mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 02:34:29 +00:00
* test(test_get_model_info.py): add unit test confirming router deployment updates global 'get_model_info' * fix(get_supported_openai_params.py): fix custom llm provider 'get_supported_openai_params' Fixes https://github.com/BerriAI/litellm/issues/7668 * docs(azure.md): clarify how azure ad token refresh on proxy works Closes https://github.com/BerriAI/litellm/issues/7665
454 lines
13 KiB
Python
454 lines
13 KiB
Python
# What is this?
|
|
## Unit tests for the CustomLLM class
|
|
|
|
|
|
import asyncio
|
|
import os
|
|
import sys
|
|
import time
|
|
import traceback
|
|
|
|
import openai
|
|
import pytest
|
|
|
|
sys.path.insert(
|
|
0, os.path.abspath("../..")
|
|
) # Adds the parent directory to the system path
|
|
import os
|
|
from collections import defaultdict
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
from typing import (
|
|
Any,
|
|
AsyncGenerator,
|
|
AsyncIterator,
|
|
Callable,
|
|
Coroutine,
|
|
Iterator,
|
|
Optional,
|
|
Union,
|
|
)
|
|
from unittest.mock import AsyncMock, MagicMock, patch
|
|
import httpx
|
|
from dotenv import load_dotenv
|
|
|
|
import litellm
|
|
from litellm import (
|
|
ChatCompletionDeltaChunk,
|
|
ChatCompletionUsageBlock,
|
|
CustomLLM,
|
|
GenericStreamingChunk,
|
|
ModelResponse,
|
|
acompletion,
|
|
completion,
|
|
get_llm_provider,
|
|
image_generation,
|
|
)
|
|
from litellm.utils import ModelResponseIterator
|
|
from litellm.types.utils import ImageResponse, ImageObject
|
|
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
|
|
|
|
|
|
class CustomModelResponseIterator:
|
|
def __init__(self, streaming_response: Union[Iterator, AsyncIterator]):
|
|
self.streaming_response = streaming_response
|
|
|
|
def chunk_parser(self, chunk: Any) -> GenericStreamingChunk:
|
|
return GenericStreamingChunk(
|
|
text="hello world",
|
|
tool_use=None,
|
|
is_finished=True,
|
|
finish_reason="stop",
|
|
usage=ChatCompletionUsageBlock(
|
|
prompt_tokens=10, completion_tokens=20, total_tokens=30
|
|
),
|
|
index=0,
|
|
)
|
|
|
|
# Sync iterator
|
|
def __iter__(self):
|
|
return self
|
|
|
|
def __next__(self) -> GenericStreamingChunk:
|
|
try:
|
|
chunk: Any = self.streaming_response.__next__() # type: ignore
|
|
except StopIteration:
|
|
raise StopIteration
|
|
except ValueError as e:
|
|
raise RuntimeError(f"Error receiving chunk from stream: {e}")
|
|
|
|
try:
|
|
return self.chunk_parser(chunk=chunk)
|
|
except StopIteration:
|
|
raise StopIteration
|
|
except ValueError as e:
|
|
raise RuntimeError(f"Error parsing chunk: {e},\nReceived chunk: {chunk}")
|
|
|
|
# Async iterator
|
|
def __aiter__(self):
|
|
self.async_response_iterator = self.streaming_response.__aiter__() # type: ignore
|
|
return self.streaming_response
|
|
|
|
async def __anext__(self) -> GenericStreamingChunk:
|
|
try:
|
|
chunk = await self.async_response_iterator.__anext__()
|
|
except StopAsyncIteration:
|
|
raise StopAsyncIteration
|
|
except ValueError as e:
|
|
raise RuntimeError(f"Error receiving chunk from stream: {e}")
|
|
|
|
try:
|
|
return self.chunk_parser(chunk=chunk)
|
|
except StopIteration:
|
|
