litellm-mirror/docs/my-website/docs/providers/gemini.md
Krish Dholakia bbfcb1ac7e
Litellm release notes 04 19 2025 (#10169)
* docs(index.md): initial draft release notes

* docs: note all pending docs

* build(model_prices_and_context_window.json): add o3, gpt-4.1, o4-mini pricing

* docs(vllm.md): update vllm doc to show file message type support

* docs(mistral.md): add mistral passthrough route doc

* docs(gemini.md): add gemini thinking to docs

* docs(vertex.md): add thinking/reasoning content for gemini models to docs

* docs(index.md): more links

* docs(index.md): add more links, images

* docs(index.md): cleanup highlights
2025-04-19 17:26:30 -07:00

28 KiB

import Image from '@theme/IdealImage'; import Tabs from '@theme/Tabs'; import TabItem from '@theme/TabItem';

Gemini - Google AI Studio

Property Details
Description Google AI Studio is a fully-managed AI development platform for building and using generative AI.
Provider Route on LiteLLM gemini/
Provider Doc Google AI Studio ↗
API Endpoint for Provider https://generativelanguage.googleapis.com
Supported OpenAI Endpoints /chat/completions, /embeddings, /completions
Pass-through Endpoint Supported

API Keys

import os
os.environ["GEMINI_API_KEY"] = "your-api-key"

Sample Usage

from litellm import completion
import os

os.environ['GEMINI_API_KEY'] = ""
response = completion(
    model="gemini/gemini-pro", 
    messages=[{"role": "user", "content": "write code for saying hi from LiteLLM"}]
)

Supported OpenAI Params

  • temperature
  • top_p
  • max_tokens
  • max_completion_tokens
  • stream
  • tools
  • tool_choice
  • functions
  • response_format
  • n
  • stop
  • logprobs
  • frequency_penalty
  • modalities
  • reasoning_content

Anthropic Params

  • thinking (used to set max budget tokens across anthropic/gemini models)

See Updated List

Usage - Thinking / reasoning_content

LiteLLM translates OpenAI's reasoning_effort to Gemini's thinking parameter. Code

Mapping

reasoning_effort thinking
"low" "budget_tokens": 1024
"medium" "budget_tokens": 2048
"high" "budget_tokens": 4096
from litellm import completion

resp = completion(
    model="gemini/gemini-2.5-flash-preview-04-17",
    messages=[{"role": "user", "content": "What is the capital of France?"}],
    reasoning_effort="low",
)

  1. Setup config.yaml
- model_name: gemini-2.5-flash
  litellm_params:
    model: gemini/gemini-2.5-flash-preview-04-17
    api_key: os.environ/GEMINI_API_KEY
  1. Start proxy
litellm --config /path/to/config.yaml
  1. Test it!
curl http://0.0.0.0:4000/v1/chat/completions \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer <YOUR-LITELLM-KEY>" \
  -d '{
    "model": "gemini-2.5-flash",
    "messages": [{"role": "user", "content": "What is the capital of France?"}],
    "reasoning_effort": "low"
  }'

Expected Response

ModelResponse(
    id='chatcmpl-c542d76d-f675-4e87-8e5f-05855f5d0f5e',
    created=1740470510,
    model='claude-3-7-sonnet-20250219',
    object='chat.completion',
    system_fingerprint=None,
    choices=[
        Choices(
            finish_reason='stop',
            index=0,
            message=Message(
                content="The capital of France is Paris.",
                role='assistant',
                tool_calls=None,
                function_call=None,
                reasoning_content='The capital of France is Paris. This is a very straightforward factual question.'
            ),
        )
    ],
    usage=Usage(
        completion_tokens=68,
        prompt_tokens=42,
        total_tokens=110,
        completion_tokens_details=None,
        prompt_tokens_details=PromptTokensDetailsWrapper(
            audio_tokens=None,
            cached_tokens=0,
            text_tokens=None,
            image_tokens=None
        ),
        cache_creation_input_tokens=0,
        cache_read_input_tokens=0
    )
)

Pass thinking to Gemini models

You can also pass the thinking parameter to Gemini models.

