litellm-mirror/litellm/llms/petals.py
2023-10-02 12:02:53 -07:00

108 lines
3 KiB
Python

import os
import json
from enum import Enum
import requests
import time
from typing import Callable
from litellm.utils import ModelResponse
class PetalsError(Exception):
def __init__(self, status_code, message):
self.status_code = status_code
self.message = message
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs
PetalsConfig = {
"max_new_tokens": 256
}
def completion(
model: str,
messages: list,
model_response: ModelResponse,
print_verbose: Callable,
encoding,
logging_obj,
optional_params=None,
stream=False,
litellm_params=None,
logger_fn=None,
):
try:
import torch
from transformers import AutoTokenizer
from petals import AutoDistributedModelForCausalLM
except:
raise Exception(
"Importing torch, transformers, petals failed\nTry pip installing petals \npip install git+https://github.com/bigscience-workshop/petals"
)
model = model
tokenizer = AutoTokenizer.from_pretrained(model, use_fast=False, add_bos_token=False)
model_obj = AutoDistributedModelForCausalLM.from_pretrained(model)
prompt = ""
for message in messages:
if "role" in message:
if message["role"] == "user":
prompt += (
f"{message['content']}"
)
else:
prompt += (
f"{message['content']}"
)
else:
prompt += f"{message['content']}"
## Load Config
for k, v in PetalsConfig.items():
if k not in optional_params:
optional_params[k] = v
## LOGGING
logging_obj.pre_call(
input=prompt,
api_key="",
additional_args={"complete_input_dict": optional_params},
)
## COMPLETION CALL
inputs = tokenizer(prompt, return_tensors="pt")["input_ids"]
# optional params: max_new_tokens=1,temperature=0.9, top_p=0.6
outputs = model_obj.generate(inputs, **optional_params)
## LOGGING
logging_obj.post_call(
input=prompt,
api_key="",
original_response=outputs,
additional_args={"complete_input_dict": optional_params},
)
## RESPONSE OBJECT
output_text = tokenizer.decode(outputs[0])
model_response["choices"][0]["message"]["content"] = output_text
prompt_tokens = len(
encoding.encode(prompt)
)
completion_tokens = len(
encoding.encode(model_response["choices"][0]["message"]["content"])
)
model_response["created"] = time.time()
model_response["model"] = model
model_response["usage"] = {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens,
}
return model_response
def embedding():
# logic for parsing in - calling - parsing out model embedding calls
pass