litellm-mirror/docs/my-website/docs/proxy/user_keys.md
2024-05-11 14:37:32 -07:00

19 KiB

import Tabs from '@theme/Tabs'; import TabItem from '@theme/TabItem';

Use with Langchain, OpenAI SDK, LlamaIndex, Curl

:::info

Input, Output, Exceptions are mapped to the OpenAI format for all supported models

:::

How to send requests to the proxy, pass metadata, allow users to pass in their OpenAI API key

/chat/completions

Request Format

Set extra_body={"metadata": { }} to metadata you want to pass

import openai
client = openai.OpenAI(
    api_key="anything",
    base_url="http://0.0.0.0:4000"
)

# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(
    model="gpt-3.5-turbo",
    messages = [
        {
            "role": "user",
            "content": "this is a test request, write a short poem"
        }
    ],
    extra_body={ # pass in any provider-specific param, if not supported by openai, https://docs.litellm.ai/docs/completion/input#provider-specific-params
        "metadata": { # 👈 use for logging additional params (e.g. to langfuse)
            "generation_name": "ishaan-generation-openai-client",
            "generation_id": "openai-client-gen-id22",
            "trace_id": "openai-client-trace-id22",
            "trace_user_id": "openai-client-user-id2"
        }
    }
)

print(response)
import os, dotenv

from llama_index.llms import AzureOpenAI
from llama_index.embeddings import AzureOpenAIEmbedding
from llama_index import VectorStoreIndex, SimpleDirectoryReader, ServiceContext

llm = AzureOpenAI(
    engine="azure-gpt-3.5",               # model_name on litellm proxy
    temperature=0.0,
    azure_endpoint="http://0.0.0.0:4000", # litellm proxy endpoint
    api_key="sk-1234",                    # litellm proxy API Key
    api_version="2023-07-01-preview",
)

embed_model = AzureOpenAIEmbedding(
    deployment_name="azure-embedding-model",
    azure_endpoint="http://0.0.0.0:4000",
    api_key="sk-1234",
    api_version="2023-07-01-preview",
)


documents = SimpleDirectoryReader("llama_index_data").load_data()
service_context = ServiceContext.from_defaults(llm=llm, embed_model=embed_model)
index = VectorStoreIndex.from_documents(documents, service_context=service_context)

query_engine = index.as_query_engine()
response = query_engine.query("What did the author do growing up?")
print(response)

Pass metadata as part of the request body

curl --location 'http://0.0.0.0:4000/chat/completions' \
    --header 'Content-Type: application/json' \
    --data '{
    "model": "gpt-3.5-turbo",
    "messages": [
        {
        "role": "user",
        "content": "what llm are you"
        }
    ],
    "metadata": {
        "generation_name": "ishaan-test-generation",
        "generation_id": "gen-id22",
        "trace_id": "trace-id22",
        "trace_user_id": "user-id2"
    }
}'
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
    ChatPromptTemplate,
    HumanMessagePromptTemplate,
    SystemMessagePromptTemplate,
)
from langchain.schema import HumanMessage, SystemMessage
import os 

os.environ["OPENAI_API_KEY"] = "anything"

chat = ChatOpenAI(
    openai_api_base="http://0.0.0.0:4000",
    model = "gpt-3.5-turbo",
    temperature=0.1,
    extra_body={
        "metadata": {
            "generation_name": "ishaan-generation-langchain-client",
            "generation_id": "langchain-client-gen-id22",
            "trace_id": "langchain-client-trace-id22",
            "trace_user_id": "langchain-client-user-id2"
        }
    }
)

messages = [
    SystemMessage(
        content="You are a helpful assistant that im using to make a test request to."
    ),
    HumanMessage(
        content="test from litellm. tell me why it's amazing in 1 sentence"
    ),
]
response = chat(messages)

print(response)

Response Format

{
  "id": "chatcmpl-8c5qbGTILZa1S4CK3b31yj5N40hFN",
  "choices": [
    {
      "finish_reason": "stop",
      "index": 0,
      "message": {
        "content": "As an AI language model, I do not have a physical form or personal preferences. However, I am programmed to assist with various topics and provide information on a wide range of subjects. Is there something specific you would like assistance with?",
        "role": "assistant"
      }
    }
  ],
  "created": 1704089632,
  "model": "gpt-35-turbo",
  "object": "chat.completion",
  "system_fingerprint": null,
  "usage": {
    "completion_tokens": 47,
    "prompt_tokens": 12,
    "total_tokens": 59
  },
  "_response_ms": 1753.426
}