This is translated to Gemini's thinkingConfig parameter.

response = litellm.completion(
  model="gemini/gemini-2.5-flash-preview-04-17",
  messages=[{"role": "user", "content": "What is the capital of France?"}],
  thinking={"type": "enabled", "budget_tokens": 1024},
)
curl http://0.0.0.0:4000/v1/chat/completions \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer $LITELLM_KEY" \
  -d '{
    "model": "gemini/gemini-2.5-flash-preview-04-17",
    "messages": [{"role": "user", "content": "What is the capital of France?"}],
    "thinking": {"type": "enabled", "budget_tokens": 1024}
  }'

Passing Gemini Specific Params

Response schema

LiteLLM supports sending response_schema as a param for Gemini-1.5-Pro on Google AI Studio.

Response Schema

from litellm import completion 
import json 
import os 

os.environ['GEMINI_API_KEY'] = ""

messages = [
    {
        "role": "user",
        "content": "List 5 popular cookie recipes."
    }
]

response_schema = {
        "type": "array",
        "items": {
            "type": "object",
            "properties": {
                "recipe_name": {
                    "type": "string",
                },
            },
            "required": ["recipe_name"],
        },
    }


completion(
    model="gemini/gemini-1.5-pro", 
    messages=messages, 
    response_format={"type": "json_object", "response_schema": response_schema} # 👈 KEY CHANGE
    )

print(json.loads(completion.choices[0].message.content))
  1. Add model to config.yaml
model_list:
  - model_name: gemini-pro
    litellm_params:
      model: gemini/gemini-1.5-pro
      api_key: os.environ/GEMINI_API_KEY
  1. Start Proxy
$ litellm --config /path/to/config.yaml
  1. Make Request!
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
  "model": "gemini-pro",
  "messages": [
        {"role": "user", "content": "List 5 popular cookie recipes."}
    ],
  "response_format": {"type": "json_object", "response_schema": { 
        "type": "array",
        "items": {
            "type": "object",
            "properties": {
                "recipe_name": {
                    "type": "string",
                },
            },
            "required": ["recipe_name"],
        },
    }}
}
'

Validate Schema

To validate the response_schema, set enforce_validation: true.

from litellm import completion, JSONSchemaValidationError
try: 
	completion(
    model="gemini/gemini-1.5-pro", 
    messages=messages, 
    response_format={
        "type": "json_object", 
        "response_schema": response_schema,
        "enforce_validation": true # 👈 KEY CHANGE
    }
	)
except JSONSchemaValidationError as e: 
	print("Raw Response: {}".format(e.raw_response))
	raise e
  1. Add model to config.yaml
model_list:
  - model_name: gemini-pro
    litellm_params:
      model: gemini/gemini-1.5-pro
      api_key: os.environ/GEMINI_API_KEY
  1. Start Proxy
$ litellm --config /path/to/config.yaml
  1. Make Request!
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
  "model": "gemini-pro",
  "messages": [
        {"role": "user", "content": "List 5 popular cookie recipes."}
    ],
  "response_format": {"type": "json_object", "response_schema": { 
        "type": "array",
        "items": {
            "type": "object",
            "properties": {
                "recipe_name": {
                    "type": "string",
                },
            },
            "required": ["recipe_name"],
        },
    }, 
    "enforce_validation": true
    }
}
'

LiteLLM will validate the response against the schema, and raise a JSONSchemaValidationError if the response does not match the schema.

JSONSchemaValidationError inherits from openai.APIError

Access the raw response with e.raw_response

GenerationConfig Params

To pass additional GenerationConfig params - e.g. topK, just pass it in the request body of the call, and LiteLLM will pass it straight through as a key-value pair in the request body.

