mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-27 11:43:54 +00:00
* Update lago.py to accomodate API change (#5495) external_customer_id is deprecated. external_subscription_id is the replacement. * fix(lago.py): fixes \ --------- Co-authored-by: Raymond Weitekamp <19483938+rawwerks@users.noreply.github.com>
319 lines
7.6 KiB
Markdown
319 lines
7.6 KiB
Markdown
import Image from '@theme/IdealImage';
|
|
import Tabs from '@theme/Tabs';
|
|
import TabItem from '@theme/TabItem';
|
|
|
|
# Billing
|
|
|
|
Bill internal teams, external customers for their usage
|
|
|
|
**🚨 Requirements**
|
|
- [Setup Lago](https://docs.getlago.com/guide/self-hosted/docker#run-the-app), for usage-based billing. We recommend following [their Stripe tutorial](https://docs.getlago.com/templates/per-transaction/stripe#step-1-create-billable-metrics-for-transaction)
|
|
|
|
Steps:
|
|
- Connect the proxy to Lago
|
|
- Set the id you want to bill for (customers, internal users, teams)
|
|
- Start!
|
|
|
|
## Quick Start
|
|
|
|
Bill internal teams for their usage
|
|
|
|
### 1. Connect proxy to Lago
|
|
|
|
Set 'lago' as a callback on your proxy config.yaml
|
|
|
|
```yaml
|
|
model_list:
|
|
- model_name: fake-openai-endpoint
|
|
litellm_params:
|
|
model: openai/fake
|
|
api_key: fake-key
|
|
api_base: https://exampleopenaiendpoint-production.up.railway.app/
|
|
|
|
litellm_settings:
|
|
callbacks: ["lago"] # 👈 KEY CHANGE
|
|
|
|
general_settings:
|
|
master_key: sk-1234
|
|
```
|
|
|
|
Add your Lago keys to the environment
|
|
|
|
```bash
|
|
export LAGO_API_BASE="http://localhost:3000" # self-host - https://docs.getlago.com/guide/self-hosted/docker#run-the-app
|
|
export LAGO_API_KEY="3e29d607-de54-49aa-a019-ecf585729070" # Get key - https://docs.getlago.com/guide/self-hosted/docker#find-your-api-key
|
|
export LAGO_API_EVENT_CODE="openai_tokens" # name of lago billing code
|
|
export LAGO_API_CHARGE_BY="team_id" # 👈 Charges 'team_id' attached to proxy key
|
|
```
|
|
|
|
Start proxy
|
|
|
|
```bash
|
|
litellm --config /path/to/config.yaml
|
|
```
|
|
|
|
### 2. Create Key for Internal Team
|
|
|
|
```bash
|
|
curl 'http://0.0.0.0:4000/key/generate' \
|
|
--header 'Authorization: Bearer sk-1234' \
|
|
--header 'Content-Type: application/json' \
|
|
--data-raw '{"team_id": "my-unique-id"}' # 👈 Internal Team's ID
|
|
```
|
|
|
|
Response Object:
