forked from phoenix/litellm-mirror
Merge branch 'main' into litellm_aws_kms_fixes
This commit is contained in:
commit
4475d2e5b5
34 changed files with 1293 additions and 483 deletions
|
@ -150,7 +150,7 @@ $ litellm --config /path/to/config.yaml
|
|||
```bash
|
||||
curl "http://0.0.0.0:4000/v1/assistants?order=desc&limit=20" \
|
||||
-H "Content-Type: application/json" \
|
||||
-H "Authorization: Bearer sk-1234" \
|
||||
-H "Authorization: Bearer sk-1234"
|
||||
```
|
||||
|
||||
**Create a Thread**
|
||||
|
@ -162,6 +162,14 @@ curl http://0.0.0.0:4000/v1/threads \
|
|||
-d ''
|
||||
```
|
||||
|
||||
**Get a Thread**
|
||||
|
||||
```bash
|
||||
curl http://0.0.0.0:4000/v1/threads/{thread_id} \
|
||||
-H "Content-Type: application/json" \
|
||||
-H "Authorization: Bearer sk-1234"
|
||||
```
|
||||
|
||||
**Add Messages to the Thread**
|
||||
|
||||
```bash
|
||||
|
|
|
@ -212,6 +212,94 @@ If you run the code two times, response1 will use the cache from the first run t
|
|||
|
||||
</TabItem>
|
||||
|
||||
</Tabs>
|
||||
|
||||
## Switch Cache On / Off Per LiteLLM Call
|
||||
|
||||
LiteLLM supports 4 cache-controls:
|
||||
|
||||
- `no-cache`: *Optional(bool)* When `True`, Will not return a cached response, but instead call the actual endpoint.
|
||||
- `no-store`: *Optional(bool)* When `True`, Will not cache the response.
|
||||
- `ttl`: *Optional(int)* - Will cache the response for the user-defined amount of time (in seconds).
|
||||
- `s-maxage`: *Optional(int)* Will only accept cached responses that are within user-defined range (in seconds).
|
||||
|
||||
[Let us know if you need more](https://github.com/BerriAI/litellm/issues/1218)
|
||||
<Tabs>
|
||||
<TabItem value="no-cache" label="No-Cache">
|
||||
|
||||
Example usage `no-cache` - When `True`, Will not return a cached response
|
||||
|
||||
```python
|
||||
response = litellm.completion(
|
||||
model="gpt-3.5-turbo",
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "hello who are you"
|
||||
}
|
||||
],
|
||||
cache={"no-cache": True},
|
||||
)
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
|
||||
<TabItem value="no-store" label="No-Store">
|
||||
|
||||
Example usage `no-store` - When `True`, Will not cache the response.
|
||||
|
||||
```python
|
||||
response = litellm.completion(
|
||||
model="gpt-3.5-turbo",
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "hello who are you"
|
||||
}
|
||||
],
|
||||
cache={"no-store": True},
|
||||
)
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
|
||||
<TabItem value="ttl" label="ttl">
|
||||
Example usage `ttl` - cache the response for 10 seconds
|
||||
|
||||
```python
|
||||
response = litellm.completion(
|
||||
model="gpt-3.5-turbo",
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "hello who are you"
|
||||
}
|
||||
],
|
||||
cache={"ttl": 10},
|
||||
)
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
|
||||
<TabItem value="s-maxage" label="s-maxage">
|
||||
Example usage `s-maxage` - Will only accept cached responses for 60 seconds
|
||||
|
||||
```python
|
||||
response = litellm.completion(
|
||||
model="gpt-3.5-turbo",
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "hello who are you"
|
||||
}
|
||||
],
|
||||
cache={"s-maxage": 60},
|
||||
)
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
|
||||
|
||||
</Tabs>
|
||||
|
||||
## Cache Context Manager - Enable, Disable, Update Cache
|
||||
|
|
|
@ -1,3 +1,5 @@
|
|||
# llmcord.py
|
||||
|
||||
llmcord.py lets you and your friends chat with LLMs directly in your Discord server. It works with practically any LLM, remote or locally hosted.
|
||||
|
||||
Github: https://github.com/jakobdylanc/discord-llm-chatbot
|
|
@ -138,14 +138,22 @@ Navigate to the Usage Tab on the LiteLLM UI (found on https://your-proxy-endpoin
|
|||
<Image img={require('../../img/admin_ui_spend.png')} />
|
||||
|
||||
## API Endpoints to get Spend
|
||||
#### Getting Spend Reports - To Charge Other Teams, API Keys
|
||||
#### Getting Spend Reports - To Charge Other Teams, Customers
|
||||
|
||||
Use the `/global/spend/report` endpoint to get daily spend per team, with a breakdown of spend per API Key, Model
|
||||
Use the `/global/spend/report` endpoint to get daily spend report per
|
||||
- team
|
||||
- customer [this is `user` passed to `/chat/completions` request](#how-to-track-spend-with-litellm)
|
||||
|
||||
<Tabs>
|
||||
|
||||
<TabItem value="per team" label="Spend Per Team">
|
||||
|
||||
##### Example Request
|
||||
|
||||
👉 Key Change: Specify `group_by=team`
|
||||
|
||||
```shell
|
||||
curl -X GET 'http://localhost:4000/global/spend/report?start_date=2024-04-01&end_date=2024-06-30' \
|
||||
curl -X GET 'http://localhost:4000/global/spend/report?start_date=2024-04-01&end_date=2024-06-30&group_by=team' \
|
||||
-H 'Authorization: Bearer sk-1234'
|
||||
```
|
||||
|
||||
|
@ -254,6 +262,69 @@ Output from script
|
|||
```
|
||||
|
||||
|
||||
</TabItem>
|
||||
|
||||
</Tabs>
|
||||
|
||||
</TabItem>
|
||||
|
||||
|
||||
<TabItem value="per customer" label="Spend Per Customer">
|
||||
|
||||
##### Example Request
|
||||
|
||||
👉 Key Change: Specify `group_by=customer`
|
||||
|
||||
|
||||
```shell
|
||||
curl -X GET 'http://localhost:4000/global/spend/report?start_date=2024-04-01&end_date=2024-06-30&group_by=customer' \
|
||||
-H 'Authorization: Bearer sk-1234'
|
||||
```
|
||||
|
||||
##### Example Response
|
||||
|
||||
|
||||
```shell
|
||||
[
|
||||
{
|
||||
"group_by_day": "2024-04-30T00:00:00+00:00",
|
||||
"customers": [
|
||||
{
|
||||
"customer": "palantir",
|
||||
"total_spend": 0.0015265,
|
||||
"metadata": [ # see the spend by unique(key + model)
|
||||
{
|
||||
"model": "gpt-4",
|
||||
"spend": 0.00123,
|
||||
"total_tokens": 28,
|
||||
"api_key": "88dc28.." # the hashed api key
|
||||
},
|
||||
{
|
||||
"model": "gpt-4",
|
||||
"spend": 0.00123,
|
||||
"total_tokens": 28,
|
||||
"api_key": "a73dc2.." # the hashed api key
|
||||
},
|
||||
{
|
||||
"model": "chatgpt-v-2",
|
||||
"spend": 0.000214,
|
||||
"total_tokens": 122,
|
||||
"api_key": "898c28.." # the hashed api key
|
||||
},
|
||||
{
|
||||
"model": "gpt-3.5-turbo",
|
||||
"spend": 0.0000825,
|
||||
"total_tokens": 85,
|
||||
"api_key": "84dc28.." # the hashed api key
|
||||
}
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
]
|
||||
```
|
||||
|
||||
|
||||
</TabItem>
|
||||
|
||||
</Tabs>
|
||||
|
|
|
@ -42,6 +42,14 @@ Set `JSON_LOGS="True"` in your env:
|
|||
```bash
|
||||
export JSON_LOGS="True"
|
||||
```
|
||||
**OR**
|
||||
|
||||
Set `json_logs: true` in your yaml:
|
||||
|
||||
```yaml
|
||||
litellm_settings:
|
||||
json_logs: true
|
||||
```
|
||||
|
||||
Start proxy
|
||||
|
||||
|
@ -49,4 +57,35 @@ Start proxy
|
|||
$ litellm
|
||||
```
|
||||
|
||||
The proxy will now all logs in json format.
|
||||
The proxy will now all logs in json format.
|
||||
|
||||
## Control Log Output
|
||||
|
||||
Turn off fastapi's default 'INFO' logs
|
||||
|
||||
1. Turn on 'json logs'
|
||||
```yaml
|
||||
litellm_settings:
|
||||
json_logs: true
|
||||
```
|
||||
|
||||
2. Set `LITELLM_LOG` to 'ERROR'
|
||||
|
||||
Only get logs if an error occurs.
|
||||
|
||||
```bash
|
||||
LITELLM_LOG="ERROR"
|
||||
```
|
||||
|
||||
3. Start proxy
|
||||
|
||||
|
||||
```bash
|
||||
$ litellm
|
||||
```
|
||||
|
||||
Expected Output:
|
||||
|
||||
```bash
|
||||
# no info statements
|
||||
```
|
|
@ -2,11 +2,21 @@
|
|||
|
||||
Call management endpoints on behalf of a user. (Useful when connecting proxy to your development platform).