See Gemini GenerationConfigParams

from litellm import completion 
import json 
import os 

os.environ['GEMINI_API_KEY'] = ""

messages = [
    {
        "role": "user",
        "content": "List 5 popular cookie recipes."
    }
]

completion(
    model="gemini/gemini-1.5-pro", 
    messages=messages, 
    topK=1 # 👈 KEY CHANGE
)

print(json.loads(completion.choices[0].message.content))
  1. Add model to config.yaml
model_list:
  - model_name: gemini-pro
    litellm_params:
      model: gemini/gemini-1.5-pro
      api_key: os.environ/GEMINI_API_KEY
  1. Start Proxy
$ litellm --config /path/to/config.yaml
  1. Make Request!
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
  "model": "gemini-pro",
  "messages": [
        {"role": "user", "content": "List 5 popular cookie recipes."}
    ],
  "topK": 1 # 👈 KEY CHANGE
}
'

Validate Schema

To validate the response_schema, set enforce_validation: true.

from litellm import completion, JSONSchemaValidationError
try: 
	completion(
    model="gemini/gemini-1.5-pro", 
    messages=messages, 
    response_format={
        "type": "json_object", 
        "response_schema": response_schema,
        "enforce_validation": true # 👈 KEY CHANGE
    }
	)
except JSONSchemaValidationError as e: 
	print("Raw Response: {}".format(e.raw_response))
	raise e
  1. Add model to config.yaml
model_list:
  - model_name: gemini-pro
    litellm_params:
      model: gemini/gemini-1.5-pro
      api_key: os.environ/GEMINI_API_KEY
  1. Start Proxy
$ litellm --config /path/to/config.yaml
  1. Make Request!
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
  "model": "gemini-pro",
  "messages": [
        {"role": "user", "content": "List 5 popular cookie recipes."}
    ],
  "response_format": {"type": "json_object", "response_schema": { 
        "type": "array",
        "items": {
            "type": "object",
            "properties": {
                "recipe_name": {
                    "type": "string",
                },
            },
            "required": ["recipe_name"],
        },
    }, 
    "enforce_validation": true
    }
}
'

Specifying Safety Settings

In certain use-cases you may need to make calls to the models and pass safety settings different from the defaults. To do so, simple pass the safety_settings argument to completion or acompletion. For example:

response = completion(
    model="gemini/gemini-pro", 
    messages=[{"role": "user", "content": "write code for saying hi from LiteLLM"}],
    safety_settings=[
        {
            "category": "HARM_CATEGORY_HARASSMENT",
            "threshold": "BLOCK_NONE",
        },
        {
            "category": "HARM_CATEGORY_HATE_SPEECH",
            "threshold": "BLOCK_NONE",
        },
        {
            "category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
            "threshold": "BLOCK_NONE",
        },
        {
            "category": "HARM_CATEGORY_DANGEROUS_CONTENT",
            "threshold": "BLOCK_NONE",
        },
    ]
)

Tool Calling

from litellm import completion
import os
# set env
os.environ["GEMINI_API_KEY"] = ".."

tools = [
    {
        "type": "function",
        "function": {
            "name": "get_current_weather",
            "description": "Get the current weather in a given location",
            "parameters": {
                "type": "object",
                "properties": {
                    "location": {
                        "type": "string",
                        "description": "The city and state, e.g. San Francisco, CA",
                    },
                    "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
                },
                "required": ["location"],
            },
        },
    }
]
messages = [{"role": "user", "content": "What's the weather like in Boston today?"}]

response = completion(
    model="gemini/gemini-1.5-flash",
    messages=messages,
    tools=tools,
)
# Add any assertions, here to check response args
print(response)
assert isinstance(response.choices[0].message.tool_calls[0].function.name, str)
assert isinstance(
    response.choices[0].message.tool_calls[0].function.arguments, str
)


Google Search Tool

from litellm import completion
import os

os.environ["GEMINI_API_KEY"] = ".."

tools = [{"googleSearch": {}}] # 👈 ADD GOOGLE SEARCH

response = completion(
    model="gemini/gemini-2.0-flash",
    messages=[{"role": "user", "content": "What is the weather in San Francisco?"}],
    tools=tools,
)

print(response)
  1. Setup config.yaml
model_list:
  - model_name: gemini-2.0-flash
    litellm_params:
      model: gemini/gemini-2.0-flash
      api_key: os.environ/GEMINI_API_KEY
  1. Start Proxy
$ litellm --config /path/to/config.yaml
  1. Make Request!
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
  "model": "gemini-2.0-flash",
  "messages": [{"role": "user", "content": "What is the weather in San Francisco?"}],
  "tools": [{"googleSearch": {}}]
}
'