raise StopIteration
|
|
except ValueError as e:
|
|
raise RuntimeError(f"Error parsing chunk: {e},\nReceived chunk: {chunk}")
|
|
|
|
|
|
class MyCustomLLM(CustomLLM):
|
|
def completion(
|
|
self,
|
|
model: str,
|
|
messages: list,
|
|
api_base: str,
|
|
custom_prompt_dict: dict,
|
|
model_response: ModelResponse,
|
|
print_verbose: Callable[..., Any],
|
|
encoding,
|
|
api_key,
|
|
logging_obj,
|
|
optional_params: dict,
|
|
acompletion=None,
|
|
litellm_params=None,
|
|
logger_fn=None,
|
|
headers={},
|
|
timeout: Optional[Union[float, openai.Timeout]] = None,
|
|
client: Optional[litellm.HTTPHandler] = None,
|
|
) -> ModelResponse:
|
|
return litellm.completion(
|
|
model="gpt-3.5-turbo",
|
|
messages=[{"role": "user", "content": "Hello world"}],
|
|
mock_response="Hi!",
|
|
) # type: ignore
|
|
|
|
async def acompletion(
|
|
self,
|
|
model: str,
|
|
messages: list,
|
|
api_base: str,
|
|
custom_prompt_dict: dict,
|
|
model_response: ModelResponse,
|
|
print_verbose: Callable[..., Any],
|
|
encoding,
|
|
api_key,
|
|
logging_obj,
|
|
optional_params: dict,
|
|
acompletion=None,
|
|
litellm_params=None,
|
|
logger_fn=None,
|
|
headers={},
|
|
timeout: Optional[Union[float, openai.Timeout]] = None,
|
|
client: Optional[litellm.AsyncHTTPHandler] = None,
|
|
) -> litellm.ModelResponse:
|
|
return litellm.completion(
|
|
model="gpt-3.5-turbo",
|
|
messages=[{"role": "user", "content": "Hello world"}],
|
|
mock_response="Hi!",
|
|
) # type: ignore
|
|
|
|
def streaming(
|
|
self,
|
|
model: str,
|
|
messages: list,
|
|
api_base: str,
|
|
custom_prompt_dict: dict,
|
|
model_response: ModelResponse,
|
|
print_verbose: Callable[..., Any],
|
|
encoding,
|
|
api_key,
|
|
logging_obj,
|
|
optional_params: dict,
|
|
acompletion=None,
|
|
litellm_params=None,
|
|
logger_fn=None,
|
|
headers={},
|
|
timeout: Optional[Union[float, openai.Timeout]] = None,
|
|
client: Optional[litellm.HTTPHandler] = None,
|
|
) -> Iterator[GenericStreamingChunk]:
|
|
generic_streaming_chunk: GenericStreamingChunk = {
|
|
"finish_reason": "stop",
|
|
"index": 0,
|
|
"is_finished": True,
|
|
"text": "Hello world",
|
|
"tool_use": None,
|
|
"usage": {"completion_tokens": 10, "prompt_tokens": 20, "total_tokens": 30},
|
|
}
|
|
|
|
completion_stream = ModelResponseIterator(
|
|
model_response=generic_streaming_chunk # type: ignore
|
|
)
|
|
custom_iterator = CustomModelResponseIterator(
|
|
streaming_response=completion_stream
|
|
)
|
|
return custom_iterator
|
|
|
|
async def astreaming( # type: ignore
|
|
self,
|
|
model: str,
|
|
messages: list,
|
|
api_base: str,
|
|
custom_prompt_dict: dict,
|
|
model_response: ModelResponse,
|
|
print_verbose: Callable[..., Any],
|
|
encoding,
|
|
api_key,
|
|
logging_obj,
|
|
optional_params: dict,
|
|
acompletion=None,
|
|
litellm_params=None,
|
|
logger_fn=None,
|
|
headers={},
|
|
timeout: Optional[Union[float, openai.Timeout]] = None,
|
|
client: Optional[litellm.AsyncHTTPHandler] = None,
|
|
) -> AsyncIterator[GenericStreamingChunk]: # type: ignore
|
|
generic_streaming_chunk: GenericStreamingChunk = {
|
|
"finish_reason": "stop",
|
|
"index": 0,
|
|
"is_finished": True,
|
|
"text": "Hello world",