|
||||
|
||||
:::info
|
||||
Requires Enterprise License for usage.
|
||||
:::
|
||||
|
||||
## Set `LiteLLM-Changed-By` in request headers
|
||||
:::tip
|
||||
|
||||
Requires Enterprise License, Get in touch with us [here](https://calendly.com/d/4mp-gd3-k5k/litellm-1-1-onboarding-chat)
|
||||
|
||||
:::
|
||||
|
||||
## 1. Switch on audit Logs
|
||||
Add `store_audit_logs` to your litellm config.yaml and then start the proxy
|
||||
```shell
|
||||
litellm_settings:
|
||||
store_audit_logs: true
|
||||
```
|
||||
|
||||
## 2. Set `LiteLLM-Changed-By` in request headers
|
||||
|
||||
Set the 'user_id' in request headers, when calling a management endpoint. [View Full List](https://litellm-api.up.railway.app/#/team%20management).
|
||||
|
||||
|
@ -26,7 +36,7 @@ curl -X POST 'http://0.0.0.0:4000/team/update' \
|
|||
}'
|
||||
```
|
||||
|
||||
## Emitted Audit Log
|
||||
## 3. Emitted Audit Log
|
||||
|
||||
```bash
|
||||
{
|
||||
|
|
|
@ -21,6 +21,7 @@ general_settings:
|
|||
|
||||
litellm_settings:
|
||||
set_verbose: False # Switch off Debug Logging, ensure your logs do not have any debugging on
|
||||
json_logs: true # Get debug logs in json format
|
||||
```
|
||||
|
||||
Set slack webhook url in your env
|
||||
|
@ -28,6 +29,11 @@ Set slack webhook url in your env
|
|||
export SLACK_WEBHOOK_URL="https://hooks.slack.com/services/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"
|
||||
```
|
||||
|
||||
Turn off FASTAPI's default info logs
|
||||
```bash
|
||||
export LITELLM_LOG="ERROR"
|
||||
```
|
||||
|
||||
:::info
|
||||
|
||||
Need Help or want dedicated support ? Talk to a founder [here]: (https://calendly.com/d/4mp-gd3-k5k/litellm-1-1-onboarding-chat)
|
||||
|
|
|
@ -2,18 +2,13 @@ import Image from '@theme/IdealImage';
|
|||
import Tabs from '@theme/Tabs';
|
||||
import TabItem from '@theme/TabItem';
|
||||
|
||||
# 🔥 Fallbacks, Retries, Timeouts, Load Balancing
|
||||
# 🔥 Load Balancing, Fallbacks, Retries, Timeouts
|
||||
|
||||
Retry call with multiple instances of the same model.
|
||||
|
||||
If a call fails after num_retries, fall back to another model group.
|
||||
|
||||
If the error is a context window exceeded error, fall back to a larger model group (if given).
|
||||
|
||||
[**See Code**](https://github.com/BerriAI/litellm/blob/main/litellm/router.py)
|
||||
- Quick Start [load balancing](#test---load-balancing)
|
||||
- Quick Start [client side fallbacks](#test---client-side-fallbacks)
|
||||
|
||||
## Quick Start - Load Balancing
|
||||
### Step 1 - Set deployments on config
|
||||
#### Step 1 - Set deployments on config
|
||||
|
||||
**Example config below**. Here requests with `model=gpt-3.5-turbo` will be routed across multiple instances of `azure/gpt-3.5-turbo`
|
||||
```yaml
|
||||
|
@ -38,50 +33,220 @@ model_list:
|
|||
rpm: 1440
|
||||
```
|
||||
|
||||
### Step 2: Start Proxy with config
|
||||
#### Step 2: Start Proxy with config
|
||||
|
||||
```shell
|
||||
$ litellm --config /path/to/config.yaml
|
||||
```
|
||||
|
||||
### Step 3: Use proxy - Call a model group [Load Balancing]
|
||||
Curl Command
|
||||
### Test - Load Balancing
|
||||
|
||||
Here requests with model=gpt-3.5-turbo will be routed across multiple instances of azure/gpt-3.5-turbo
|
||||
|
||||
👉 Key Change: `model="gpt-3.5-turbo"`
|
||||
|
||||
**Check the `model_id` in Response Headers to make sure the requests are being load balanced**
|
||||
|
||||
<Tabs>
|
||||
|
||||
<TabItem value="openai" label="OpenAI Python v1.0.0+">
|
||||
|
||||
```python
|
||||
import openai
|
||||
client = openai.OpenAI(
|
||||
api_key="anything",
|
||||
base_url="http://0.0.0.0:4000"
|
||||
)
|
||||
|
||||
response = client.chat.completions.create(
|
||||
model="gpt-3.5-turbo",
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "this is a test request, write a short poem"
|
||||
}
|
||||
]
|
||||
)
|
||||
|
||||
print(response)
|
||||
```
|
||||
</TabItem>
|
||||
|
||||
<TabItem value="Curl" label="Curl Request">
|
||||
|
||||
Pass `metadata` as part of the request body
|
||||
|
||||
```shell
|
||||
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
||||
--header 'Content-Type: application/json' \
|
||||
--data ' {
|
||||
"model": "gpt-3.5-turbo",
|
||||
"messages": [
|
||||
--header 'Content-Type: application/json' \
|
||||
--data '{
|
||||
"model": "gpt-3.5-turbo",
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "what llm are you"
|
||||
"role": "user",
|
||||
"content": "what llm are you"
|
||||
}
|
||||
],
|
||||
}
|
||||
'
|
||||
]
|
||||
}'
|
||||
```
|
||||
</TabItem>
|
||||
<TabItem value="langchain" label="Langchain">
|
||||
|
||||
```python
|
||||
from langchain.chat_models import ChatOpenAI
|
||||
from langchain.prompts.chat import (
|
||||
ChatPromptTemplate,
|
||||
HumanMessagePromptTemplate,
|
||||
SystemMessagePromptTemplate,
|
||||
)
|
||||
from langchain.schema import HumanMessage, SystemMessage
|
||||
import os
|
||||
|
||||
os.environ["OPENAI_API_KEY"] = "anything"
|
||||
|
||||
chat = ChatOpenAI(
|
||||
openai_api_base="http://0.0.0.0:4000",
|
||||
model="gpt-3.5-turbo",
|
||||
)
|
||||
|
||||
messages = [
|
||||
SystemMessage(
|
||||
content="You are a helpful assistant that im using to make a test request to."
|
||||
),
|
||||
HumanMessage(
|
||||
content="test from litellm. tell me why it's amazing in 1 sentence"
|
||||
),
|
||||
]
|
||||
response = chat(messages)
|
||||
|
||||
print(response)
|
||||
```
|
||||
|
||||
### Usage - Call a specific model deployment
|
||||
If you want to call a specific model defined in the `config.yaml`, you can call the `litellm_params: model`
|
||||
</TabItem>
|
||||
|
||||
</Tabs>
|
||||
|
||||
|
||||
### Test - Client Side Fallbacks
|
||||
In this request the following will occur:
|
||||
1. The request to `model="zephyr-beta"` will fail
|
||||
2. litellm proxy will loop through all the model_groups specified in `fallbacks=["gpt-3.5-turbo"]`
|
||||
3. The request to `model="gpt-3.5-turbo"` will succeed and the client making the request will get a response from gpt-3.5-turbo
|
||||
|
||||
👉 Key Change: `"fallbacks": ["gpt-3.5-turbo"]`
|
||||
|
||||
<Tabs>
|
||||
|
||||
<TabItem value="openai" label="OpenAI Python v1.0.0+">
|
||||
|
||||
```python
|
||||
import openai
|
||||
client = openai.OpenAI(
|
||||
api_key="anything",
|
||||
base_url="http://0.0.0.0:4000"
|
||||
)
|
||||
|
||||
response = client.chat.completions.create(
|
||||
model="zephyr-beta",
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "this is a test request, write a short poem"
|
||||
}
|
||||
],
|
||||
extra_body={
|
||||
"metadata": {
|
||||
"fallbacks": ["gpt-3.5-turbo"]
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
print(response)
|
||||
```
|
||||
</TabItem>
|
||||
|
||||
<TabItem value="Curl" label="Curl Request">
|
||||
|
||||
Pass `metadata` as part of the request body
|
||||
|
||||
```shell
|
||||
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
||||
--header 'Content-Type: application/json' \
|
||||
--data '{
|
||||
"model": "zephyr-beta"",
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "what llm are you"
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"fallbacks": ["gpt-3.5-turbo"]
|
||||
}
|
||||
}'
|
||||
```
|
||||
</TabItem>
|
||||
<TabItem value="langchain" label="Langchain">
|
||||
|
||||
```python
|
||||
from langchain.chat_models import ChatOpenAI
|
||||
from langchain.prompts.chat import (
|
||||
ChatPromptTemplate,
|
||||
HumanMessagePromptTemplate,
|
||||
SystemMessagePromptTemplate,
|
||||
)
|
||||
from langchain.schema import HumanMessage, SystemMessage
|
||||
import os
|
||||
|
||||
os.environ["OPENAI_API_KEY"] = "anything"
|
||||
|
||||
chat = ChatOpenAI(
|
||||
openai_api_base="http://0.0.0.0:4000",
|
||||
model="zephyr-beta",
|
||||
extra_body={
|
||||
"metadata": {
|
||||
"fallbacks": ["gpt-3.5-turbo"]
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
messages = [
|
||||
SystemMessage(
|
||||
content="You are a helpful assistant that im using to make a test request to."
