mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 03:04:13 +00:00
* fix(utils.py): handle key error in msg validation * Support running Aim Guard during LLM call (#7918) * support running Aim Guard during LLM call * Rename header * adjust docs and fix type annotations * fix(timeout.md): doc fix for openai example on dynamic timeouts --------- Co-authored-by: Tomer Bin <117278227+hxtomer@users.noreply.github.com>
4.4 KiB
4.4 KiB
import Tabs from '@theme/Tabs'; import TabItem from '@theme/TabItem';
Timeouts
The timeout set in router is for the entire length of the call, and is passed down to the completion() call level as well.
Global Timeouts
from litellm import Router
model_list = [{...}]
router = Router(model_list=model_list,
timeout=30) # raise timeout error if call takes > 30s
print(response)
router_settings:
timeout: 30 # sets a 30s timeout for the entire call
Start Proxy
$ litellm --config /path/to/config.yaml
Custom Timeouts, Stream Timeouts - Per Model
For each model you can set timeout
& stream_timeout
under litellm_params
from litellm import Router
import asyncio
model_list = [{
"model_name": "gpt-3.5-turbo",
"litellm_params": {
"model": "azure/chatgpt-v-2",
"api_key": os.getenv("AZURE_API_KEY"),
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
"timeout": 300 # sets a 5 minute timeout
"stream_timeout": 30 # sets a 30s timeout for streaming calls
}
}]
# init router
router = Router(model_list=model_list, routing_strategy="least-busy")
async def router_acompletion():
response = await router.acompletion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hey, how's it going?"}]
)
print(response)
return response
asyncio.run(router_acompletion())
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/gpt-turbo-small-eu
api_base: https://my-endpoint-europe-berri-992.openai.azure.com/
api_key: <your-key>
timeout: 0.1 # timeout in (seconds)
stream_timeout: 0.01 # timeout for stream requests (seconds)
max_retries: 5
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/gpt-turbo-small-ca
api_base: https://my-endpoint-canada-berri992.openai.azure.com/
api_key:
timeout: 0.1 # timeout in (seconds)
stream_timeout: 0.01 # timeout for stream requests (seconds)
max_retries: 5
Start Proxy
$ litellm --config /path/to/config.yaml
Setting Dynamic Timeouts - Per Request
LiteLLM supports setting a timeout
per request
Example Usage
from litellm import Router
model_list = [{...}]
router = Router(model_list=model_list)
response = router.completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "what color is red"}],
timeout=1
)
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data-raw '{
"model": "gpt-3.5-turbo",
"messages": [
{"role": "user", "content": "what color is red"}
],
"logit_bias": {12481: 100},
"timeout": 1
}'
import openai
client = openai.OpenAI(
api_key="anything",
base_url="http://0.0.0.0:4000"
)
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "user", "content": "what color is red"}
],
logit_bias={12481: 100},
extra_body={"timeout": 1} # 👈 KEY CHANGE
)
print(response)
Testing timeout handling
To test if your retry/fallback logic can handle timeouts, you can set mock_timeout=True
for testing.
This is currently only supported on /chat/completions
and /completions
endpoints. Please let us know if you need this for other endpoints.
curl -L -X POST 'http://0.0.0.0:4000/v1/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
--data-raw '{
"model": "gemini/gemini-1.5-flash",
"messages": [
{"role": "user", "content": "hi my email is ishaan@berri.ai"}
],
"mock_timeout": true # 👈 KEY CHANGE
}'