mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 02:34:29 +00:00
4.2 KiB
4.2 KiB
Azure OpenAI
API KEYS
import os
os.environ["AZURE_API_KEY"] = ""
os.environ["AZURE_API_BASE"] = ""
os.environ["AZURE_API_VERSION"] = ""
Usage
Completion - using .env variables
from litellm import completion
## set ENV variables
os.environ["AZURE_API_KEY"] = ""
os.environ["AZURE_API_BASE"] = ""
os.environ["AZURE_API_VERSION"] = ""
# azure call
response = completion(
model = "azure/<your_deployment_name>",
messages = [{ "content": "Hello, how are you?","role": "user"}]
)
Completion - using api_key, api_base, api_version
import litellm
# azure call
response = litellm.completion(
model = "azure/<your deployment name>", # model = azure/<your deployment name>
api_base = "", # azure api base
api_version = "", # azure api version
api_key = "", # azure api key
messages = [{"role": "user", "content": "good morning"}],
)
Azure OpenAI Chat Completion Models
Model Name | Function Call |
---|---|
gpt-4 | completion('azure/<your deployment name>', messages) |
gpt-4-0314 | completion('azure/<your deployment name>', messages) |
gpt-4-0613 | completion('azure/<your deployment name>', messages) |
gpt-4-32k | completion('azure/<your deployment name>', messages) |
gpt-4-32k-0314 | completion('azure/<your deployment name>', messages) |
gpt-4-32k-0613 | completion('azure/<your deployment name>', messages) |
gpt-3.5-turbo | completion('azure/<your deployment name>', messages) |
gpt-3.5-turbo-0301 | completion('azure/<your deployment name>', messages) |
gpt-3.5-turbo-0613 | completion('azure/<your deployment name>', messages) |
gpt-3.5-turbo-16k | completion('azure/<your deployment name>', messages) |
gpt-3.5-turbo-16k-0613 | completion('azure/<your deployment name>', messages) |
Azure API Load-Balancing
Use this if you're trying to load-balance across multiple Azure/OpenAI deployments.
Router
prevents failed requests, by picking the deployment which is below rate-limit and has the least amount of tokens used.
In production, Router connects to a Redis Cache to track usage across multiple deployments.
Quick Start
pip install litellm
from litellm import Router
model_list = [{ # list of model deployments
"model_name": "gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2",
"api_key": os.getenv("AZURE_API_KEY"),
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE")
},
"tpm": 240000,
"rpm": 1800
}, {
"model_name": "gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-functioncalling",
"api_key": os.getenv("AZURE_API_KEY"),
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE")
},
"tpm": 240000,
"rpm": 1800
}, {
"model_name": "gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "gpt-3.5-turbo",
"api_key": os.getenv("OPENAI_API_KEY"),
},
"tpm": 1000000,
"rpm": 9000
}]
router = Router(model_list=model_list)
# openai.chat.completions.create replacement
response = router.completion(model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hey, how's it going?"}]
print(response)
Redis Queue
router = Router(model_list=model_list,
redis_host=os.getenv("REDIS_HOST"),
redis_password=os.getenv("REDIS_PASSWORD"),
redis_port=os.getenv("REDIS_PORT"))
print(response)