|
||||
),
|
||||
HumanMessage(
|
||||
content="test from litellm. tell me why it's amazing in 1 sentence"
|
||||
),
|
||||
]
|
||||
response = chat(messages)
|
||||
|
||||
print(response)
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
|
||||
</Tabs>
|
||||
|
||||
|
||||
|
||||
<!--
|
||||
### Test it!
|
||||
|
||||
In this example it will call `azure/gpt-turbo-small-ca`. Defined in the config on Step 1
|
||||
|
||||
```bash
|
||||
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
||||
--header 'Content-Type: application/json' \
|
||||
--data ' {
|
||||
"model": "azure/gpt-turbo-small-ca",
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "what llm are you"
|
||||
}
|
||||
],
|
||||
}
|
||||
'
|
||||
```
|
||||
--header 'Content-Type: application/json' \
|
||||
--data-raw '{
|
||||
"model": "zephyr-beta", # 👈 MODEL NAME to fallback from
|
||||
"messages": [
|
||||
{"role": "user", "content": "what color is red"}
|
||||
],
|
||||
"mock_testing_fallbacks": true
|
||||
}'
|
||||
``` -->
|
||||
|
||||
## Fallbacks + Retries + Timeouts + Cooldowns
|
||||
## Advanced
|
||||
### Fallbacks + Retries + Timeouts + Cooldowns
|
||||
|
||||
**Set via config**
|
||||
```yaml
|
||||
|
@ -114,44 +279,7 @@ litellm_settings:
|
|||
context_window_fallbacks: [{"zephyr-beta": ["gpt-3.5-turbo-16k"]}, {"gpt-3.5-turbo": ["gpt-3.5-turbo-16k"]}] # fallback to gpt-3.5-turbo-16k if context window error
|
||||
allowed_fails: 3 # cooldown model if it fails > 1 call in a minute.
|
||||
```
|
||||
|
||||
**Set dynamically**
|
||||
|
||||
```bash
|
||||
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
||||
--header 'Content-Type: application/json' \
|
||||
--data ' {
|
||||
"model": "zephyr-beta",
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "what llm are you"
|
||||
}
|
||||
],
|
||||
"fallbacks": [{"zephyr-beta": ["gpt-3.5-turbo"]}],
|
||||
"context_window_fallbacks": [{"zephyr-beta": ["gpt-3.5-turbo"]}],
|
||||
"num_retries": 2,
|
||||
"timeout": 10
|
||||
}
|
||||
'
|
||||
```
|
||||
|
||||
### Test it!
|
||||
|
||||
|
||||
```bash
|
||||
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
||||
--header 'Content-Type: application/json' \
|
||||
--data-raw '{
|
||||
"model": "zephyr-beta", # 👈 MODEL NAME to fallback from
|
||||
"messages": [
|
||||
{"role": "user", "content": "what color is red"}
|
||||
],
|
||||
"mock_testing_fallbacks": true
|
||||
}'
|
||||
```
|
||||
|
||||
## Advanced - Context Window Fallbacks (Pre-Call Checks + Fallbacks)
|
||||
### Context Window Fallbacks (Pre-Call Checks + Fallbacks)
|
||||
|
||||
**Before call is made** check if a call is within model context window with **`enable_pre_call_checks: true`**.
|
||||
|
||||
|
@ -287,7 +415,7 @@ print(response)
|
|||
</Tabs>
|
||||
|
||||
|
||||
## Advanced - EU-Region Filtering (Pre-Call Checks)
|
||||
### EU-Region Filtering (Pre-Call Checks)
|
||||
|
||||
**Before call is made** check if a call is within model context window with **`enable_pre_call_checks: true`**.
|
||||
|
||||
|
@ -350,7 +478,7 @@ print(response)
|
|||
print(f"response.headers.get('x-litellm-model-api-base')")
|
||||
```
|
||||
|
||||
## Advanced - Custom Timeouts, Stream Timeouts - Per Model
|
||||
### Custom Timeouts, Stream Timeouts - Per Model
|
||||
For each model you can set `timeout` & `stream_timeout` under `litellm_params`
|
||||
```yaml
|
||||
model_list:
|
||||
|
@ -379,7 +507,7 @@ $ litellm --config /path/to/config.yaml
|
|||
```
|
||||
|
||||
|
||||
## Advanced - Setting Dynamic Timeouts - Per Request
|
||||
### Setting Dynamic Timeouts - Per Request
|
||||
|
||||
LiteLLM Proxy supports setting a `timeout` per request
|
||||
|
||||
|
|
|
@ -255,6 +255,7 @@ const sidebars = {
|
|||
"projects/GPT Migrate",
|
||||
"projects/YiVal",
|
||||
"projects/LiteLLM Proxy",
|
||||
"projects/llm_cord",
|
||||
],
|
||||
},
|
||||
],
|
||||
|
|
|
@ -709,6 +709,7 @@ all_embedding_models = (
|
|||
openai_image_generation_models = ["dall-e-2", "dall-e-3"]
|
||||
|
||||
from .timeout import timeout
|
||||
from .cost_calculator import completion_cost
|
||||
from .utils import (
|
||||
client,
|
||||
exception_type,
|
||||
|
@ -718,7 +719,6 @@ from .utils import (
|
|||
create_pretrained_tokenizer,
|
||||
create_tokenizer,
|
||||
cost_per_token,
|
||||
completion_cost,
|
||||
supports_function_calling,
|
||||
supports_parallel_function_calling,
|
||||
supports_vision,
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
# What is this?
|
||||
## File for 'response_cost' calculation in Logging
|
||||
from typing import Optional, Union, Literal
|
||||
from typing import Optional, Union, Literal, List
|
||||
import litellm._logging
|
||||
from litellm.utils import (
|
||||
ModelResponse,
|
||||
EmbeddingResponse,
|
||||
|
@ -8,10 +9,281 @@ from litellm.utils import (
|
|||
TranscriptionResponse,
|
||||
TextCompletionResponse,
|
||||
CallTypes,
|
||||
completion_cost,
|
||||
cost_per_token,
|
||||
print_verbose,
|
||||
CostPerToken,
|
||||
token_counter,
|
||||
)
|
||||
import litellm
|
||||
from litellm import verbose_logger
|
||||
|
||||
|
||||
# Extract the number of billion parameters from the model name
|
||||
# only used for together_computer LLMs
|
||||
def get_model_params_and_category(model_name) -> str:
|
||||
"""
|
||||
Helper function for calculating together ai pricing.
|
||||
|
||||
Returns
|
||||
- str - model pricing category if mapped else received model name
|
||||
"""
|
||||
import re
|
||||
|
||||
model_name = model_name.lower()
|
||||
re_params_match = re.search(
|
||||
r"(\d+b)", model_name
|
||||
) # catch all decimals like 3b, 70b, etc
|
||||
category = None
|
||||
if re_params_match is not None:
|
||||
params_match = str(re_params_match.group(1))
|
||||
params_match = params_match.replace("b", "")
|
||||
if params_match is not None:
|
||||
params_billion = float(params_match)
|
||||
else:
|
||||
return model_name
|
||||
# Determine the category based on the number of parameters
|
||||
if params_billion <= 4.0:
|
||||
category = "together-ai-up-to-4b"
|
||||
elif params_billion <= 8.0:
|
||||
category = "together-ai-4.1b-8b"
|
||||
elif params_billion <= 21.0:
|
||||
category = "together-ai-8.1b-21b"
|
||||
elif params_billion <= 41.0:
|
||||
category = "together-ai-21.1b-41b"
|
||||
elif params_billion <= 80.0:
|
||||
category = "together-ai-41.1b-80b"
|
||||
elif params_billion <= 110.0:
|
||||
category = "together-ai-81.1b-110b"
|
||||
if category is not None:
|
||||
return category
|
||||
|
||||
return model_name
|
||||
|
||||
|
||||
def get_replicate_completion_pricing(completion_response=None, total_time=0.0):
|
||||
# see https://replicate.com/pricing
|
||||
# for all litellm currently supported LLMs, almost all requests go to a100_80gb
|
||||
a100_80gb_price_per_second_public = (
|
||||
0.001400 # assume all calls sent to A100 80GB for now
|
||||
)
|
||||
if total_time == 0.0: # total time is in ms
|
||||
start_time = completion_response["created"]
|
||||
end_time = getattr(completion_response, "ended", time.time())
|
||||
total_time = end_time - start_time
|
||||
|
||||
return a100_80gb_price_per_second_public * total_time / 1000
|
||||
|
||||
|
||||
def completion_cost(
|
||||
completion_response=None,
|
||||
model: Optional[str] = None,
|
||||
prompt="",
|
||||
messages: List = [],
|
||||
completion="",
|
||||
total_time=0.0, # used for replicate, sagemaker
|
||||
call_type: Literal[
|
||||
"embedding",
|
||||
"aembedding",
|
||||
"completion",
|
||||
"acompletion",
|
||||
"atext_completion",
|
||||
"text_completion",
|
||||
"image_generation",
|
||||
"aimage_generation",
|
||||
"moderation",
|
||||
"amoderation",
|
||||
"atranscription",
|
||||
"transcription",
|
||||
"aspeech",
|
||||
"speech",
|
||||
] = "completion",
|
||||
### REGION ###
|
||||
custom_llm_provider=None,
|
||||
region_name=None, # used for bedrock pricing
|
||||
### IMAGE GEN ###
|
||||
size=None,
|
||||
quality=None,
|
||||
n=None, # number of images
|
||||
### CUSTOM PRICING ###
|
||||
custom_cost_per_token: Optional[CostPerToken] = None,
|
||||
custom_cost_per_second: Optional[float] = None,
|
||||
) -> float:
|
||||
"""
|
||||
Calculate the cost of a given completion call fot GPT-3.5-turbo, llama2, any litellm supported llm.