Google Search Retrieval

from litellm import completion
import os

os.environ["GEMINI_API_KEY"] = ".."

tools = [{"googleSearchRetrieval": {}}] # 👈 ADD GOOGLE SEARCH

response = completion(
    model="gemini/gemini-2.0-flash",
    messages=[{"role": "user", "content": "What is the weather in San Francisco?"}],
    tools=tools,
)

print(response)
  1. Setup config.yaml
model_list:
  - model_name: gemini-2.0-flash
    litellm_params:
      model: gemini/gemini-2.0-flash
      api_key: os.environ/GEMINI_API_KEY
  1. Start Proxy
$ litellm --config /path/to/config.yaml
  1. Make Request!
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
  "model": "gemini-2.0-flash",
  "messages": [{"role": "user", "content": "What is the weather in San Francisco?"}],
  "tools": [{"googleSearchRetrieval": {}}]
}
'

Code Execution Tool

from litellm import completion
import os

os.environ["GEMINI_API_KEY"] = ".."

tools = [{"codeExecution": {}}] # 👈 ADD GOOGLE SEARCH

response = completion(
    model="gemini/gemini-2.0-flash",
    messages=[{"role": "user", "content": "What is the weather in San Francisco?"}],
    tools=tools,
)

print(response)
  1. Setup config.yaml
model_list:
  - model_name: gemini-2.0-flash
    litellm_params:
      model: gemini/gemini-2.0-flash
      api_key: os.environ/GEMINI_API_KEY
  1. Start Proxy
$ litellm --config /path/to/config.yaml
  1. Make Request!
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
  "model": "gemini-2.0-flash",
  "messages": [{"role": "user", "content": "What is the weather in San Francisco?"}],
  "tools": [{"codeExecution": {}}]
}
'

JSON Mode

from litellm import completion 
import json 
import os 

os.environ['GEMINI_API_KEY'] = ""

messages = [
    {
        "role": "user",
        "content": "List 5 popular cookie recipes."
    }
]



completion(
    model="gemini/gemini-1.5-pro", 
    messages=messages, 
    response_format={"type": "json_object"} # 👈 KEY CHANGE
)

print(json.loads(completion.choices[0].message.content))
  1. Add model to config.yaml
model_list:
  - model_name: gemini-pro
    litellm_params:
      model: gemini/gemini-1.5-pro
      api_key: os.environ/GEMINI_API_KEY
  1. Start Proxy
$ litellm --config /path/to/config.yaml
  1. Make Request!
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
  "model": "gemini-pro",
  "messages": [
        {"role": "user", "content": "List 5 popular cookie recipes."}
    ],
  "response_format": {"type": "json_object"}
}
'
# Gemini-Pro-Vision LiteLLM Supports the following image types passed in `url` - Images with direct links - https://storage.googleapis.com/github-repo/img/gemini/intro/landmark3.jpg - Image in local storage - ./localimage.jpeg

Sample Usage

import os
import litellm
from dotenv import load_dotenv

# Load the environment variables from .env file
load_dotenv()
os.environ["GEMINI_API_KEY"] = os.getenv('GEMINI_API_KEY')

prompt = 'Describe the image in a few sentences.'
# Note: You can pass here the URL or Path of image directly.
image_url = 'https://storage.googleapis.com/github-repo/img/gemini/intro/landmark3.jpg'

# Create the messages payload according to the documentation
messages = [
    {
        "role": "user",
        "content": [
            {
                "type": "text",
                "text": prompt
            },
            {
                "type": "image_url",
                "image_url": {"url": image_url}
            }
        ]
    }
]

# Make the API call to Gemini model
response = litellm.completion(
    model="gemini/gemini-pro-vision",
    messages=messages,
)

# Extract the response content
content = response.get('choices', [{}])[0].get('message', {}).get('content')

# Print the result
print(content)

Usage - PDF / Videos / etc. Files

Inline Data (e.g. audio stream)

LiteLLM follows the OpenAI format and accepts sending inline data as an encoded base64 string.

