LiteLLM Minor Fixes & Improvements (09/19/2024) (#5793)

* fix(model_prices_and_context_window.json): add cost tracking for more vertex llama3.1 model

8b and 70b models

* fix(proxy/utils.py): handle data being none on pre-call hooks

* fix(proxy/): create views on initial proxy startup

fixes base case, where user starts proxy for first time

 Fixes https://github.com/BerriAI/litellm/issues/5756

* build(config.yml): fix vertex version for test

* feat(ui/): support enabling/disabling slack alerting

Allows admin to turn on/off slack alerting through ui

* feat(rerank/main.py): support langfuse logging

* fix(proxy/utils.py): fix linting errors

* fix(langfuse.py): log clean metadata

* test(tests): replace deprecated openai model
This commit is contained in:
Krish Dholakia 2024-09-20 08:19:52 -07:00 committed by GitHub
parent 696fc387d2
commit 3933fba41f
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
22 changed files with 645 additions and 94 deletions

View file

@ -48,6 +48,7 @@ def load_vertex_ai_credentials():
service_account_key_data["private_key_id"] = private_key_id
service_account_key_data["private_key"] = private_key
# print(f"service_account_key_data: {service_account_key_data}")
# Create a temporary file
with tempfile.NamedTemporaryFile(mode="w+", delete=False) as temp_file:
# Write the updated content to the temporary files
@ -151,3 +152,46 @@ async def test_basic_vertex_ai_pass_through_streaming_with_spendlog():
)
pass
@pytest.mark.asyncio
async def test_vertex_ai_pass_through_endpoint_context_caching():
import vertexai
from vertexai.generative_models import Part
from vertexai.preview import caching
import datetime
load_vertex_ai_credentials()
vertexai.init(
project="adroit-crow-413218",
location="us-central1",
api_endpoint=f"{LITE_LLM_ENDPOINT}/vertex-ai",
api_transport="rest",
)
system_instruction = """
You are an expert researcher. You always stick to the facts in the sources provided, and never make up new facts.
Now look at these research papers, and answer the following questions.
"""
contents = [
Part.from_uri(
"gs://cloud-samples-data/generative-ai/pdf/2312.11805v3.pdf",
mime_type="application/pdf",
),
Part.from_uri(
"gs://cloud-samples-data/generative-ai/pdf/2403.05530.pdf",
mime_type="application/pdf",
),
]
cached_content = caching.CachedContent.create(
model_name="gemini-1.5-pro-001",
system_instruction=system_instruction,
contents=contents,
ttl=datetime.timedelta(minutes=60),
# display_name="example-cache",
)
print(cached_content.name)