|
|
|
|
```bash
|
|
{
|
|
"key": "sk-tXL0wt5-lOOVK9sfY2UacA",
|
|
}
|
|
```
|
|
|
|
|
|
### 3. Start billing!
|
|
|
|
<Tabs>
|
|
<TabItem value="curl" label="Curl">
|
|
|
|
```bash
|
|
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
|
--header 'Content-Type: application/json' \
|
|
--header 'Authorization: Bearer sk-tXL0wt5-lOOVK9sfY2UacA' \ # 👈 Team's Key
|
|
--data ' {
|
|
"model": "fake-openai-endpoint",
|
|
"messages": [
|
|
{
|
|
"role": "user",
|
|
"content": "what llm are you"
|
|
}
|
|
],
|
|
}
|
|
'
|
|
```
|
|
</TabItem>
|
|
<TabItem value="openai_python" label="OpenAI Python SDK">
|
|
|
|
```python
|
|
import openai
|
|
client = openai.OpenAI(
|
|
api_key="sk-tXL0wt5-lOOVK9sfY2UacA", # 👈 Team's Key
|
|
base_url="http://0.0.0.0:4000"
|
|
)
|
|
|
|
# request sent to model set on litellm proxy, `litellm --model`
|
|
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
|
|
{
|
|
"role": "user",
|
|
"content": "this is a test request, write a short poem"
|
|
}
|
|
])
|
|
|
|
print(response)
|
|
```
|
|
</TabItem>
|
|
<TabItem value="langchain" label="Langchain">
|
|
|
|
```python
|
|
from langchain.chat_models import ChatOpenAI
|
|
from langchain.prompts.chat import (
|
|
ChatPromptTemplate,
|
|
HumanMessagePromptTemplate,
|
|
SystemMessagePromptTemplate,
|
|
)
|
|
from langchain.schema import HumanMessage, SystemMessage
|
|
import os
|
|
|
|
os.environ["OPENAI_API_KEY"] = "sk-tXL0wt5-lOOVK9sfY2UacA" # 👈 Team's Key
|
|
|
|
chat = ChatOpenAI(
|
|
openai_api_base="http://0.0.0.0:4000",
|
|
model = "gpt-3.5-turbo",
|
|
temperature=0.1,
|
|
)
|
|
|
|
messages = [
|
|
SystemMessage(
|
|
content="You are a helpful assistant that im using to make a test request to."
|
|
),
|
|
HumanMessage(
|
|
content="test from litellm. tell me why it's amazing in 1 sentence"
|
|
),
|
|
]
|
|
response = chat(messages)
|
|
|
|
print(response)
|
|
```
|
|
</TabItem>
|
|
</Tabs>
|
|
|
|
**See Results on Lago**
|
|
|
|
|
|
<Image img={require('../../img/lago_2.png')} style={{ width: '500px', height: 'auto' }} />
|
|
|
|
## Advanced - Lago Logging object
|
|
|
|
This is what LiteLLM will log to Lagos
|
|
|
|
```
|
|
{
|
|
"event": {
|
|
"transaction_id": "<generated_unique_id>",
|
|
"external_customer_id": <selected_id>, # either 'end_user_id', 'user_id', or 'team_id'. Default 'end_user_id'.
|
|
"code": os.getenv("LAGO_API_EVENT_CODE"),
|
|
"properties": {
|
|
"input_tokens": <number>,
|
|
"output_tokens": <number>,
|
|
"model": <string>,
|
|
"response_cost": <number>, # 👈 LITELLM CALCULATED RESPONSE COST - https://github.com/BerriAI/litellm/blob/d43f75150a65f91f60dc2c0c9462ce3ffc713c1f/litellm/utils.py#L1473
|
|
}
|
|
}
|
|
}
|
|
```
|
|
|
|
## Advanced - Bill Customers, Internal Users
|
|
|
|
For:
|
|
- Customers (id passed via 'user' param in /chat/completion call) = 'end_user_id'
|
|
- Internal Users (id set when [creating keys](https://docs.litellm.ai/docs/proxy/virtual_keys#advanced---spend-tracking)) = 'user_id'
|
|
- Teams (id set when [creating keys](https://docs.litellm.ai/docs/proxy/virtual_keys#advanced---spend-tracking)) = 'team_id'
|
|
|
|
|
|
|
|
<Tabs>
|
|
<TabItem value="customers" label="Customer Billing">
|
|
|
|
1. Set 'LAGO_API_CHARGE_BY' to 'end_user_id'
|
|
|
|
```bash
|
|
export LAGO_API_CHARGE_BY="end_user_id"