|
||||
|
||||
Parameters:
|
||||
completion_response (litellm.ModelResponses): [Required] The response received from a LiteLLM completion request.
|
||||
|
||||
[OPTIONAL PARAMS]
|
||||
model (str): Optional. The name of the language model used in the completion calls
|
||||
prompt (str): Optional. The input prompt passed to the llm
|
||||
completion (str): Optional. The output completion text from the llm
|
||||
total_time (float): Optional. (Only used for Replicate LLMs) The total time used for the request in seconds
|
||||
custom_cost_per_token: Optional[CostPerToken]: the cost per input + output token for the llm api call.
|
||||
custom_cost_per_second: Optional[float]: the cost per second for the llm api call.
|
||||
|
||||
Returns:
|
||||
float: The cost in USD dollars for the completion based on the provided parameters.
|
||||
|
||||
Exceptions:
|
||||
Raises exception if model not in the litellm model cost map. Register model, via custom pricing or PR - https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json
|
||||
|
||||
|
||||
Note:
|
||||
- If completion_response is provided, the function extracts token information and the model name from it.
|
||||
- If completion_response is not provided, the function calculates token counts based on the model and input text.
|
||||
- The cost is calculated based on the model, prompt tokens, and completion tokens.
|
||||
- For certain models containing "togethercomputer" in the name, prices are based on the model size.
|
||||
- For un-mapped Replicate models, the cost is calculated based on the total time used for the request.
|
||||
"""
|
||||
try:
|
||||
if (
|
||||
(call_type == "aimage_generation" or call_type == "image_generation")
|
||||
and model is not None
|
||||
and isinstance(model, str)
|
||||
and len(model) == 0
|
||||
and custom_llm_provider == "azure"
|
||||
):
|
||||
model = "dall-e-2" # for dall-e-2, azure expects an empty model name
|
||||
# Handle Inputs to completion_cost
|
||||
prompt_tokens = 0
|
||||
completion_tokens = 0
|
||||
custom_llm_provider = None
|
||||
if completion_response is not None:
|
||||
# get input/output tokens from completion_response
|
||||
prompt_tokens = completion_response.get("usage", {}).get("prompt_tokens", 0)
|
||||
completion_tokens = completion_response.get("usage", {}).get(
|
||||
"completion_tokens", 0
|
||||
)
|
||||
total_time = completion_response.get("_response_ms", 0)
|
||||
verbose_logger.debug(
|
||||
f"completion_response response ms: {completion_response.get('_response_ms')} "
|
||||
)
|
||||
model = model or completion_response.get(
|
||||
"model", None
|
||||
) # check if user passed an override for model, if it's none check completion_response['model']
|
||||
if hasattr(completion_response, "_hidden_params"):
|
||||
if (
|
||||
completion_response._hidden_params.get("model", None) is not None
|
||||
and len(completion_response._hidden_params["model"]) > 0
|
||||
):
|
||||
model = completion_response._hidden_params.get("model", model)
|
||||
custom_llm_provider = completion_response._hidden_params.get(
|
||||
"custom_llm_provider", ""
|
||||
)
|
||||
region_name = completion_response._hidden_params.get(
|
||||
"region_name", region_name
|
||||
)
|
||||
size = completion_response._hidden_params.get(
|
||||
"optional_params", {}
|
||||
).get(
|
||||
"size", "1024-x-1024"
|
||||
) # openai default
|
||||
quality = completion_response._hidden_params.get(
|
||||
"optional_params", {}
|
||||
).get(
|
||||
"quality", "standard"
|
||||
) # openai default
|
||||
n = completion_response._hidden_params.get("optional_params", {}).get(
|
||||
"n", 1
|
||||
) # openai default
|
||||
else:
|
||||
if len(messages) > 0:
|
||||
prompt_tokens = token_counter(model=model, messages=messages)
|
||||
elif len(prompt) > 0:
|
||||
prompt_tokens = token_counter(model=model, text=prompt)
|
||||
completion_tokens = token_counter(model=model, text=completion)
|
||||
if model is None:
|
||||
raise ValueError(
|
||||
f"Model is None and does not exist in passed completion_response. Passed completion_response={completion_response}, model={model}"
|
||||
)
|
||||
|
||||
if (
|
||||
call_type == CallTypes.image_generation.value
|
||||
or call_type == CallTypes.aimage_generation.value
|
||||
):
|
||||
### IMAGE GENERATION COST CALCULATION ###
|
||||
if custom_llm_provider == "vertex_ai":
|
||||
# https://cloud.google.com/vertex-ai/generative-ai/pricing
|
||||
# Vertex Charges Flat $0.20 per image
|
||||
return 0.020
|
||||
|
||||
# fix size to match naming convention
|
||||
if "x" in size and "-x-" not in size:
|
||||
size = size.replace("x", "-x-")
|
||||
image_gen_model_name = f"{size}/{model}"
|
||||
image_gen_model_name_with_quality = image_gen_model_name
|
||||
if quality is not None:
|
||||
image_gen_model_name_with_quality = f"{quality}/{image_gen_model_name}"
|
||||
size = size.split("-x-")
|
||||
height = int(size[0]) # if it's 1024-x-1024 vs. 1024x1024
|
||||
width = int(size[1])
|
||||
verbose_logger.debug(f"image_gen_model_name: {image_gen_model_name}")
|
||||
verbose_logger.debug(
|
||||
f"image_gen_model_name_with_quality: {image_gen_model_name_with_quality}"
|
||||
)
|
||||
if image_gen_model_name in litellm.model_cost:
|
||||
return (
|
||||
litellm.model_cost[image_gen_model_name]["input_cost_per_pixel"]
|
||||
* height
|
||||
* width
|
||||
* n
|
||||
)
|
||||
elif image_gen_model_name_with_quality in litellm.model_cost:
|
||||
return (
|
||||
litellm.model_cost[image_gen_model_name_with_quality][
|
||||
"input_cost_per_pixel"
|
||||
]
|
||||
* height
|
||||
* width
|
||||
* n
|
||||
)
|
||||
else:
|
||||
raise Exception(
|
||||
f"Model={image_gen_model_name} not found in completion cost model map"
|
||||
)
|
||||
# Calculate cost based on prompt_tokens, completion_tokens
|
||||
if (
|
||||
"togethercomputer" in model
|
||||
or "together_ai" in model
|
||||
or custom_llm_provider == "together_ai"
|
||||
):
|
||||
# together ai prices based on size of llm
|
||||
# get_model_params_and_category takes a model name and returns the category of LLM size it is in model_prices_and_context_window.json
|
||||
model = get_model_params_and_category(model)
|
||||
# replicate llms are calculate based on time for request running
|
||||
# see https://replicate.com/pricing
|
||||
elif (
|
||||
model in litellm.replicate_models or "replicate" in model
|
||||
) and model not in litellm.model_cost:
|
||||
# for unmapped replicate model, default to replicate's time tracking logic
|
||||
return get_replicate_completion_pricing(completion_response, total_time)
|
||||
|
||||
if model is None:
|
||||
raise ValueError(
|
||||
f"Model is None and does not exist in passed completion_response. Passed completion_response={completion_response}, model={model}"
|
||||
)
|
||||
|
||||
(
|
||||
prompt_tokens_cost_usd_dollar,
|
||||
completion_tokens_cost_usd_dollar,
|
||||
) = cost_per_token(
|
||||
model=model,
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
response_time_ms=total_time,
|
||||
region_name=region_name,
|
||||
custom_cost_per_second=custom_cost_per_second,
|
||||
custom_cost_per_token=custom_cost_per_token,
|
||||
)
|
||||
