mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 02:34:29 +00:00
103 lines
3.3 KiB
Python
103 lines
3.3 KiB
Python
import os
|
|
import json
|
|
from enum import Enum
|
|
import requests
|
|
import time
|
|
from typing import Callable
|
|
from litellm.utils import ModelResponse
|
|
|
|
class NLPCloudError(Exception):
|
|
def __init__(self, status_code, message):
|
|
self.status_code = status_code
|
|
self.message = message
|
|
super().__init__(
|
|
self.message
|
|
) # Call the base class constructor with the parameters it needs
|
|
|
|
def validate_environment(api_key):
|
|
headers = {
|
|
"accept": "application/json",
|
|
"content-type": "application/json",
|
|
}
|
|
if api_key:
|
|
headers["Authorization"] = f"Token {api_key}"
|
|
return headers
|
|
|
|
def completion(
|
|
model: str,
|
|
messages: list,
|
|
model_response: ModelResponse,
|
|
print_verbose: Callable,
|
|
encoding,
|
|
api_key,
|
|
logging_obj,
|
|
optional_params=None,
|
|
litellm_params=None,
|
|
logger_fn=None,
|
|
default_max_tokens_to_sample=None,
|
|
):
|
|
headers = validate_environment(api_key)
|
|
completion_url_fragment_1 = "https://api.nlpcloud.io/v1/gpu/"
|
|
completion_url_fragment_2 = "/generation"
|
|
model = model
|
|
text = " ".join(message["content"] for message in messages)
|
|
|
|
data = {
|
|
"text": text,
|
|
**optional_params,
|
|
}
|
|
|
|
completion_url = completion_url_fragment_1 + model + completion_url_fragment_2
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=text,
|
|
api_key=api_key,
|
|
additional_args={"complete_input_dict": data},
|
|
)
|
|
## COMPLETION CALL
|
|
response = requests.post(
|
|
completion_url, headers=headers, data=json.dumps(data), stream=optional_params["stream"] if "stream" in optional_params else False
|
|
)
|
|
if "stream" in optional_params and optional_params["stream"] == True:
|
|
return response.iter_lines()
|
|
else:
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=text,
|
|
api_key=api_key,
|
|
original_response=response.text,
|
|
additional_args={"complete_input_dict": data},
|
|
)
|
|
print_verbose(f"raw model_response: {response.text}")
|
|
## RESPONSE OBJECT
|
|
try:
|
|
completion_response = response.json()
|
|
except:
|
|
raise NLPCloudError(message=response.text, status_code=response.status_code)
|
|
if "error" in completion_response:
|
|
raise NLPCloudError(
|
|
message=completion_response["error"],
|
|
status_code=response.status_code,
|
|
)
|
|
else:
|
|
try:
|
|
model_response["choices"][0]["message"]["content"] = completion_response["generated_text"]
|
|
except:
|
|
raise NLPCloudError(message=json.dumps(completion_response), status_code=response.status_code)
|
|
|
|
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
|
|
prompt_tokens = completion_response["nb_input_tokens"]
|
|
completion_tokens = completion_response["nb_generated_tokens"]
|
|
|
|
model_response["created"] = time.time()
|
|
model_response["model"] = model
|
|
model_response["usage"] = {
|
|
"prompt_tokens": prompt_tokens,
|
|
"completion_tokens": completion_tokens,
|
|
"total_tokens": prompt_tokens + completion_tokens,
|
|
}
|
|
return model_response
|
|
|
|
def embedding():
|
|
# logic for parsing in - calling - parsing out model embedding calls
|
|
pass
|