|
|
"tool_use": None,
|
|
"usage": {"completion_tokens": 10, "prompt_tokens": 20, "total_tokens": 30},
|
|
}
|
|
|
|
yield generic_streaming_chunk # type: ignore
|
|
|
|
def image_generation(
|
|
self,
|
|
model: str,
|
|
prompt: str,
|
|
api_key: Optional[str],
|
|
api_base: Optional[str],
|
|
model_response: ImageResponse,
|
|
optional_params: dict,
|
|
logging_obj: Any,
|
|
timeout=None,
|
|
client: Optional[HTTPHandler] = None,
|
|
):
|
|
return ImageResponse(
|
|
created=int(time.time()),
|
|
data=[ImageObject(url="https://example.com/image.png")],
|
|
response_ms=1000,
|
|
)
|
|
|
|
async def aimage_generation(
|
|
self,
|
|
model: str,
|
|
prompt: str,
|
|
api_key: Optional[str],
|
|
api_base: Optional[str],
|
|
model_response: ImageResponse,
|
|
optional_params: dict,
|
|
logging_obj: Any,
|
|
timeout=None,
|
|
client: Optional[AsyncHTTPHandler] = None,
|
|
):
|
|
return ImageResponse(
|
|
created=int(time.time()),
|
|
data=[ImageObject(url="https://example.com/image.png")],
|
|
response_ms=1000,
|
|
)
|
|
|
|
|
|
def test_get_llm_provider():
|
|
""""""
|
|
from litellm.utils import custom_llm_setup
|
|
|
|
my_custom_llm = MyCustomLLM()
|
|
litellm.custom_provider_map = [
|
|
{"provider": "custom_llm", "custom_handler": my_custom_llm}
|
|
]
|
|
|
|
custom_llm_setup()
|
|
|
|
model, provider, _, _ = get_llm_provider(model="custom_llm/my-fake-model")
|
|
|
|
assert provider == "custom_llm"
|
|
|
|
|
|
def test_simple_completion():
|
|
my_custom_llm = MyCustomLLM()
|
|
litellm.custom_provider_map = [
|
|
{"provider": "custom_llm", "custom_handler": my_custom_llm}
|
|
]
|
|
resp = completion(
|
|
model="custom_llm/my-fake-model",
|
|
messages=[{"role": "user", "content": "Hello world!"}],
|
|
)
|
|
|
|
assert resp.choices[0].message.content == "Hi!"
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_simple_acompletion():
|
|
my_custom_llm = MyCustomLLM()
|
|
litellm.custom_provider_map = [
|
|
{"provider": "custom_llm", "custom_handler": my_custom_llm}
|
|
]
|
|
resp = await acompletion(
|
|
model="custom_llm/my-fake-model",
|
|
messages=[{"role": "user", "content": "Hello world!"}],
|
|
)
|
|
|
|
assert resp.choices[0].message.content == "Hi!"
|
|
|
|
|
|
def test_simple_completion_streaming():
|
|
my_custom_llm = MyCustomLLM()
|
|
litellm.custom_provider_map = [
|
|
{"provider": "custom_llm", "custom_handler": my_custom_llm}
|
|
]
|
|
resp = completion(
|
|
model="custom_llm/my-fake-model",
|
|
messages=[{"role": "user", "content": "Hello world!"}],
|
|
stream=True,
|
|
)
|
|
|
|
for chunk in resp:
|
|
print(chunk)
|
|
if chunk.choices[0].finish_reason is None:
|
|
assert isinstance(chunk.choices[0].delta.content, str)
|
|
else:
|
|
assert chunk.choices[0].finish_reason == "stop"
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_simple_completion_async_streaming():
|
|
my_custom_llm = MyCustomLLM()
|
|
litellm.custom_provider_map = [
|
|
{"provider": "custom_llm", "custom_handler": my_custom_llm}
|
|
]
|
|
resp = await litellm.acompletion(
|
|
model="custom_llm/my-fake-model",
|
|
messages=[{"role": "user", "content": "Hello world!"}],
|
|
stream=True,
|
|
)
|
|
|
|