_final_cost = prompt_tokens_cost_usd_dollar + completion_tokens_cost_usd_dollar
|
||||
print_verbose(
|
||||
f"final cost: {_final_cost}; prompt_tokens_cost_usd_dollar: {prompt_tokens_cost_usd_dollar}; completion_tokens_cost_usd_dollar: {completion_tokens_cost_usd_dollar}"
|
||||
)
|
||||
return _final_cost
|
||||
except Exception as e:
|
||||
raise e
|
||||
|
||||
|
||||
def response_cost_calculator(
|
||||
|
@ -47,7 +319,7 @@ def response_cost_calculator(
|
|||
) -> Optional[float]:
|
||||
try:
|
||||
response_cost: float = 0.0
|
||||
if cache_hit is not None and cache_hit == True:
|
||||
if cache_hit is not None and cache_hit is True:
|
||||
response_cost = 0.0
|
||||
else:
|
||||
response_object._hidden_params["optional_params"] = optional_params
|
||||
|
@ -62,9 +334,11 @@ def response_cost_calculator(
|
|||
if (
|
||||
model in litellm.model_cost
|
||||
and custom_pricing is not None
|
||||
and custom_llm_provider == True
|
||||
and custom_llm_provider is True
|
||||
): # override defaults if custom pricing is set
|
||||
base_model = model
|
||||
elif base_model is None:
|
||||
base_model = model
|
||||
# base_model defaults to None if not set on model_info
|
||||
response_cost = completion_cost(
|
||||
completion_response=response_object,
|
||||
|
|
|
@ -20,7 +20,7 @@ class AuthenticationError(openai.AuthenticationError): # type: ignore
|
|||
message,
|
||||
llm_provider,
|
||||
model,
|
||||
response: httpx.Response,
|
||||
response: Optional[httpx.Response] = None,
|
||||
litellm_debug_info: Optional[str] = None,
|
||||
max_retries: Optional[int] = None,
|
||||
num_retries: Optional[int] = None,
|
||||
|
@ -32,8 +32,14 @@ class AuthenticationError(openai.AuthenticationError): # type: ignore
|
|||
self.litellm_debug_info = litellm_debug_info
|
||||
self.max_retries = max_retries
|
||||
self.num_retries = num_retries
|
||||
self.response = response or httpx.Response(
|
||||
status_code=self.status_code,
|
||||
request=httpx.Request(
|
||||
method="GET", url="https://litellm.ai"
|
||||
), # mock request object
|
||||
)
|
||||
super().__init__(
|
||||
self.message, response=response, body=None
|
||||
self.message, response=self.response, body=None
|
||||
) # Call the base class constructor with the parameters it needs
|
||||
|
||||
def __str__(self):
|
||||
|
@ -60,7 +66,7 @@ class NotFoundError(openai.NotFoundError): # type: ignore
|
|||
message,
|
||||
model,
|
||||
llm_provider,
|
||||
response: httpx.Response,
|
||||
response: Optional[httpx.Response] = None,
|
||||
litellm_debug_info: Optional[str] = None,
|
||||
max_retries: Optional[int] = None,
|
||||
num_retries: Optional[int] = None,
|
||||
|
@ -72,8 +78,14 @@ class NotFoundError(openai.NotFoundError): # type: ignore
|
|||
self.litellm_debug_info = litellm_debug_info
|
||||
self.max_retries = max_retries
|
||||
self.num_retries = num_retries
|
||||
self.response = response or httpx.Response(
|
||||
status_code=self.status_code,
|
||||
request=httpx.Request(
|
||||
method="GET", url="https://litellm.ai"
|
||||
), # mock request object
|
||||
)
|
||||
super().__init__(
|
||||
self.message, response=response, body=None
|
||||
self.message, response=self.response, body=None
|
||||
) # Call the base class constructor with the parameters it needs
|
||||
|
||||
def __str__(self):
|
||||
|
@ -262,7 +274,7 @@ class RateLimitError(openai.RateLimitError): # type: ignore
|
|||
message,
|
||||
llm_provider,
|
||||
model,
|
||||
response: httpx.Response,
|
||||
response: Optional[httpx.Response] = None,
|
||||
litellm_debug_info: Optional[str] = None,
|
||||
max_retries: Optional[int] = None,
|
||||
num_retries: Optional[int] = None,
|
||||
|
@ -274,8 +286,18 @@ class RateLimitError(openai.RateLimitError): # type: ignore
|
|||
self.litellm_debug_info = litellm_debug_info
|
||||
self.max_retries = max_retries
|
||||
self.num_retries = num_retries
|
||||
if response is None:
|
||||
self.response = httpx.Response(
|
||||
status_code=429,
|
||||
request=httpx.Request(
|
||||
method="POST",
|
||||
url=" https://cloud.google.com/vertex-ai/",
|
||||
),
|
||||
)
|
||||
else:
|
||||
self.response = response
|
||||
super().__init__(
|
||||
self.message, response=response, body=None
|
||||
self.message, response=self.response, body=None
|
||||
) # Call the base class constructor with the parameters it needs
|
||||
|
||||
def __str__(self):
|
||||
|
@ -421,7 +443,7 @@ class ServiceUnavailableError(openai.APIStatusError): # type: ignore
|
|||
message,
|
||||
llm_provider,
|
||||
model,
|
||||
response: httpx.Response,
|
||||
response: Optional[httpx.Response] = None,
|
||||
litellm_debug_info: Optional[str] = None,
|
||||
max_retries: Optional[int] = None,
|
||||
num_retries: Optional[int] = None,
|
||||
|
@ -433,8 +455,18 @@ class ServiceUnavailableError(openai.APIStatusError): # type: ignore
|
|||
self.litellm_debug_info = litellm_debug_info
|
||||
self.max_retries = max_retries
|
||||
self.num_retries = num_retries
|
||||
if response is None:
|
||||
self.response = httpx.Response(
|
||||
status_code=self.status_code,
|
||||
request=httpx.Request(
|
||||
method="POST",
|
||||
url=" https://cloud.google.com/vertex-ai/",
|
||||
),
|
||||
)
|
||||
else:
|
||||
self.response = response
|
||||
super().__init__(
|
||||
self.message, response=response, body=None
|
||||
self.message, response=self.response, body=None
|
||||
) # Call the base class constructor with the parameters it needs
|
||||
|
||||
def __str__(self):
|
||||
|
@ -460,7 +492,7 @@ class InternalServerError(openai.InternalServerError): # type: ignore
|
|||
message,
|
||||
llm_provider,
|
||||
model,
|
||||
response: httpx.Response,
|
||||
response: Optional[httpx.Response] = None,
|
||||
litellm_debug_info: Optional[str] = None,
|
||||
max_retries: Optional[int] = None,
|
||||
num_retries: Optional[int] = None,
|
||||
|
@ -472,8 +504,18 @@ class InternalServerError(openai.InternalServerError): # type: ignore
|
|||
self.litellm_debug_info = litellm_debug_info
|
||||
self.max_retries = max_retries
|
||||
self.num_retries = num_retries
|
||||
if response is None:
|
||||
self.response = httpx.Response(
|
||||
status_code=self.status_code,
|
||||
request=httpx.Request(
|
||||
method="POST",
|
||||
url=" https://cloud.google.com/vertex-ai/",
|
||||
),
|
||||
)
|
||||
else:
|
||||
self.response = response
|
||||
super().__init__(
|
||||
self.message, response=response, body=None
|
||||
self.message, response=self.response, body=None
|
||||
) # Call the base class constructor with the parameters it needs
|
||||
|
||||
def __str__(self):
|
||||
|
|
|
@ -366,8 +366,6 @@ class OpenTelemetry(CustomLogger):
|
|||
)
|
||||
|
||||
message = choice.get("message")
|
||||
if not isinstance(message, dict):
|
||||
message = message.dict()
|
||||
tool_calls = message.get("tool_calls")
|
||||
if tool_calls:
|
||||
span.set_attribute(
|
||||
|
|
0
litellm/integrations/test_httpx.py
Normal file
0
litellm/integrations/test_httpx.py
Normal file
|
@ -3,6 +3,7 @@
|
|||
|
||||
from functools import partial
|
||||
import os, types
|
||||
import traceback
|
||||
import json
|
||||
from enum import Enum
|
||||
import requests, copy # type: ignore