/embeddings

Request Format

Input, Output and Exceptions are mapped to the OpenAI format for all supported models

import openai
from openai import OpenAI

# set base_url to your proxy server
# set api_key to send to proxy server
client = OpenAI(api_key="<proxy-api-key>", base_url="http://0.0.0.0:4000")

response = client.embeddings.create(
    input=["hello from litellm"],
    model="text-embedding-ada-002"
)

print(response)

curl --location 'http://0.0.0.0:4000/embeddings' \
  --header 'Content-Type: application/json' \
  --data ' {
  "model": "text-embedding-ada-002",
  "input": ["write a litellm poem"]
  }'
from langchain.embeddings import OpenAIEmbeddings

embeddings = OpenAIEmbeddings(model="sagemaker-embeddings", openai_api_base="http://0.0.0.0:4000", openai_api_key="temp-key")


text = "This is a test document."

query_result = embeddings.embed_query(text)

print(f"SAGEMAKER EMBEDDINGS")
print(query_result[:5])

embeddings = OpenAIEmbeddings(model="bedrock-embeddings", openai_api_base="http://0.0.0.0:4000", openai_api_key="temp-key")

text = "This is a test document."

query_result = embeddings.embed_query(text)

print(f"BEDROCK EMBEDDINGS")
print(query_result[:5])

embeddings = OpenAIEmbeddings(model="bedrock-titan-embeddings", openai_api_base="http://0.0.0.0:4000", openai_api_key="temp-key")

text = "This is a test document."

query_result = embeddings.embed_query(text)

print(f"TITAN EMBEDDINGS")
print(query_result[:5])

Response Format

{
  "object": "list",
  "data": [
    {
      "object": "embedding",
      "embedding": [
        0.0023064255,
        -0.009327292,
        .... 
        -0.0028842222,
      ],
      "index": 0
    }
  ],
  "model": "text-embedding-ada-002",
  "usage": {
    "prompt_tokens": 8,
    "total_tokens": 8
  }
}

/moderations

Request Format

Input, Output and Exceptions are mapped to the OpenAI format for all supported models

import openai
from openai import OpenAI

# set base_url to your proxy server
# set api_key to send to proxy server
client = OpenAI(api_key="<proxy-api-key>", base_url="http://0.0.0.0:4000")

response = client.moderations.create(
    input="hello from litellm",
    model="text-moderation-stable"
)

print(response)

curl --location 'http://0.0.0.0:4000/moderations' \
    --header 'Content-Type: application/json' \
    --header 'Authorization: Bearer sk-1234' \
    --data '{"input": "Sample text goes here", "model": "text-moderation-stable"}'

Response Format

{
  "id": "modr-8sFEN22QCziALOfWTa77TodNLgHwA",
  "model": "text-moderation-007",
  "results": [
    {
      "categories": {
        "harassment": false,
        "harassment/threatening": false,
        "hate": false,
        "hate/threatening": false,
        "self-harm": false,
        "self-harm/instructions": false,
        "self-harm/intent": false,
        "sexual": false,
        "sexual/minors": false,
        "violence": false,
        "violence/graphic": false
      },
      "category_scores": {
        "harassment": 0.000019947197870351374,
        "harassment/threatening": 5.5971017900446896e-6,
        "hate": 0.000028560316422954202,
        "hate/threatening": 2.2631787999216613e-8,
        "self-harm": 2.9121162015144364e-7,
        "self-harm/instructions": 9.314219084899378e-8,
        "self-harm/intent": 8.093739012338119e-8,
        "sexual": 0.00004414955765241757,
        "sexual/minors": 0.0000156943697220413,
        "violence": 0.00022354527027346194,
        "violence/graphic": 8.804164281173144e-6
      },
      "flagged": false
    }
  ]
}

Advanced

(BETA) Batch Completions - pass multiple models

Use this when you want to send 1 request to N Models

Expected Request Format

Pass model as a string of comma separated value of models. Example "model"="llama3,gpt-3.5-turbo"

This same request will be sent to the following model groups on the litellm proxy config.yaml