The format to follow is

data:<mime_type>;base64,<encoded_data>

** LITELLM CALL **

import litellm
from pathlib import Path
import base64
import os

os.environ["GEMINI_API_KEY"] = "" 

litellm.set_verbose = True # 👈 See Raw call 

audio_bytes = Path("speech_vertex.mp3").read_bytes()
encoded_data = base64.b64encode(audio_bytes).decode("utf-8")
print("Audio Bytes = {}".format(audio_bytes))
model = "gemini/gemini-1.5-flash"
response = litellm.completion(
    model=model,
    messages=[
        {
            "role": "user",
            "content": [
                {"type": "text", "text": "Please summarize the audio."},
                {
                    "type": "file",
                    "file": {
                        "file_data": "data:audio/mp3;base64,{}".format(encoded_data), # 👈 SET MIME_TYPE + DATA
                    }
                },
            ],
        }
    ],
)

** Equivalent GOOGLE API CALL **

# Initialize a Gemini model appropriate for your use case.
model = genai.GenerativeModel('models/gemini-1.5-flash')

# Create the prompt.
prompt = "Please summarize the audio."

# Load the samplesmall.mp3 file into a Python Blob object containing the audio
# file's bytes and then pass the prompt and the audio to Gemini.
response = model.generate_content([
    prompt,
    {
        "mime_type": "audio/mp3",
        "data": pathlib.Path('samplesmall.mp3').read_bytes()
    }
])

# Output Gemini's response to the prompt and the inline audio.
print(response.text)

https:// file

import litellm
import os

os.environ["GEMINI_API_KEY"] = "" 

litellm.set_verbose = True # 👈 See Raw call 

model = "gemini/gemini-1.5-flash"
response = litellm.completion(
    model=model,
    messages=[
        {
            "role": "user",
            "content": [
                {"type": "text", "text": "Please summarize the file."},
                {
                    "type": "file",
                    "file": {
                        "file_id": "https://storage...", # 👈 SET THE IMG URL
                        "format": "application/pdf" # OPTIONAL
                    }
                },
            ],
        }
    ],
)

gs:// file

import litellm
import os

os.environ["GEMINI_API_KEY"] = "" 

litellm.set_verbose = True # 👈 See Raw call 

model = "gemini/gemini-1.5-flash"
response = litellm.completion(
    model=model,
    messages=[
        {
            "role": "user",
            "content": [
                {"type": "text", "text": "Please summarize the file."},
                {
                    "type": "file",
                    "file": {
                        "file_id": "gs://storage...", # 👈 SET THE IMG URL
                        "format": "application/pdf" # OPTIONAL
                    }
                },
            ],
        }
    ],
)

Chat Models

:::tip

We support ALL Gemini models, just set model=gemini/<any-model-on-gemini> as a prefix when sending litellm requests

:::

Model Name Function Call Required OS Variables
gemini-pro completion(model='gemini/gemini-pro', messages) os.environ['GEMINI_API_KEY']
gemini-1.5-pro-latest completion(model='gemini/gemini-1.5-pro-latest', messages) os.environ['GEMINI_API_KEY']
gemini-2.0-flash completion(model='gemini/gemini-2.0-flash', messages) os.environ['GEMINI_API_KEY']
gemini-2.0-flash-exp completion(model='gemini/gemini-2.0-flash-exp', messages) os.environ['GEMINI_API_KEY']
gemini-2.0-flash-lite-preview-02-05 completion(model='gemini/gemini-2.0-flash-lite-preview-02-05', messages) os.environ['GEMINI_API_KEY']

Context Caching

Use Google AI Studio context caching is supported by

{
    {
        "role": "system",
        "content": ...,
        "cache_control": {"type": "ephemeral"} # 👈 KEY CHANGE
    },
    ...
}

in your message content block.

