litellm-mirror/docs/my-website/docs/response_api.md
Ishaan Jaff f39d917886
[Docs] Responses API (#10172)
* docs litellm responses api

* doc fix

* docs responses API

* add get_supported_openai_params for LiteLLMCompletionResponsesConfig

* add Supported Responses API Parameters
2025-04-19 17:10:45 -07:00

13 KiB

import Tabs from '@theme/Tabs'; import TabItem from '@theme/TabItem';

/responses [Beta]

LiteLLM provides a BETA endpoint in the spec of OpenAI's /responses API

Feature Supported Notes
Cost Tracking Works with all supported models
Logging Works across all integrations
End-user Tracking
Streaming
Fallbacks Works between supported models
Loadbalancing Works between supported models
Supported LiteLLM Versions 1.63.8+
Supported LLM providers All LiteLLM supported providers openai, anthropic, bedrock, vertex_ai, gemini, azure, azure_ai etc.

Usage

LiteLLM Python SDK

Non-streaming

import litellm

# Non-streaming response
response = litellm.responses(
    model="openai/o1-pro",
    input="Tell me a three sentence bedtime story about a unicorn.",
    max_output_tokens=100
)

print(response)

Streaming

import litellm

# Streaming response
response = litellm.responses(
    model="openai/o1-pro",
    input="Tell me a three sentence bedtime story about a unicorn.",
    stream=True
)

for event in response:
    print(event)

Non-streaming

import litellm
import os

# Set API key
os.environ["ANTHROPIC_API_KEY"] = "your-anthropic-api-key"

# Non-streaming response
response = litellm.responses(
    model="anthropic/claude-3-5-sonnet-20240620",
    input="Tell me a three sentence bedtime story about a unicorn.",
    max_output_tokens=100
)

print(response)

Streaming

import litellm
import os

# Set API key
os.environ["ANTHROPIC_API_KEY"] = "your-anthropic-api-key"

# Streaming response
response = litellm.responses(
    model="anthropic/claude-3-5-sonnet-20240620",
    input="Tell me a three sentence bedtime story about a unicorn.",
    stream=True
)

for event in response:
    print(event)

Non-streaming

import litellm
import os

# Set credentials - Vertex AI uses application default credentials
# Run 'gcloud auth application-default login' to authenticate
os.environ["VERTEXAI_PROJECT"] = "your-gcp-project-id"
os.environ["VERTEXAI_LOCATION"] = "us-central1"

# Non-streaming response
response = litellm.responses(
    model="vertex_ai/gemini-1.5-pro",
    input="Tell me a three sentence bedtime story about a unicorn.",
    max_output_tokens=100
)

print(response)

Streaming

import litellm
import os

# Set credentials - Vertex AI uses application default credentials
# Run 'gcloud auth application-default login' to authenticate
os.environ["VERTEXAI_PROJECT"] = "your-gcp-project-id"
os.environ["VERTEXAI_LOCATION"] = "us-central1"

# Streaming response
response = litellm.responses(
    model="vertex_ai/gemini-1.5-pro",
    input="Tell me a three sentence bedtime story about a unicorn.",
    stream=True
)

for event in response:
    print(event)

Non-streaming

import litellm
import os

# Set AWS credentials
os.environ["AWS_ACCESS_KEY_ID"] = "your-access-key-id"
os.environ["AWS_SECRET_ACCESS_KEY"] = "your-secret-access-key"
os.environ["AWS_REGION_NAME"] = "us-west-2"  # or your AWS region

# Non-streaming response
response = litellm.responses(
    model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
    input="Tell me a three sentence bedtime story about a unicorn.",
    max_output_tokens=100
)

print(response)

Streaming

import litellm
import os

# Set AWS credentials
os.environ["AWS_ACCESS_KEY_ID"] = "your-access-key-id"
os.environ["AWS_SECRET_ACCESS_KEY"] = "your-secret-access-key"
os.environ["AWS_REGION_NAME"] = "us-west-2"  # or your AWS region

# Streaming response
response = litellm.responses(
    model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
    input="Tell me a three sentence bedtime story about a unicorn.",
    stream=True
)

for event in response:
    print(event)

Non-streaming

import litellm
import os

# Set API key for Google AI Studio
os.environ["GEMINI_API_KEY"] = "your-gemini-api-key"

# Non-streaming response
response = litellm.responses(
    model="gemini/gemini-1.5-flash",
    input="Tell me a three sentence bedtime story about a unicorn.",
    max_output_tokens=100
)

print(response)

Streaming

import litellm
import os

# Set API key for Google AI Studio
os.environ["GEMINI_API_KEY"] = "your-gemini-api-key"

# Streaming response
response = litellm.responses(
    model="gemini/gemini-1.5-flash",
    input="Tell me a three sentence bedtime story about a unicorn.",
    stream=True
)

for event in response:
    print(event)

LiteLLM Proxy with OpenAI SDK

First, set up and start your LiteLLM proxy server.

litellm --config /path/to/config.yaml

# RUNNING on http://0.0.0.0:4000

First, add this to your litellm proxy config.yaml:

model_list:
  - model_name: openai/o1-pro
    litellm_params:
      model: openai/o1-pro
      api_key: os.environ/OPENAI_API_KEY

Non-streaming

from openai import OpenAI

# Initialize client with your proxy URL
client = OpenAI(
    base_url="http://localhost:4000",  # Your proxy URL
    api_key="your-api-key"             # Your proxy API key
)