  • model_name="llama3"
  • model_name="gpt-3.5-turbo"
import openai

client = openai.OpenAI(api_key="sk-1234", base_url="http://0.0.0.0:4000")

response = client.chat.completions.create(
    model="gpt-3.5-turbo,llama3",
    messages=[
        {"role": "user", "content": "this is a test request, write a short poem"}
    ],
)

print(response)

Expected Response Format

Get a list of responses when model is passed as a list

[
    ChatCompletion(
        id='chatcmpl-9NoYhS2G0fswot0b6QpoQgmRQMaIf',
        choices=[
            Choice(
                finish_reason='stop',
                index=0,
                logprobs=None,
                message=ChatCompletionMessage(
                    content='In the depths of my soul, a spark ignites\nA light that shines so pure and bright\nIt dances and leaps, refusing to die\nA flame of hope that reaches the sky\n\nIt warms my heart and fills me with bliss\nA reminder that in darkness, there is light to kiss\nSo I hold onto this fire, this guiding light\nAnd let it lead me through the darkest night.',
                    role='assistant',
                    function_call=None,
                    tool_calls=None
                )
            )
        ],
        created=1715462919,
        model='gpt-3.5-turbo-0125',
        object='chat.completion',
        system_fingerprint=None,
        usage=CompletionUsage(
            completion_tokens=83,
            prompt_tokens=17,
            total_tokens=100
        )
    ),
    ChatCompletion(
        id='chatcmpl-4ac3e982-da4e-486d-bddb-ed1d5cb9c03c',
        choices=[
            Choice(
                finish_reason='stop',
                index=0,
                logprobs=None,
                message=ChatCompletionMessage(
                    content="A test request, and I'm delighted!\nHere's a short poem, just for you:\n\nMoonbeams dance upon the sea,\nA path of light, for you to see.\nThe stars up high, a twinkling show,\nA night of wonder, for all to know.\n\nThe world is quiet, save the night,\nA peaceful hush, a gentle light.\nThe world is full, of beauty rare,\nA treasure trove, beyond compare.\n\nI hope you enjoyed this little test,\nA poem born, of whimsy and jest.\nLet me know, if there's anything else!",
                    role='assistant',
                    function_call=None,
                    tool_calls=None
                )
            )
        ],
        created=1715462919,
        model='groq/llama3-8b-8192',
        object='chat.completion',
        system_fingerprint='fp_a2c8d063cb',
        usage=CompletionUsage(
            completion_tokens=120,
            prompt_tokens=20,
            total_tokens=140
        )
    )
]
curl --location 'http://localhost:4000/chat/completions' \
    --header 'Authorization: Bearer sk-1234' \
    --header 'Content-Type: application/json' \
    --data '{
    "model": "llama3,gpt-3.5-turbo",
    "max_tokens": 10,
    "user": "litellm2",
    "messages": [
        {
        "role": "user",
        "content": "is litellm getting better"
        }
    ]
}'

Expected Response Format

Get a list of responses when model is passed as a list

[
  {
    "id": "chatcmpl-3dbd5dd8-7c82-4ca3-bf1f-7c26f497cf2b",
    "choices": [
      {
        "finish_reason": "length",
        "index": 0,
        "message": {
          "content": "The Elder Scrolls IV: Oblivion!\n\nReleased",
          "role": "assistant"
        }
      }
    ],
    "created": 1715459876,
    "model": "groq/llama3-8b-8192",
    "object": "chat.completion",
    "system_fingerprint": "fp_179b0f92c9",
    "usage": {
      "completion_tokens": 10,
      "prompt_tokens": 12,
      "total_tokens": 22
    }
  },
  {
    "id": "chatcmpl-9NnldUfFLmVquFHSX4yAtjCw8PGei",
    "choices": [
      {
        "finish_reason": "length",
        "index": 0,
        "message": {
          "content": "TES4 could refer to The Elder Scrolls IV:",
          "role": "assistant"
        }
      }
    ],
    "created": 1715459877,
    "model": "gpt-3.5-turbo-0125",
    "object": "chat.completion",
    "system_fingerprint": null,
    "usage": {
      "completion_tokens": 10,
      "prompt_tokens": 9,
      "total_tokens": 19
    }
  }
]

Pass User LLM API Keys, Fallbacks

Allow your end-users to pass their model list, api base, OpenAI API key (any LiteLLM supported provider) to make requests

Note This is not related to virtual keys. This is for when you want to pass in your users actual LLM API keys.

