batch completions for vllm now works too

This commit is contained in:
Krrish Dholakia 2023-09-06 18:52:34 -07:00
parent 4a263f6ab7
commit 35cf6ef0a1
21 changed files with 149 additions and 23 deletions

View file

@ -6,7 +6,7 @@ import time
from typing import Callable
from litellm.utils import ModelResponse
from .prompt_templates.factory import prompt_factory, custom_prompt
llm = None
class VLLMError(Exception):
def __init__(self, status_code, message):
self.status_code = status_code
@ -16,10 +16,12 @@ class VLLMError(Exception):
) # Call the base class constructor with the parameters it needs
# check if vllm is installed
def validate_environment():
def validate_environment(model: str, llm: any=None):
try:
from vllm import LLM, SamplingParams
return LLM, SamplingParams
if llm is None:
llm = LLM(model=model)
return llm, SamplingParams
except:
raise VLLMError(status_code=0, message="The vllm package is not installed in your environment. Run - `pip install vllm` before proceeding.")
@ -35,9 +37,8 @@ def completion(
litellm_params=None,
logger_fn=None,
):
LLM, SamplingParams = validate_environment()
try:
llm = LLM(model=model)
llm, SamplingParams = validate_environment(model=model)
except Exception as e:
raise VLLMError(status_code=0, message=str(e))
sampling_params = SamplingParams(**optional_params)
@ -92,6 +93,85 @@ def completion(
}
return model_response
def batch_completions(
model: str,
messages: list,
optional_params=None,
custom_prompt_dict={}
):
"""
Example usage:
import litellm
import os
from litellm import batch_completion
responses = batch_completion(
model="vllm/facebook/opt-125m",
messages = [
[
{
"role": "user",
"content": "good morning? "
}
],
[
{
"role": "user",
"content": "what's the time? "
}
]
]
)
"""
global llm
try:
llm, SamplingParams = validate_environment(model=model, llm=llm)
except Exception as e:
if "data parallel group is already initialized" in e:
pass
else:
raise VLLMError(status_code=0, message=str(e))
sampling_params = SamplingParams(**optional_params)
prompts = []
if model in custom_prompt_dict:
# check if the model has a registered custom prompt
model_prompt_details = custom_prompt_dict[model]
for message in messages:
prompt = custom_prompt(
role_dict=model_prompt_details["roles"],
initial_prompt_value=model_prompt_details["initial_prompt_value"],
final_prompt_value=model_prompt_details["final_prompt_value"],
messages=message
)
prompts.append(prompt)
else:
for message in messages:
prompt = prompt_factory(model=model, messages=message)
prompts.append(prompt)
outputs = llm.generate(prompts, sampling_params)
final_outputs = []
for output in outputs:
model_response = ModelResponse()
## RESPONSE OBJECT
model_response["choices"][0]["message"]["content"] = output.outputs[0].text
## CALCULATING USAGE
prompt_tokens = len(output.prompt_token_ids)
completion_tokens = len(output.outputs[0].token_ids)
model_response["created"] = time.time()
model_response["model"] = model
model_response["usage"] = {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens,
}
final_outputs.append(model_response)
return final_outputs
def embedding():
# logic for parsing in - calling - parsing out model embedding calls
pass