Architecture Diagram

<Image img={require('../../img/gemini_context_caching.png')} />

Notes:

  • Relevant code

  • Gemini Context Caching only allows 1 block of continuous messages to be cached.

  • If multiple non-continuous blocks contain cache_control - the first continuous block will be used. (sent to /cachedContent in the Gemini format)

  • The raw request to Gemini's /generateContent endpoint looks like this:

curl -X POST "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-001:generateContent?key=$GOOGLE_API_KEY" \
-H 'Content-Type: application/json' \
-d '{
      "contents": [
        {
          "parts":[{
            "text": "Please summarize this transcript"
          }],
          "role": "user"
        },
      ],
      "cachedContent": "'$CACHE_NAME'"
    }'

Example Usage

from litellm import completion 

for _ in range(2): 
    resp = completion(
        model="gemini/gemini-1.5-pro",
        messages=[
        # System Message
            {
                "role": "system",
                "content": [
                    {
                        "type": "text",
                        "text": "Here is the full text of a complex legal agreement" * 4000,
                        "cache_control": {"type": "ephemeral"}, # 👈 KEY CHANGE
                    }
                ],
            },
            # marked for caching with the cache_control parameter, so that this checkpoint can read from the previous cache.
            {
                "role": "user",
                "content": [
                    {
                        "type": "text",
                        "text": "What are the key terms and conditions in this agreement?",
                        "cache_control": {"type": "ephemeral"},
                    }
                ],
            }]
    )

    print(resp.usage) # 👈 2nd usage block will be less, since cached tokens used
  1. Setup config.yaml
model_list:
    - model_name: gemini-1.5-pro
      litellm_params:
        model: gemini/gemini-1.5-pro
        api_key: os.environ/GEMINI_API_KEY
  1. Start proxy
litellm --config /path/to/config.yaml
  1. Test it!

See Langchain, OpenAI JS, Llamaindex, etc. examples

curl --location 'http://0.0.0.0:4000/chat/completions' \
    --header 'Content-Type: application/json' \
    --data '{
    "model": "gemini-1.5-pro",
    "messages": [
        # System Message
            {
                "role": "system",
                "content": [
                    {
                        "type": "text",
                        "text": "Here is the full text of a complex legal agreement" * 4000,
                        "cache_control": {"type": "ephemeral"}, # 👈 KEY CHANGE
                    }
                ],
            },
            # marked for caching with the cache_control parameter, so that this checkpoint can read from the previous cache.
            {
                "role": "user",
                "content": [
                    {
                        "type": "text",
                        "text": "What are the key terms and conditions in this agreement?",
                        "cache_control": {"type": "ephemeral"},
                    }
                ],
            }],
}'
import openai
client = openai.AsyncOpenAI(
    api_key="anything",            # litellm proxy api key
    base_url="http://0.0.0.0:4000" # litellm proxy base url
)


response = await client.chat.completions.create(
    model="gemini-1.5-pro",
    messages=[
        {
            "role": "system",
            "content": [
                    {
                        "type": "text",
                        "text": "Here is the full text of a complex legal agreement" * 4000,
                        "cache_control": {"type": "ephemeral"}, # 👈 KEY CHANGE
                    }
            ],
        },
        {
            "role": "user",
            "content": "what are the key terms and conditions in this agreement?",
        },
    ]
)

Image Generation

from litellm import completion 

response = completion(
    model="gemini/gemini-2.0-flash-exp-image-generation",
    messages=[{"role": "user", "content": "Generate an image of a cat"}],
    modalities=["image", "text"],
)
assert response.choices[0].message.content is not None # ".."
  1. Setup config.yaml
model_list:
  - model_name: gemini-2.0-flash-exp-image-generation
    litellm_params:
      model: gemini/gemini-2.0-flash-exp-image-generation
      api_key: os.environ/GEMINI_API_KEY
  1. Start proxy
litellm --config /path/to/config.yaml
  1. Test it!
curl -L -X POST 'http://localhost:4000/v1/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
    "model": "gemini-2.0-flash-exp-image-generation",
    "messages": [{"role": "user", "content": "Generate an image of a cat"}],
    "modalities": ["image", "text"]
}'