|
|
```
|
|
|
|
2. Test it!
|
|
|
|
<Tabs>
|
|
<TabItem value="curl" label="Curl">
|
|
|
|
```shell
|
|
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
|
--header 'Content-Type: application/json' \
|
|
--data ' {
|
|
"model": "gpt-3.5-turbo",
|
|
"messages": [
|
|
{
|
|
"role": "user",
|
|
"content": "what llm are you"
|
|
}
|
|
],
|
|
"user": "my_customer_id" # 👈 whatever your customer id is
|
|
}
|
|
'
|
|
```
|
|
</TabItem>
|
|
<TabItem value="openai_sdk" label="OpenAI Python SDK">
|
|
|
|
```python
|
|
import openai
|
|
client = openai.OpenAI(
|
|
api_key="anything",
|
|
base_url="http://0.0.0.0:4000"
|
|
)
|
|
|
|
# request sent to model set on litellm proxy, `litellm --model`
|
|
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
|
|
{
|
|
"role": "user",
|
|
"content": "this is a test request, write a short poem"
|
|
}
|
|
], user="my_customer_id") # 👈 whatever your customer id is
|
|
|
|
print(response)
|
|
```
|
|
|
|
</TabItem>
|
|
<TabItem value="langchain" label="Langchain">
|
|
|
|
```python
|
|
from langchain.chat_models import ChatOpenAI
|
|
from langchain.prompts.chat import (
|
|
ChatPromptTemplate,
|
|
HumanMessagePromptTemplate,
|
|
SystemMessagePromptTemplate,
|
|
)
|
|
from langchain.schema import HumanMessage, SystemMessage
|
|
import os
|
|
|
|
os.environ["OPENAI_API_KEY"] = "anything"
|
|
|
|
chat = ChatOpenAI(
|
|
openai_api_base="http://0.0.0.0:4000",
|
|
model = "gpt-3.5-turbo",
|
|
temperature=0.1,
|
|
extra_body={
|
|
"user": "my_customer_id" # 👈 whatever your customer id is
|
|
}
|
|
)
|
|
|
|
messages = [
|
|
SystemMessage(
|
|
content="You are a helpful assistant that im using to make a test request to."
|
|
),
|
|
HumanMessage(
|
|
content="test from litellm. tell me why it's amazing in 1 sentence"
|
|
),
|
|
]
|
|
response = chat(messages)
|
|
|
|
print(response)
|
|
```
|
|
|
|
</TabItem>
|
|
</Tabs>
|
|
|
|
</TabItem>
|
|
<TabItem value="users" label="Internal User Billing">
|
|
|
|
1. Set 'LAGO_API_CHARGE_BY' to 'user_id'
|
|
|
|
```bash
|
|
export LAGO_API_CHARGE_BY="user_id"
|
|
```
|
|
|
|
2. Create a key for that user
|
|
|
|
```bash
|
|
curl 'http://0.0.0.0:4000/key/generate' \
|
|
--header 'Authorization: Bearer <your-master-key>' \
|
|
--header 'Content-Type: application/json' \
|
|
--data-raw '{"user_id": "my-unique-id"}' # 👈 Internal User's id
|
|
```
|
|
|
|
Response Object:
|
|
|
|
```bash
|
|
{
|
|
"key": "sk-tXL0wt5-lOOVK9sfY2UacA",
|
|
}
|
|
```
|
|
|
|
3. Make API Calls with that Key
|
|
|
|
```python
|
|
import openai
|
|
client = openai.OpenAI(
|
|
api_key="sk-tXL0wt5-lOOVK9sfY2UacA", # 👈 Generated key
|
|
base_url="http://0.0.0.0:4000"
|
|
)
|
|
|
|
# request sent to model set on litellm proxy, `litellm --model`
|
|
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
|
|
{
|
|
"role": "user",
|
|
"content": "this is a test request, write a short poem"
|
|
}
|
|
])
|
|
|
|
print(response)
|
|
```
|
|
</TabItem>
|
|
</Tabs>
|