|
||||
|
@ -242,12 +243,12 @@ class PredibaseChatCompletion(BaseLLM):
|
|||
"details" in completion_response
|
||||
and "tokens" in completion_response["details"]
|
||||
):
|
||||
model_response.choices[0].finish_reason = completion_response[
|
||||
"details"
|
||||
]["finish_reason"]
|
||||
model_response.choices[0].finish_reason = map_finish_reason(
|
||||
completion_response["details"]["finish_reason"]
|
||||
)
|
||||
sum_logprob = 0
|
||||
for token in completion_response["details"]["tokens"]:
|
||||
if token["logprob"] != None:
|
||||
if token["logprob"] is not None:
|
||||
sum_logprob += token["logprob"]
|
||||
model_response["choices"][0][
|
||||
"message"
|
||||
|
@ -265,7 +266,7 @@ class PredibaseChatCompletion(BaseLLM):
|
|||
):
|
||||
sum_logprob = 0
|
||||
for token in item["tokens"]:
|
||||
if token["logprob"] != None:
|
||||
if token["logprob"] is not None:
|
||||
sum_logprob += token["logprob"]
|
||||
if len(item["generated_text"]) > 0:
|
||||
message_obj = Message(
|
||||
|
@ -275,7 +276,7 @@ class PredibaseChatCompletion(BaseLLM):
|
|||
else:
|
||||
message_obj = Message(content=None)
|
||||
choice_obj = Choices(
|
||||
finish_reason=item["finish_reason"],
|
||||
finish_reason=map_finish_reason(item["finish_reason"]),
|
||||
index=idx + 1,
|
||||
message=message_obj,
|
||||
)
|
||||
|
@ -285,10 +286,8 @@ class PredibaseChatCompletion(BaseLLM):
|
|||
## CALCULATING USAGE
|
||||
prompt_tokens = 0
|
||||
try:
|
||||
prompt_tokens = len(
|
||||
encoding.encode(model_response["choices"][0]["message"]["content"])
|
||||
) ##[TODO] use a model-specific tokenizer here
|
||||
except:
|
||||
prompt_tokens = litellm.token_counter(messages=messages)
|
||||
except Exception:
|
||||
# this should remain non blocking we should not block a response returning if calculating usage fails
|
||||
pass
|
||||
output_text = model_response["choices"][0]["message"].get("content", "")
|
||||
|
@ -331,6 +330,7 @@ class PredibaseChatCompletion(BaseLLM):
|
|||
logging_obj,
|
||||
optional_params: dict,
|
||||
tenant_id: str,
|
||||
timeout: Union[float, httpx.Timeout],
|
||||
acompletion=None,
|
||||
litellm_params=None,
|
||||
logger_fn=None,
|
||||
|
@ -340,6 +340,7 @@ class PredibaseChatCompletion(BaseLLM):
|
|||
completion_url = ""
|
||||
input_text = ""
|
||||
base_url = "https://serving.app.predibase.com"
|
||||
|
||||
if "https" in model:
|
||||
completion_url = model
|
||||
elif api_base:
|
||||
|
@ -349,7 +350,7 @@ class PredibaseChatCompletion(BaseLLM):
|
|||
|
||||
completion_url = f"{base_url}/{tenant_id}/deployments/v2/llms/{model}"
|
||||
|
||||
if optional_params.get("stream", False) == True:
|
||||
if optional_params.get("stream", False) is True:
|
||||
completion_url += "/generate_stream"
|
||||
else:
|
||||
completion_url += "/generate"
|
||||
|
@ -393,9 +394,9 @@ class PredibaseChatCompletion(BaseLLM):
|
|||
},
|
||||
)
|
||||
## COMPLETION CALL
|
||||
if acompletion == True:
|
||||
if acompletion is True:
|
||||
### ASYNC STREAMING
|
||||
if stream == True:
|
||||
if stream is True:
|
||||
return self.async_streaming(
|
||||
model=model,
|
||||
messages=messages,
|
||||
|
@ -410,6 +411,7 @@ class PredibaseChatCompletion(BaseLLM):
|
|||
litellm_params=litellm_params,
|
||||
logger_fn=logger_fn,
|
||||
headers=headers,
|
||||
timeout=timeout,
|
||||
) # type: ignore
|
||||
else:
|
||||
### ASYNC COMPLETION
|
||||
|
@ -428,10 +430,11 @@ class PredibaseChatCompletion(BaseLLM):
|
|||
litellm_params=litellm_params,
|
||||
logger_fn=logger_fn,
|
||||
headers=headers,
|
||||
timeout=timeout,
|
||||
) # type: ignore
|
||||
|
||||
### SYNC STREAMING
|
||||
if stream == True:
|
||||
if stream is True:
|
||||
response = requests.post(
|
||||
completion_url,
|
||||
headers=headers,
|
||||
|
@ -452,7 +455,6 @@ class PredibaseChatCompletion(BaseLLM):
|
|||
headers=headers,
|
||||
data=json.dumps(data),
|
||||
)
|
||||
|
||||
return self.process_response(
|
||||
model=model,
|
||||
response=response,
|
||||
|
@ -480,23 +482,26 @@ class PredibaseChatCompletion(BaseLLM):
|
|||
stream,
|
||||
data: dict,
|
||||
optional_params: dict,
|
||||
timeout: Union[float, httpx.Timeout],
|
||||
litellm_params=None,
|
||||
logger_fn=None,
|
||||
headers={},
|
||||
) -> ModelResponse:
|
||||
self.async_handler = AsyncHTTPHandler(
|
||||
timeout=httpx.Timeout(timeout=600.0, connect=5.0)
|
||||
)
|
||||
|
||||
async_handler = AsyncHTTPHandler(timeout=httpx.Timeout(timeout=timeout))
|
||||
try:
|
||||
response = await self.async_handler.post(
|
||||
response = await async_handler.post(
|
||||
api_base, headers=headers, data=json.dumps(data)
|
||||
)
|
||||
except httpx.HTTPStatusError as e:
|
||||
raise PredibaseError(
|
||||
status_code=e.response.status_code, message=e.response.text
|
||||
status_code=e.response.status_code,
|
||||
message="HTTPStatusError - {}".format(e.response.text),
|
||||
)
|
||||
except Exception as e:
|
||||
raise PredibaseError(status_code=500, message=str(e))
|
||||
raise PredibaseError(
|
||||
status_code=500, message="{}\n{}".format(str(e), traceback.format_exc())
|
||||
)
|
||||
return self.process_response(
|
||||
model=model,
|
||||
response=response,
|
||||
|
@ -522,6 +527,7 @@ class PredibaseChatCompletion(BaseLLM):
|
|||
api_key,
|
||||
logging_obj,
|
||||
data: dict,
|
||||
timeout: Union[float, httpx.Timeout],
|
||||
optional_params=None,
|
||||
litellm_params=None,
|
||||
logger_fn=None,
|
||||
|
|
|
@ -432,9 +432,9 @@ def mock_completion(
|
|||
if isinstance(mock_response, openai.APIError):
|
||||
raise mock_response
|
||||
raise litellm.APIError(
|
||||
status_code=500, # type: ignore
|
||||
message=str(mock_response),
|
||||
llm_provider="openai", # type: ignore
|
||||
status_code=getattr(mock_response, "status_code", 500), # type: ignore
|
||||
message=getattr(mock_response, "text", str(mock_response)),
|
||||
llm_provider=getattr(mock_response, "llm_provider", "openai"), # type: ignore
|
||||
model=model, # type: ignore
|
||||
request=httpx.Request(method="POST", url="https://api.openai.com/v1/"),
|
||||
)
|
||||
|
@ -1949,7 +1949,8 @@ def completion(
|
|||
)
|
||||
|
||||
api_base = (
|
||||
optional_params.pop("api_base", None)
|
||||
api_base
|
||||
or optional_params.pop("api_base", None)
|
||||
or optional_params.pop("base_url", None)
|
||||
or litellm.api_base
|
||||
or get_secret("PREDIBASE_API_BASE")
|
||||
|
@ -1977,12 +1978,13 @@ def completion(
|
|||
custom_prompt_dict=custom_prompt_dict,
|
||||
api_key=api_key,
|
||||
tenant_id=tenant_id,
|
||||
timeout=timeout,
|
||||
)
|
||||
|
||||
if (
|
||||
"stream" in optional_params
|
||||
and optional_params["stream"] == True
|
||||
and acompletion == False
|
||||
and optional_params["stream"] is True
|
||||
and acompletion is False
|
||||
):
|
||||
return _model_response
|
||||
response = _model_response
|
||||
|
|
|
@ -3009,32 +3009,37 @@
|
|||
"litellm_provider": "sagemaker",
|
||||
"mode": "chat"
|
||||
},
|
||||
"together-ai-up-to-3b": {
|
||||
"together-ai-up-to-4b": {
|
||||
"input_cost_per_token": 0.0000001,
|
||||
"output_cost_per_token": 0.0000001,
|
||||
"litellm_provider": "together_ai"
|
||||
},
|
||||
"together-ai-3.1b-7b": {