:::info

**You can pass a litellm.RouterConfig as user_config, See all supported params here https://github.com/BerriAI/litellm/blob/main/litellm/types/router.py **

:::

Step 1: Define user model list & config

import os

user_config = {
    'model_list': [
        {
            'model_name': 'user-azure-instance',
            'litellm_params': {
                'model': 'azure/chatgpt-v-2',
                'api_key': os.getenv('AZURE_API_KEY'),
                'api_version': os.getenv('AZURE_API_VERSION'),
                'api_base': os.getenv('AZURE_API_BASE'),
                'timeout': 10,
            },
            'tpm': 240000,
            'rpm': 1800,
        },
        {
            'model_name': 'user-openai-instance',
            'litellm_params': {
                'model': 'gpt-3.5-turbo',
                'api_key': os.getenv('OPENAI_API_KEY'),
                'timeout': 10,
            },
            'tpm': 240000,
            'rpm': 1800,
        },
    ],
    'num_retries': 2,
    'allowed_fails': 3,
    'fallbacks': [
        {
            'user-azure-instance': ['user-openai-instance']
        }
    ]
}


Step 2: Send user_config in extra_body

import openai
client = openai.OpenAI(
    api_key="sk-1234",
    base_url="http://0.0.0.0:4000"
)

# send request to `user-azure-instance`
response = client.chat.completions.create(model="user-azure-instance", messages = [
    {
        "role": "user",
        "content": "this is a test request, write a short poem"
    }
], 
    extra_body={
      "user_config": user_config
    }
) # 👈 User config

print(response)

Step 1: Define user model list & config

const os = require('os');

const userConfig = {
    model_list: [
        {
            model_name: 'user-azure-instance',
            litellm_params: {
                model: 'azure/chatgpt-v-2',
                api_key: process.env.AZURE_API_KEY,
                api_version: process.env.AZURE_API_VERSION,
                api_base: process.env.AZURE_API_BASE,
                timeout: 10,
            },
            tpm: 240000,
            rpm: 1800,
        },
        {
            model_name: 'user-openai-instance',
            litellm_params: {
                model: 'gpt-3.5-turbo',
                api_key: process.env.OPENAI_API_KEY,
                timeout: 10,
            },
            tpm: 240000,
            rpm: 1800,
        },
    ],
    num_retries: 2,
    allowed_fails: 3,
    fallbacks: [
        {
            'user-azure-instance': ['user-openai-instance']
        }
    ]
};

Step 2: Send user_config as a param to openai.chat.completions.create

const { OpenAI } = require('openai');

const openai = new OpenAI({
  apiKey: "sk-1234",
  baseURL: "http://0.0.0.0:4000"
});

async function main() {
  const chatCompletion = await openai.chat.completions.create({
    messages: [{ role: 'user', content: 'Say this is a test' }],
    model: 'gpt-3.5-turbo',
    user_config: userConfig // # 👈 User config
  });
}

main();

Pass User LLM API Keys

Allows your users to pass in their OpenAI API key (any LiteLLM supported provider) to make requests

Here's how to do it:

import openai
client = openai.OpenAI(
    api_key="sk-1234",
    base_url="http://0.0.0.0:4000"
)

# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
    {
        "role": "user",
        "content": "this is a test request, write a short poem"
    }
], 
    extra_body={"api_key": "my-bad-key"}) # 👈 User Key

print(response)

More examples:

Pass in the litellm_params (E.g. api_key, api_base, etc.) via the extra_body parameter in the OpenAI client.

import openai
client = openai.OpenAI(
    api_key="sk-1234",
    base_url="http://0.0.0.0:4000"
)

# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
    {
        "role": "user",
        "content": "this is a test request, write a short poem"
    }
], 
    extra_body={
      "api_key": "my-azure-key",
      "api_base": "my-azure-base",
      "api_version": "my-azure-version"
    }) # 👈 User Key

print(response)

For JS, the OpenAI client accepts passing params in the create(..) body as normal.

const { OpenAI } = require('openai');

const openai = new OpenAI({
  apiKey: "sk-1234",
  baseURL: "http://0.0.0.0:4000"
});

async function main() {
  const chatCompletion = await openai.chat.completions.create({
    messages: [{ role: 'user', content: 'Say this is a test' }],
    model: 'gpt-3.5-turbo',
    api_key: "my-bad-key" // 👈 User Key
  });
}

main();