litellm-mirror/docs/my-website/docs/proxy/billing.md

7.6 KiB

import Image from '@theme/IdealImage'; import Tabs from '@theme/Tabs'; import TabItem from '@theme/TabItem';

💵 Billing

Bill internal teams, external customers for their usage

🚨 Requirements

Steps:

  • Connect the proxy to Lago
  • Set the id you want to bill for (customers, internal users, teams)
  • Start!

Quick Start

Bill internal teams for their usage

1. Connect proxy to Lago

Set 'lago' as a callback on your proxy config.yaml

model_name:
  - model_name: fake-openai-endpoint
    litellm_params:
      model: openai/fake
      api_key: fake-key
      api_base: https://exampleopenaiendpoint-production.up.railway.app/

litellm_settings:
  callbacks: ["lago"] # 👈 KEY CHANGE

general_settings:
  master_key: sk-1234

Add your Lago keys to the environment

export LAGO_API_BASE="http://localhost:3000" # self-host - https://docs.getlago.com/guide/self-hosted/docker#run-the-app
export LAGO_API_KEY="3e29d607-de54-49aa-a019-ecf585729070" # Get key - https://docs.getlago.com/guide/self-hosted/docker#find-your-api-key
export LAGO_API_EVENT_CODE="openai_tokens" # name of lago billing code
export LAGO_API_CHARGE_BY="team_id" # 👈 Charges 'team_id' attached to proxy key

Start proxy

litellm --config /path/to/config.yaml

2. Create Key for Internal Team

curl 'http://0.0.0.0:4000/key/generate' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data-raw '{"team_id": "my-unique-id"}' # 👈 Internal Team's ID

Response Object:

{
  "key": "sk-tXL0wt5-lOOVK9sfY2UacA",
}

3. Start billing!

curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer sk-tXL0wt5-lOOVK9sfY2UacA' \ # 👈 Team's Key
--data ' {
      "model": "fake-openai-endpoint",
      "messages": [
        {
          "role": "user",
          "content": "what llm are you"
        }
      ],
    }
'
import openai
client = openai.OpenAI(
    api_key="sk-tXL0wt5-lOOVK9sfY2UacA", # 👈 Team's Key
    base_url="http://0.0.0.0:4000"
)

# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
    {
        "role": "user",
        "content": "this is a test request, write a short poem"
    }
])

print(response)
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
    ChatPromptTemplate,
    HumanMessagePromptTemplate,
    SystemMessagePromptTemplate,
)
from langchain.schema import HumanMessage, SystemMessage
import os 

os.environ["OPENAI_API_KEY"] = "sk-tXL0wt5-lOOVK9sfY2UacA" # 👈 Team's Key

chat = ChatOpenAI(
    openai_api_base="http://0.0.0.0:4000",
    model = "gpt-3.5-turbo",
    temperature=0.1,
)

messages = [
    SystemMessage(
        content="You are a helpful assistant that im using to make a test request to."
    ),
    HumanMessage(
        content="test from litellm. tell me why it's amazing in 1 sentence"
    ),
]
response = chat(messages)

print(response)

See Results on Lago

<Image img={require('../../img/lago_2.png')} style={{ width: '500px', height: 'auto' }} />

Advanced - Lago Logging object

This is what LiteLLM will log to Lagos

{
    "event": {
      "transaction_id": "<generated_unique_id>",
      "external_customer_id": <selected_id>, # either 'end_user_id', 'user_id', or 'team_id'. Default 'end_user_id'. 
      "code": os.getenv("LAGO_API_EVENT_CODE"), 
      "properties": {
          "input_tokens": <number>,
          "output_tokens": <number>,
          "model": <string>,
          "response_cost": <number>, # 👈 LITELLM CALCULATED RESPONSE COST - https://github.com/BerriAI/litellm/blob/d43f75150a65f91f60dc2c0c9462ce3ffc713c1f/litellm/utils.py#L1473
      }
    }
}

Advanced - Bill Customers, Internal Users

For:

  • Customers (id passed via 'user' param in /chat/completion call) = 'end_user_id'
  • Internal Users (id set when creating keys) = 'user_id'
  • Teams (id set when creating keys) = 'team_id'
  1. Set 'LAGO_API_CHARGE_BY' to 'end_user_id'
export LAGO_API_CHARGE_BY="end_user_id"
  1. Test it!
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
      "model": "gpt-3.5-turbo",
      "messages": [
        {
          "role": "user",
          "content": "what llm are you"
        }
      ],
      "user": "my_customer_id" # 👈 whatever your customer id is
    }
'
import openai
client = openai.OpenAI(
    api_key="anything",
    base_url="http://0.0.0.0:4000"
)

# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
    {
        "role": "user",
        "content": "this is a test request, write a short poem"
    }
], user="my_customer_id") # 👈 whatever your customer id is

print(response)
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
    ChatPromptTemplate,
    HumanMessagePromptTemplate,
    SystemMessagePromptTemplate,
)
from langchain.schema import HumanMessage, SystemMessage
import os 

os.environ["OPENAI_API_KEY"] = "anything"

chat = ChatOpenAI(
    openai_api_base="http://0.0.0.0:4000",
    model = "gpt-3.5-turbo",
    temperature=0.1,
    extra_body={
        "user": "my_customer_id"  # 👈 whatever your customer id is
    }
)

messages = [
    SystemMessage(
        content="You are a helpful assistant that im using to make a test request to."
    ),
    HumanMessage(
        content="test from litellm. tell me why it's amazing in 1 sentence"
    ),
]
response = chat(messages)

print(response)
  1. Set 'LAGO_API_CHARGE_BY' to 'user_id'
export LAGO_API_CHARGE_BY="user_id"
  1. Create a key for that user
curl 'http://0.0.0.0:4000/key/generate' \
--header 'Authorization: Bearer <your-master-key>' \
--header 'Content-Type: application/json' \
--data-raw '{"user_id": "my-unique-id"}' # 👈 Internal User's id

Response Object:

{
  "key": "sk-tXL0wt5-lOOVK9sfY2UacA",
}
  1. Make API Calls with that Key
import openai
client = openai.OpenAI(
    api_key="sk-tXL0wt5-lOOVK9sfY2UacA", # 👈 Generated key
    base_url="http://0.0.0.0:4000"
)

# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
    {
        "role": "user",
        "content": "this is a test request, write a short poem"
    }
])

print(response)