# Non-streaming response
response = client.responses.create(
    model="openai/o1-pro",
    input="Tell me a three sentence bedtime story about a unicorn."
)

print(response)

Streaming

from openai import OpenAI

# Initialize client with your proxy URL
client = OpenAI(
    base_url="http://localhost:4000",  # Your proxy URL
    api_key="your-api-key"             # Your proxy API key
)

# Streaming response
response = client.responses.create(
    model="openai/o1-pro",
    input="Tell me a three sentence bedtime story about a unicorn.",
    stream=True
)

for event in response:
    print(event)

First, add this to your litellm proxy config.yaml:

model_list:
  - model_name: anthropic/claude-3-5-sonnet-20240620
    litellm_params:
      model: anthropic/claude-3-5-sonnet-20240620
      api_key: os.environ/ANTHROPIC_API_KEY

Non-streaming

from openai import OpenAI

# Initialize client with your proxy URL
client = OpenAI(
    base_url="http://localhost:4000",  # Your proxy URL
    api_key="your-api-key"             # Your proxy API key
)

# Non-streaming response
response = client.responses.create(
    model="anthropic/claude-3-5-sonnet-20240620",
    input="Tell me a three sentence bedtime story about a unicorn."
)

print(response)

Streaming

from openai import OpenAI

# Initialize client with your proxy URL
client = OpenAI(
    base_url="http://localhost:4000",  # Your proxy URL
    api_key="your-api-key"             # Your proxy API key
)

# Streaming response
response = client.responses.create(
    model="anthropic/claude-3-5-sonnet-20240620",
    input="Tell me a three sentence bedtime story about a unicorn.",
    stream=True
)

for event in response:
    print(event)

First, add this to your litellm proxy config.yaml:

model_list:
  - model_name: vertex_ai/gemini-1.5-pro
    litellm_params:
      model: vertex_ai/gemini-1.5-pro
      vertex_project: your-gcp-project-id
      vertex_location: us-central1

Non-streaming

from openai import OpenAI

# Initialize client with your proxy URL
client = OpenAI(
    base_url="http://localhost:4000",  # Your proxy URL
    api_key="your-api-key"             # Your proxy API key
)

# Non-streaming response
response = client.responses.create(
    model="vertex_ai/gemini-1.5-pro",
    input="Tell me a three sentence bedtime story about a unicorn."
)

print(response)

Streaming

from openai import OpenAI

# Initialize client with your proxy URL
client = OpenAI(
    base_url="http://localhost:4000",  # Your proxy URL
    api_key="your-api-key"             # Your proxy API key
)

# Streaming response
response = client.responses.create(
    model="vertex_ai/gemini-1.5-pro",
    input="Tell me a three sentence bedtime story about a unicorn.",
    stream=True
)

for event in response:
    print(event)

First, add this to your litellm proxy config.yaml:

model_list:
  - model_name: bedrock/anthropic.claude-3-sonnet-20240229-v1:0
    litellm_params:
      model: bedrock/anthropic.claude-3-sonnet-20240229-v1:0
      aws_access_key_id: os.environ/AWS_ACCESS_KEY_ID
      aws_secret_access_key: os.environ/AWS_SECRET_ACCESS_KEY
      aws_region_name: us-west-2

Non-streaming

from openai import OpenAI

# Initialize client with your proxy URL
client = OpenAI(
    base_url="http://localhost:4000",  # Your proxy URL
    api_key="your-api-key"             # Your proxy API key
)

# Non-streaming response
response = client.responses.create(
    model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
    input="Tell me a three sentence bedtime story about a unicorn."
)

print(response)

Streaming

from openai import OpenAI

# Initialize client with your proxy URL
client = OpenAI(
    base_url="http://localhost:4000",  # Your proxy URL
    api_key="your-api-key"             # Your proxy API key
)

# Streaming response
response = client.responses.create(
    model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
    input="Tell me a three sentence bedtime story about a unicorn.",
    stream=True
)

for event in response:
    print(event)

First, add this to your litellm proxy config.yaml:

model_list:
  - model_name: gemini/gemini-1.5-flash
    litellm_params:
      model: gemini/gemini-1.5-flash
      api_key: os.environ/GEMINI_API_KEY

Non-streaming

from openai import OpenAI

# Initialize client with your proxy URL
client = OpenAI(
    base_url="http://localhost:4000",  # Your proxy URL
    api_key="your-api-key"             # Your proxy API key
)

# Non-streaming response
response = client.responses.create(
    model="gemini/gemini-1.5-flash",
    input="Tell me a three sentence bedtime story about a unicorn."
)

print(response)

Streaming

from openai import OpenAI

# Initialize client with your proxy URL
client = OpenAI(
    base_url="http://localhost:4000",  # Your proxy URL
    api_key="your-api-key"             # Your proxy API key
)

# Streaming response
response = client.responses.create(
    model="gemini/gemini-1.5-flash",
    input="Tell me a three sentence bedtime story about a unicorn.",
    stream=True
)

for event in response:
    print(event)

Supported Responses API Parameters

Provider Supported Parameters
openai All Responses API parameters are supported
azure All Responses API parameters are supported
anthropic See supported parameters here
bedrock See supported parameters here
gemini See supported parameters here
vertex_ai See supported parameters here
azure_ai See supported parameters here