|
||||
"together-ai-4.1b-8b": {
|
||||
"input_cost_per_token": 0.0000002,
|
||||
"output_cost_per_token": 0.0000002,
|
||||
"litellm_provider": "together_ai"
|
||||
},
|
||||
"together-ai-7.1b-20b": {
|
||||
"together-ai-8.1b-21b": {
|
||||
"max_tokens": 1000,
|
||||
"input_cost_per_token": 0.0000004,
|
||||
"output_cost_per_token": 0.0000004,
|
||||
"input_cost_per_token": 0.0000003,
|
||||
"output_cost_per_token": 0.0000003,
|
||||
"litellm_provider": "together_ai"
|
||||
},
|
||||
"together-ai-20.1b-40b": {
|
||||
"together-ai-21.1b-41b": {
|
||||
"input_cost_per_token": 0.0000008,
|
||||
"output_cost_per_token": 0.0000008,
|
||||
"litellm_provider": "together_ai"
|
||||
},
|
||||
"together-ai-40.1b-70b": {
|
||||
"together-ai-41.1b-80b": {
|
||||
"input_cost_per_token": 0.0000009,
|
||||
"output_cost_per_token": 0.0000009,
|
||||
"litellm_provider": "together_ai"
|
||||
},
|
||||
"together-ai-81.1b-110b": {
|
||||
"input_cost_per_token": 0.0000018,
|
||||
"output_cost_per_token": 0.0000018,
|
||||
"litellm_provider": "together_ai"
|
||||
},
|
||||
"together_ai/mistralai/Mixtral-8x7B-Instruct-v0.1": {
|
||||
"input_cost_per_token": 0.0000006,
|
||||
"output_cost_per_token": 0.0000006,
|
||||
|
|
|
@ -1,7 +1,12 @@
|
|||
import json
|
||||
import logging
|
||||
from logging import Formatter
|
||||
import sys
|
||||
import os
|
||||
from litellm import json_logs
|
||||
|
||||
# Set default log level to INFO
|
||||
log_level = os.getenv("LITELLM_LOG", "INFO")
|
||||
numeric_level: str = getattr(logging, log_level.upper())
|
||||
|
||||
|
||||
class JsonFormatter(Formatter):
|
||||
|
@ -16,6 +21,14 @@ class JsonFormatter(Formatter):
|
|||
|
||||
logger = logging.root
|
||||
handler = logging.StreamHandler()
|
||||
handler.setFormatter(JsonFormatter())
|
||||
if json_logs:
|
||||
handler.setFormatter(JsonFormatter())
|
||||
else:
|
||||
formatter = logging.Formatter(
|
||||
"\033[92m%(asctime)s - %(name)s:%(levelname)s\033[0m: %(filename)s:%(lineno)s - %(message)s",
|
||||
datefmt="%H:%M:%S",
|
||||
)
|
||||
|
||||
handler.setFormatter(formatter)
|
||||
logger.handlers = [handler]
|
||||
logger.setLevel(logging.INFO)
|
||||
logger.setLevel(numeric_level)
|
||||
|
|
|
@ -8,6 +8,17 @@ model_list:
|
|||
- model_name: llama3-70b-8192
|
||||
litellm_params:
|
||||
model: groq/llama3-70b-8192
|
||||
- model_name: fake-openai-endpoint
|
||||
litellm_params:
|
||||
model: predibase/llama-3-8b-instruct
|
||||
api_base: "http://0.0.0.0:8081"
|
||||
api_key: os.environ/PREDIBASE_API_KEY
|
||||
tenant_id: os.environ/PREDIBASE_TENANT_ID
|
||||
max_retries: 0
|
||||
temperature: 0.1
|
||||
max_new_tokens: 256
|
||||
return_full_text: false
|
||||
|
||||
# - litellm_params:
|
||||
# api_base: https://my-endpoint-europe-berri-992.openai.azure.com/
|
||||
# api_key: os.environ/AZURE_EUROPE_API_KEY
|
||||
|
@ -57,6 +68,8 @@ router_settings:
|
|||
litellm_settings:
|
||||
success_callback: ["langfuse"]
|
||||
cache: True
|
||||
failure_callback: ["langfuse"]
|
||||
|
||||
|
||||
general_settings:
|
||||
alerting: ["email"]
|
||||
|
|
|
@ -160,6 +160,7 @@ from litellm.proxy.auth.auth_checks import (
|
|||
get_user_object,
|
||||
allowed_routes_check,
|
||||
get_actual_routes,
|
||||
log_to_opentelemetry,
|
||||
)
|
||||
from litellm.llms.custom_httpx.httpx_handler import HTTPHandler
|
||||
from litellm.exceptions import RejectedRequestError
|
||||
|
@ -368,6 +369,11 @@ from typing import Dict
|
|||
api_key_header = APIKeyHeader(
|
||||
name="Authorization", auto_error=False, description="Bearer token"
|
||||
)
|
||||
azure_api_key_header = APIKeyHeader(
|
||||
name="API-Key",
|
||||
auto_error=False,
|
||||
description="Some older versions of the openai Python package will send an API-Key header with just the API key ",
|
||||
)
|
||||
user_api_base = None
|
||||
user_model = None
|
||||
user_debug = False
|
||||
|
@ -508,13 +514,19 @@ async def check_request_disconnection(request: Request, llm_api_call_task):
|
|||
|
||||
|
||||
async def user_api_key_auth(
|
||||
request: Request, api_key: str = fastapi.Security(api_key_header)
|
||||
request: Request,
|
||||
api_key: str = fastapi.Security(api_key_header),
|
||||
azure_api_key_header: str = fastapi.Security(azure_api_key_header),
|
||||
) -> UserAPIKeyAuth:
|
||||
global master_key, prisma_client, llm_model_list, user_custom_auth, custom_db_client, general_settings, proxy_logging_obj
|
||||
try:
|
||||
if isinstance(api_key, str):
|
||||
passed_in_key = api_key
|
||||
api_key = _get_bearer_token(api_key=api_key)
|
||||
|
||||
elif isinstance(azure_api_key_header, str):
|
||||
api_key = azure_api_key_header
|
||||
|
||||
parent_otel_span: Optional[Span] = None
|
||||
if open_telemetry_logger is not None:
|
||||
parent_otel_span = open_telemetry_logger.tracer.start_span(
|
||||
|
@ -1495,7 +1507,7 @@ async def user_api_key_auth(
|
|||
)
|
||||
if valid_token is None:
|
||||
# No token was found when looking up in the DB
|
||||
raise Exception("Invalid token passed")
|
||||
raise Exception("Invalid proxy server token passed")
|
||||
if valid_token_dict is not None:
|
||||
if user_id_information is not None and _is_user_proxy_admin(
|
||||
user_id_information
|
||||
|
@ -1528,6 +1540,14 @@ async def user_api_key_auth(
|
|||
str(e)
|
||||
)
|
||||
)
|
||||
|
||||
# Log this exception to OTEL
|
||||
if open_telemetry_logger is not None:
|
||||
await open_telemetry_logger.async_post_call_failure_hook(
|
||||
original_exception=e,
|
||||
user_api_key_dict=UserAPIKeyAuth(parent_otel_span=parent_otel_span),
|
||||
)
|
||||
|
||||
verbose_proxy_logger.debug(traceback.format_exc())
|
||||
if isinstance(e, litellm.BudgetExceededError):
|
||||
raise ProxyException(
|
||||
|
@ -7803,6 +7823,10 @@ async def get_global_spend_report(
|
|||
default=None,
|
||||
description="Time till which to view spend",
|
||||
),
|
||||
group_by: Optional[Literal["team", "customer"]] = fastapi.Query(
|
||||
default="team",
|
||||
description="Group spend by internal team or customer",
|
||||
),
|
||||
):
|
||||
"""
|
||||
Get Daily Spend per Team, based on specific startTime and endTime. Per team, view usage by each key, model
|
||||
|
@ -7849,69 +7873,130 @@ async def get_global_spend_report(
|
|||
f"Database not connected. Connect a database to your proxy - https://docs.litellm.ai/docs/simple_proxy#managing-auth---virtual-keys"
|
||||
)
|
||||
|
||||
# first get data from spend logs -> SpendByModelApiKey
|
||||
# then read data from "SpendByModelApiKey" to format the response obj
|
||||
sql_query = """
|
||||
if group_by == "team":
|
||||
# first get data from spend logs -> SpendByModelApiKey
|
||||
# then read data from "SpendByModelApiKey" to format the response obj
|
||||
sql_query = """
|
||||
|
||||
WITH SpendByModelApiKey AS (
|
||||
SELECT
|
||||
date_trunc('day', sl."startTime") AS group_by_day,
|
||||
COALESCE(tt.team_alias, 'Unassigned Team') AS team_name,
|
||||
sl.model,
|
||||
sl.api_key,
|
||||
SUM(sl.spend) AS model_api_spend,
|
||||
SUM(sl.total_tokens) AS model_api_tokens
|
||||
FROM
|
||||
"LiteLLM_SpendLogs" sl
|
||||
LEFT JOIN
|
||||
"LiteLLM_TeamTable" tt
|
||||
ON
|
||||