async for chunk in resp:
|
|
print(chunk)
|
|
if chunk.choices[0].finish_reason is None:
|
|
assert isinstance(chunk.choices[0].delta.content, str)
|
|
else:
|
|
assert chunk.choices[0].finish_reason == "stop"
|
|
|
|
|
|
def test_simple_image_generation():
|
|
my_custom_llm = MyCustomLLM()
|
|
litellm.custom_provider_map = [
|
|
{"provider": "custom_llm", "custom_handler": my_custom_llm}
|
|
]
|
|
resp = image_generation(
|
|
model="custom_llm/my-fake-model",
|
|
prompt="Hello world",
|
|
)
|
|
|
|
print(resp)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_simple_image_generation_async():
|
|
my_custom_llm = MyCustomLLM()
|
|
litellm.custom_provider_map = [
|
|
{"provider": "custom_llm", "custom_handler": my_custom_llm}
|
|
]
|
|
resp = await litellm.aimage_generation(
|
|
model="custom_llm/my-fake-model",
|
|
prompt="Hello world",
|
|
)
|
|
|
|
print(resp)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_image_generation_async_additional_params():
|
|
my_custom_llm = MyCustomLLM()
|
|
litellm.custom_provider_map = [
|
|
{"provider": "custom_llm", "custom_handler": my_custom_llm}
|
|
]
|
|
|
|
with patch.object(
|
|
my_custom_llm, "aimage_generation", new=AsyncMock()
|
|
) as mock_client:
|
|
try:
|
|
resp = await litellm.aimage_generation(
|
|
model="custom_llm/my-fake-model",
|
|
prompt="Hello world",
|
|
api_key="my-api-key",
|
|
api_base="my-api-base",
|
|
my_custom_param="my-custom-param",
|
|
)
|
|
|
|
print(resp)
|
|
except Exception as e:
|
|
print(e)
|
|
|
|
mock_client.assert_awaited_once()
|
|
|
|
mock_client.call_args.kwargs["api_key"] == "my-api-key"
|
|
mock_client.call_args.kwargs["api_base"] == "my-api-base"
|
|
mock_client.call_args.kwargs["optional_params"] == {
|
|
"my_custom_param": "my-custom-param"
|
|
}
|
|
|
|
|
|
def test_get_supported_openai_params():
|
|
|
|
class MyCustomLLM(CustomLLM):
|
|
|
|
# This is what `get_supported_openai_params` should be returning:
|
|
def get_supported_openai_params(self, model: str) -> list[str]:
|
|
return [
|
|
"tools",
|
|
"tool_choice",
|
|
"temperature",
|
|
"top_p",
|
|
"top_k",
|
|
"min_p",
|
|
"typical_p",
|
|
"stop",
|
|
"seed",
|
|
"response_format",
|
|
"max_tokens",
|
|
"presence_penalty",
|
|
"frequency_penalty",
|
|
"repeat_penalty",
|
|
"tfs_z",
|
|
"mirostat_mode",
|
|
"mirostat_tau",
|
|
"mirostat_eta",
|
|
"logit_bias",
|
|
]
|
|
|
|
def completion(self, *args, **kwargs) -> litellm.ModelResponse:
|
|
return litellm.completion(
|
|
model="gpt-3.5-turbo",
|
|
messages=[{"role": "user", "content": "Hello world"}],
|
|
mock_response="Hi!",
|
|
) # type: ignore
|
|
|
|
my_custom_llm = MyCustomLLM()
|
|
|
|
litellm.custom_provider_map = [ # 👈 KEY STEP - REGISTER HANDLER
|
|
{"provider": "my-custom-llm", "custom_handler": my_custom_llm}
|
|
]
|
|
|
|
resp = completion(
|
|
model="my-custom-llm/my-fake-model",
|
|
messages=[{"role": "user", "content": "Hello world!"}],
|
|
)
|
|
|
|
assert resp.choices[0].message.content == "Hi!"
|
|
|
|
# Get supported openai params
|
|
from litellm import get_supported_openai_params
|
|
|
|
response = get_supported_openai_params(model="my-custom-llm/my-fake-model")
|
|
assert response is not None
|