forked from phoenix/litellm-mirror
docs(lm_studio.md): add doc on lm studio support
This commit is contained in:
parent
22b8f93f53
commit
246052fe23
2 changed files with 131 additions and 0 deletions
130
docs/my-website/docs/providers/lm_studio.md
Normal file
130
docs/my-website/docs/providers/lm_studio.md
Normal file
|
@ -0,0 +1,130 @@
|
|||
import Tabs from '@theme/Tabs';
|
||||
import TabItem from '@theme/TabItem';
|
||||
|
||||
# LM Studio
|
||||
|
||||
https://lmstudio.ai/docs/basics/server
|
||||
|
||||
:::tip
|
||||
|
||||
**We support ALL LM Studio models, just set `model=lm_studio/<any-model-on-lmstudio>` as a prefix when sending litellm requests**
|
||||
|
||||
:::
|
||||
|
||||
## API Key
|
||||
```python
|
||||
# env variable
|
||||
os.environ['LM_STUDIO_API_BASE']
|
||||
os.environ['LM_STUDIO_API_KEY'] # optional, default is empty
|
||||
```
|
||||
|
||||
## Sample Usage
|
||||
```python
|
||||
from litellm import completion
|
||||
import os
|
||||
|
||||
os.environ['LM_STUDIO_API_BASE'] = ""
|
||||
|
||||
response = completion(
|
||||
model="lm_studio/llama-3-8b-instruct",
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "What's the weather like in Boston today in Fahrenheit?",
|
||||
}
|
||||
]
|
||||
)
|
||||
print(response)
|
||||
```
|
||||
|
||||
## Sample Usage - Streaming
|
||||
```python
|
||||
from litellm import completion
|
||||
import os
|
||||
|
||||
os.environ['XAI_API_KEY'] = ""
|
||||
response = completion(
|
||||
model="lm_studio/llama-3-8b-instruct",
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "What's the weather like in Boston today in Fahrenheit?",
|
||||
}
|
||||
],
|
||||
stream=True,
|
||||
)
|
||||
|
||||
for chunk in response:
|
||||
print(chunk)
|
||||
```
|
||||
|
||||
|
||||
## Usage with LiteLLM Proxy Server
|
||||
|
||||
Here's how to call a XAI model with the LiteLLM Proxy Server
|
||||
|
||||
1. Modify the config.yaml
|
||||
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: my-model
|
||||
litellm_params:
|
||||
model: lm_studio/<your-model-name> # add lm_studio/ prefix to route as LM Studio provider
|
||||
api_key: api-key # api key to send your model
|
||||
```
|
||||
|
||||
|
||||
2. Start the proxy
|
||||
|
||||
```bash
|
||||
$ litellm --config /path/to/config.yaml
|
||||
```
|
||||
|
||||
3. Send Request to LiteLLM Proxy Server
|
||||
|
||||
<Tabs>
|
||||
|
||||
<TabItem value="openai" label="OpenAI Python v1.0.0+">
|
||||
|
||||
```python
|
||||
import openai
|
||||
client = openai.OpenAI(
|
||||
api_key="sk-1234", # pass litellm proxy key, if you're using virtual keys
|
||||
base_url="http://0.0.0.0:4000" # litellm-proxy-base url
|
||||
)
|
||||
|
||||
response = client.chat.completions.create(
|
||||
model="my-model",
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "what llm are you"
|
||||
}
|
||||
],
|
||||
)
|
||||
|
||||
print(response)
|
||||
```
|
||||
</TabItem>
|
||||
|
||||
<TabItem value="curl" label="curl">
|
||||
|
||||
```shell
|
||||
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
||||
--header 'Authorization: Bearer sk-1234' \
|
||||
--header 'Content-Type: application/json' \
|
||||
--data '{
|
||||
"model": "my-model",
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "what llm are you"
|
||||
}
|
||||
],
|
||||
}'
|
||||
```
|
||||
</TabItem>
|
||||
|
||||
</Tabs>
|
||||
|
||||
|
|
@ -156,6 +156,7 @@ const sidebars = {
|
|||
"providers/predibase",
|
||||
"providers/nvidia_nim",
|
||||
"providers/xai",
|
||||
"providers/lm_studio",
|
||||
"providers/cerebras",
|
||||
"providers/volcano",
|
||||
"providers/triton-inference-server",
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue