREAMING_CHUNK_LIMIT = 100 # # catch if model starts looping the same chunk while streaming. Uses high default to prevent false positives.
```
LiteLLM provides error handling for this, by checking if a chunk is repeated 'n' times (Default is 100). If it exceeds that limit, it will raise a `litellm.InternalServerError`, to allow retry logic to happen.
<Tabs>
<TabItem value="sdk" label="SDK">
```python
import litellm
import os
litellm.set_verbose = False
loop_amount = litellm.REPEATED_STREAMING_CHUNK_LIMIT + 1
chunks = [
litellm.ModelResponse(**{
"id": "chatcmpl-123",
"object": "chat.completion.chunk",
"created": 1694268190,
"model": "gpt-3.5-turbo-0125",
"system_fingerprint": "fp_44709d6fcb",
"choices": [
{"index": 0, "delta": {"content": "How are you?"}, "finish_reason": "stop"}
],
}, stream=True)
] * loop_amount
completion_stream = litellm.ModelResponseListIterator(model_responses=chunks)
response = litellm.CustomStreamWrapper(
completion_stream=completion_stream,
model="gpt-3.5-turbo",
custom_llm_provider="cached_response",
logging_obj=litellm.Logging(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hey"}],
stream=True,
call_type="completion",
start_time=time.time(),
litellm_call_id="12345",
function_id="1245",
),
)
for chunk in response:
continue # expect to raise InternalServerError
```
</TabItem>
<TabItem value="proxy" label="PROXY">
Define this on your config.yaml on the proxy.
```yaml
litellm_settings:
REPEATED_STREAMING_CHUNK_LIMIT: 100 # this overrides the litellm default
```
The proxy uses the litellm SDK. To validate this works, try the 'SDK' code snippet.
</TabItem>
</Tabs>