litellm-mirror/docs/my-website/docs/completion/token_usage.md
2024-06-26 18:05:47 -07:00

192 lines
6.9 KiB
Markdown

# Completion Token Usage & Cost
By default LiteLLM returns token usage in all completion requests ([See here](https://litellm.readthedocs.io/en/latest/output/))
LiteLLM returns `response_cost` in all calls.
```python
from litellm import completion
response = litellm.completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hey, how's it going?"}],
mock_response="Hello world",
)
print(response._hidden_params["response_cost"])
```
LiteLLM also exposes some helper functions:
- `encode`: This encodes the text passed in, using the model-specific tokenizer. [**Jump to code**](#1-encode)
- `decode`: This decodes the tokens passed in, using the model-specific tokenizer. [**Jump to code**](#2-decode)
- `token_counter`: This returns the number of tokens for a given input - it uses the tokenizer based on the model, and defaults to tiktoken if no model-specific tokenizer is available. [**Jump to code**](#3-token_counter)
- `create_pretrained_tokenizer` and `create_tokenizer`: LiteLLM provides default tokenizer support for OpenAI, Cohere, Anthropic, Llama2, and Llama3 models. If you are using a different model, you can create a custom tokenizer and pass it as `custom_tokenizer` to the `encode`, `decode`, and `token_counter` methods. [**Jump to code**](#4-create_pretrained_tokenizer-and-create_tokenizer)
- `cost_per_token`: This returns the cost (in USD) for prompt (input) and completion (output) tokens. Uses the live list from `api.litellm.ai`. [**Jump to code**](#5-cost_per_token)
- `completion_cost`: This returns the overall cost (in USD) for a given LLM API Call. It combines `token_counter` and `cost_per_token` to return the cost for that query (counting both cost of input and output). [**Jump to code**](#6-completion_cost)
- `get_max_tokens`: This returns the maximum number of tokens allowed for the given model. [**Jump to code**](#7-get_max_tokens)
- `model_cost`: This returns a dictionary for all models, with their max_tokens, input_cost_per_token and output_cost_per_token. It uses the `api.litellm.ai` call shown below. [**Jump to code**](#8-model_cost)
- `register_model`: This registers new / overrides existing models (and their pricing details) in the model cost dictionary. [**Jump to code**](#9-register_model)
- `api.litellm.ai`: Live token + price count across [all supported models](https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json). [**Jump to code**](#10-apilitellmai)
📣 [This is a community maintained list](https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json). Contributions are welcome! ❤️
## Example Usage
### 1. `encode`
Encoding has model-specific tokenizers for anthropic, cohere, llama2 and openai. If an unsupported model is passed in, it'll default to using tiktoken (openai's tokenizer).
```python
from litellm import encode, decode
sample_text = "Hellö World, this is my input string!"
# openai encoding + decoding
openai_tokens = encode(model="gpt-3.5-turbo", text=sample_text)
print(openai_tokens)
```
### 2. `decode`
Decoding is supported for anthropic, cohere, llama2 and openai.
```python
from litellm import encode, decode
sample_text = "Hellö World, this is my input string!"
# openai encoding + decoding
openai_tokens = encode(model="gpt-3.5-turbo", text=sample_text)
openai_text = decode(model="gpt-3.5-turbo", tokens=openai_tokens)
print(openai_text)
```
### 3. `token_counter`
```python
from litellm import token_counter
messages = [{"user": "role", "content": "Hey, how's it going"}]
print(token_counter(model="gpt-3.5-turbo", messages=messages))
```
### 4. `create_pretrained_tokenizer` and `create_tokenizer`
```python
from litellm import create_pretrained_tokenizer, create_tokenizer
# get tokenizer from huggingface repo
custom_tokenizer_1 = create_pretrained_tokenizer("Xenova/llama-3-tokenizer")
# use tokenizer from json file
with open("tokenizer.json") as f:
json_data = json.load(f)
json_str = json.dumps(json_data)
custom_tokenizer_2 = create_tokenizer(json_str)
```
### 5. `cost_per_token`
```python
from litellm import cost_per_token
prompt_tokens = 5
completion_tokens = 10
prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar = cost_per_token(model="gpt-3.5-turbo", prompt_tokens=prompt_tokens, completion_tokens=completion_tokens))
print(prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar)
```
### 6. `completion_cost`
* Input: Accepts a `litellm.completion()` response **OR** prompt + completion strings
* Output: Returns a `float` of cost for the `completion` call
**litellm.completion()**
```python
from litellm import completion, completion_cost
response = completion(
model="bedrock/anthropic.claude-v2",
messages=messages,
request_timeout=200,
)
# pass your response from completion to completion_cost
cost = completion_cost(completion_response=response)
formatted_string = f"${float(cost):.10f}"
print(formatted_string)
```
**prompt + completion string**
```python
from litellm import completion_cost
cost = completion_cost(model="bedrock/anthropic.claude-v2", prompt="Hey!", completion="How's it going?")
formatted_string = f"${float(cost):.10f}"
print(formatted_string)
```
### 7. `get_max_tokens`
Input: Accepts a model name - e.g., gpt-3.5-turbo (to get a complete list, call litellm.model_list).
Output: Returns the maximum number of tokens allowed for the given model
```python
from litellm import get_max_tokens
model = "gpt-3.5-turbo"
print(get_max_tokens(model)) # Output: 4097
```
### 8. `model_cost`
* Output: Returns a dict object containing the max_tokens, input_cost_per_token, output_cost_per_token for all models on [community-maintained list](https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json)
```python
from litellm import model_cost
print(model_cost) # {'gpt-3.5-turbo': {'max_tokens': 4000, 'input_cost_per_token': 1.5e-06, 'output_cost_per_token': 2e-06}, ...}
```
### 9. `register_model`
* Input: Provide EITHER a model cost dictionary or a url to a hosted json blob
* Output: Returns updated model_cost dictionary + updates litellm.model_cost with model details.
**Dictionary**
```python
from litellm import register_model
litellm.register_model({
"gpt-4": {
"max_tokens": 8192,
"input_cost_per_token": 0.00002,
"output_cost_per_token": 0.00006,
"litellm_provider": "openai",
"mode": "chat"
},
})
```
**URL for json blob**
```python
import litellm
litellm.register_model(model_cost=
"https://raw.githubusercontent.com/BerriAI/litellm/main/model_prices_and_context_window.json")
```
**Don't pull hosted model_cost_map**
If you have firewalls, and want to just use the local copy of the model cost map, you can do so like this:
```bash
export LITELLM_LOCAL_MODEL_COST_MAP="True"
```
Note: this means you will need to upgrade to get updated pricing, and newer models.