mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-27 19:54:13 +00:00
167 lines
4.7 KiB
Markdown
167 lines
4.7 KiB
Markdown
import Image from '@theme/IdealImage';
|
|
|
|
# 🔥 Load Test LiteLLM
|
|
|
|
## Load Test LiteLLM Proxy - 1500+ req/s
|
|
|
|
## 1500+ concurrent requests/s
|
|
|
|
LiteLLM proxy has been load tested to handle 1500+ concurrent req/s
|
|
|
|
```python
|
|
import time, asyncio
|
|
from openai import AsyncOpenAI, AsyncAzureOpenAI
|
|
import uuid
|
|
import traceback
|
|
|
|
# base_url - litellm proxy endpoint
|
|
# api_key - litellm proxy api-key, is created proxy with auth
|
|
litellm_client = AsyncOpenAI(base_url="http://0.0.0.0:4000", api_key="sk-1234")
|
|
|
|
|
|
async def litellm_completion():
|
|
# Your existing code for litellm_completion goes here
|
|
try:
|
|
response = await litellm_client.chat.completions.create(
|
|
model="azure-gpt-3.5",
|
|
messages=[{"role": "user", "content": f"This is a test: {uuid.uuid4()}"}],
|
|
)
|
|
print(response)
|
|
return response
|
|
|
|
except Exception as e:
|
|
# If there's an exception, log the error message
|
|
with open("error_log.txt", "a") as error_log:
|
|
error_log.write(f"Error during completion: {str(e)}\n")
|
|
pass
|
|
|
|
|
|
async def main():
|
|
for i in range(1):
|
|
start = time.time()
|
|
n = 1500 # Number of concurrent tasks
|
|
tasks = [litellm_completion() for _ in range(n)]
|
|
|
|
chat_completions = await asyncio.gather(*tasks)
|
|
|
|
successful_completions = [c for c in chat_completions if c is not None]
|
|
|
|
# Write errors to error_log.txt
|
|
with open("error_log.txt", "a") as error_log:
|
|
for completion in chat_completions:
|
|
if isinstance(completion, str):
|
|
error_log.write(completion + "\n")
|
|
|
|
print(n, time.time() - start, len(successful_completions))
|
|
time.sleep(10)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# Blank out contents of error_log.txt
|
|
open("error_log.txt", "w").close()
|
|
|
|
asyncio.run(main())
|
|
|
|
```
|
|
|
|
### Throughput - 30% Increase
|
|
LiteLLM proxy + Load Balancer gives **30% increase** in throughput compared to Raw OpenAI API
|
|
<Image img={require('../img/throughput.png')} />
|
|
|
|
### Latency Added - 0.00325 seconds
|
|
LiteLLM proxy adds **0.00325 seconds** latency as compared to using the Raw OpenAI API
|
|
<Image img={require('../img/latency.png')} />
|
|
|
|
|
|
### Testing LiteLLM Proxy with Locust
|
|
- 1 LiteLLM container can handle ~140 requests/second with 0.4 failures
|
|
|
|
<Image img={require('../img/locust.png')} />
|
|
|
|
## Load Test LiteLLM SDK vs OpenAI
|
|
Here is a script to load test LiteLLM vs OpenAI
|
|
|
|
```python
|
|
from openai import AsyncOpenAI, AsyncAzureOpenAI
|
|
import random, uuid
|
|
import time, asyncio, litellm
|
|
# import logging
|
|
# logging.basicConfig(level=logging.DEBUG)
|
|
#### LITELLM PROXY ####
|
|
litellm_client = AsyncOpenAI(
|
|
api_key="sk-1234", # [CHANGE THIS]
|
|
base_url="http://0.0.0.0:4000"
|
|
)
|
|
|
|
#### AZURE OPENAI CLIENT ####
|
|
client = AsyncAzureOpenAI(
|
|
api_key="my-api-key", # [CHANGE THIS]
|
|
azure_endpoint="my-api-base", # [CHANGE THIS]
|
|
api_version="2023-07-01-preview"
|
|
)
|
|
|
|
|
|
#### LITELLM ROUTER ####
|
|
model_list = [
|
|
{
|
|
"model_name": "azure-canada",
|
|
"litellm_params": {
|
|
"model": "azure/my-azure-deployment-name", # [CHANGE THIS]
|
|
"api_key": "my-api-key", # [CHANGE THIS]
|
|
"api_base": "my-api-base", # [CHANGE THIS]
|
|
"api_version": "2023-07-01-preview"
|
|
}
|
|
}
|
|
]
|
|
|
|
router = litellm.Router(model_list=model_list)
|
|
|
|
async def openai_completion():
|
|
try:
|
|
response = await client.chat.completions.create(
|
|
model="gpt-35-turbo",
|
|
messages=[{"role": "user", "content": f"This is a test: {uuid.uuid4()}"}],
|
|
stream=True
|
|
)
|
|
return response
|
|
except Exception as e:
|
|
print(e)
|
|
return None
|
|
|
|
|
|
async def router_completion():
|
|
try:
|
|
response = await router.acompletion(
|
|
model="azure-canada", # [CHANGE THIS]
|
|
messages=[{"role": "user", "content": f"This is a test: {uuid.uuid4()}"}],
|
|
stream=True
|
|
)
|
|
return response
|
|
except Exception as e:
|
|
print(e)
|
|
return None
|
|
|
|
async def proxy_completion_non_streaming():
|
|
try:
|
|
response = await litellm_client.chat.completions.create(
|
|
model="sagemaker-models", # [CHANGE THIS] (if you call it something else on your proxy)
|
|
messages=[{"role": "user", "content": f"This is a test: {uuid.uuid4()}"}],
|
|
)
|
|
return response
|
|
except Exception as e:
|
|
print(e)
|
|
return None
|
|
|
|
async def loadtest_fn():
|
|
start = time.time()
|
|
n = 500 # Number of concurrent tasks
|
|
tasks = [proxy_completion_non_streaming() for _ in range(n)]
|
|
chat_completions = await asyncio.gather(*tasks)
|
|
successful_completions = [c for c in chat_completions if c is not None]
|
|
print(n, time.time() - start, len(successful_completions))
|
|
|
|
# Run the event loop to execute the async function
|
|
asyncio.run(loadtest_fn())
|
|
|
|
```
|
|
|