sl.team_id = tt.team_id
|
||||
WHERE
|
||||
sl."startTime" BETWEEN $1::date AND $2::date
|
||||
GROUP BY
|
||||
date_trunc('day', sl."startTime"),
|
||||
tt.team_alias,
|
||||
sl.model,
|
||||
sl.api_key
|
||||
)
|
||||
WITH SpendByModelApiKey AS (
|
||||
SELECT
|
||||
date_trunc('day', sl."startTime") AS group_by_day,
|
||||
COALESCE(tt.team_alias, 'Unassigned Team') AS team_name,
|
||||
sl.model,
|
||||
sl.api_key,
|
||||
SUM(sl.spend) AS model_api_spend,
|
||||
SUM(sl.total_tokens) AS model_api_tokens
|
||||
FROM
|
||||
"LiteLLM_SpendLogs" sl
|
||||
LEFT JOIN
|
||||
"LiteLLM_TeamTable" tt
|
||||
ON
|
||||
sl.team_id = tt.team_id
|
||||
WHERE
|
||||
sl."startTime" BETWEEN $1::date AND $2::date
|
||||
GROUP BY
|
||||
date_trunc('day', sl."startTime"),
|
||||
tt.team_alias,
|
||||
sl.model,
|
||||
sl.api_key
|
||||
)
|
||||
SELECT
|
||||
group_by_day,
|
||||
jsonb_agg(jsonb_build_object(
|
||||
'team_name', team_name,
|
||||
'total_spend', total_spend,
|
||||
'metadata', metadata
|
||||
)) AS teams
|
||||
FROM (
|
||||
SELECT
|
||||
group_by_day,
|
||||
team_name,
|
||||
SUM(model_api_spend) AS total_spend,
|
||||
jsonb_agg(jsonb_build_object(
|
||||
'model', model,
|
||||
'api_key', api_key,
|
||||
'spend', model_api_spend,
|
||||
'total_tokens', model_api_tokens
|
||||
)) AS metadata
|
||||
FROM
|
||||
SpendByModelApiKey
|
||||
GROUP BY
|
||||
group_by_day,
|
||||
team_name
|
||||
) AS aggregated
|
||||
GROUP BY
|
||||
group_by_day
|
||||
ORDER BY
|
||||
group_by_day;
|
||||
"""
|
||||
|
||||
db_response = await prisma_client.db.query_raw(
|
||||
sql_query, start_date_obj, end_date_obj
|
||||
)
|
||||
if db_response is None:
|
||||
return []
|
||||
|
||||
return db_response
|
||||
|
||||
elif group_by == "customer":
|
||||
sql_query = """
|
||||
|
||||
WITH SpendByModelApiKey AS (
|
||||
SELECT
|
||||
date_trunc('day', sl."startTime") AS group_by_day,
|
||||
sl.end_user AS customer,
|
||||
sl.model,
|
||||
sl.api_key,
|
||||
SUM(sl.spend) AS model_api_spend,
|
||||
SUM(sl.total_tokens) AS model_api_tokens
|
||||
FROM
|
||||
"LiteLLM_SpendLogs" sl
|
||||
WHERE
|
||||
sl."startTime" BETWEEN $1::date AND $2::date
|
||||
GROUP BY
|
||||
date_trunc('day', sl."startTime"),
|
||||
customer,
|
||||
sl.model,
|
||||
sl.api_key
|
||||
)
|
||||
SELECT
|
||||
group_by_day,
|
||||
jsonb_agg(jsonb_build_object(
|
||||
'team_name', team_name,
|
||||
'customer', customer,
|
||||
'total_spend', total_spend,
|
||||
'metadata', metadata
|
||||
)) AS teams
|
||||
FROM (
|
||||
SELECT
|
||||
group_by_day,
|
||||
team_name,
|
||||
SUM(model_api_spend) AS total_spend,
|
||||
jsonb_agg(jsonb_build_object(
|
||||
'model', model,
|
||||
'api_key', api_key,
|
||||
'spend', model_api_spend,
|
||||
'total_tokens', model_api_tokens
|
||||
)) AS metadata
|
||||
FROM
|
||||
SpendByModelApiKey
|
||||
GROUP BY
|
||||
group_by_day,
|
||||
team_name
|
||||
) AS aggregated
|
||||
)) AS customers
|
||||
FROM
|
||||
(
|
||||
SELECT
|
||||
group_by_day,
|
||||
customer,
|
||||
SUM(model_api_spend) AS total_spend,
|
||||
jsonb_agg(jsonb_build_object(
|
||||
'model', model,
|
||||
'api_key', api_key,
|
||||
'spend', model_api_spend,
|
||||
'total_tokens', model_api_tokens
|
||||
)) AS metadata
|
||||
FROM
|
||||
SpendByModelApiKey
|
||||
GROUP BY
|
||||
group_by_day,
|
||||
customer
|
||||
) AS aggregated
|
||||
GROUP BY
|
||||
group_by_day
|
||||
ORDER BY
|
||||
group_by_day;
|
||||
"""
|
||||
"""
|
||||
|
||||
db_response = await prisma_client.db.query_raw(
|
||||
sql_query, start_date_obj, end_date_obj
|
||||
)
|
||||
if db_response is None:
|
||||
return []
|
||||
db_response = await prisma_client.db.query_raw(
|
||||
sql_query, start_date_obj, end_date_obj
|
||||
)
|
||||
if db_response is None:
|
||||
return []
|
||||
|
||||
return db_response
|
||||
return db_response
|
||||
|
||||
except Exception as e:
|
||||
raise HTTPException(
|
||||
|
|
|
@ -2056,12 +2056,15 @@ class Router:
|
|||
verbose_router_logger.debug(f"inside model fallbacks: {fallbacks}")
|
||||
generic_fallback_idx: Optional[int] = None
|
||||
## check for specific model group-specific fallbacks
|
||||
for idx, item in enumerate(fallbacks):
|
||||
if list(item.keys())[0] == model_group:
|
||||
fallback_model_group = item[model_group]
|
||||
break
|
||||
elif list(item.keys())[0] == "*":
|
||||
generic_fallback_idx = idx
|
||||
if isinstance(fallbacks, list):
|
||||
fallback_model_group = fallbacks
|
||||
elif isinstance(fallbacks, dict):
|
||||
for idx, item in enumerate(fallbacks):
|
||||
if list(item.keys())[0] == model_group:
|
||||
fallback_model_group = item[model_group]
|
||||
break
|
||||
elif list(item.keys())[0] == "*":
|
||||
generic_fallback_idx = idx
|
||||
## if none, check for generic fallback
|
||||
if (
|
||||
fallback_model_group is None
|
||||
|
@ -2310,13 +2313,16 @@ class Router:
|
|||
verbose_router_logger.debug(f"inside model fallbacks: {fallbacks}")
|
||||
fallback_model_group = None
|
||||
generic_fallback_idx: Optional[int] = None
|
||||
## check for specific model group-specific fallbacks
|
||||
for idx, item in enumerate(fallbacks):
|
||||
if list(item.keys())[0] == model_group:
|
||||
fallback_model_group = item[model_group]
|
||||
break
|
||||
elif list(item.keys())[0] == "*":
|
||||
generic_fallback_idx = idx
|
||||
if isinstance(fallbacks, list):
|
||||
fallback_model_group = fallbacks
|
||||
elif isinstance(fallbacks, dict):
|
||||
## check for specific model group-specific fallbacks
|
||||
for idx, item in enumerate(fallbacks):
|
||||
if list(item.keys())[0] == model_group:
|
||||
fallback_model_group = item[model_group]
|
||||
break
|
||||
elif list(item.keys())[0] == "*":
|
||||
generic_fallback_idx = idx
|
||||
## if none, check for generic fallback
|
||||
if (
|
||||
fallback_model_group is None
|
||||
|
|
|
@ -345,7 +345,7 @@ def test_completion_claude_3_function_call(model):
|
|||
drop_params=True,
|
||||
)
|
||||
|
||||
# Add any assertions, here to check response args
|
||||
# Add any assertions here to check response args
|
||||
print(response)
|
||||
assert isinstance(response.choices[0].message.tool_calls[0].function.name, str)
|
||||
assert isinstance(
|
||||
|
@ -530,6 +530,7 @@ def test_completion_cohere_command_r_plus_function_call():
|
|||
messages=messages,
|
||||
tools=tools,
|
||||
tool_choice="auto",
|
||||
force_single_step=True,
|
||||
)
|
||||
print(second_response)
|
||||
except Exception as e:
|
||||
|
|
|
@ -517,3 +517,51 @@ def test_groq_response_cost_tracking(is_streaming):
|
|||
assert response_cost > 0.0
|
||||
|
||||
print(f"response_cost: {response_cost}")
|
||||
|
||||
|
||||
def test_together_ai_qwen_completion_cost():
|
||||
input_kwargs = {
|
||||
"completion_response": litellm.ModelResponse(
|
||||
**{
|
||||
"id": "890db0c33c4ef94b-SJC",
|
||||
"choices": [
|
||||
{
|
||||
"finish_reason": "eos",
|
||||
"index": 0,
|
||||
"message": {
|
||||
"content": "I am Qwen, a large language model created by Alibaba Cloud.",
|
||||
"role": "assistant",
|
||||
},
|
||||
}
|
||||
],
|
||||
"created": 1717900130,
|
||||
"model": "together_ai/qwen/Qwen2-72B-Instruct",
|
||||
"object": "chat.completion",
|
||||
"system_fingerprint": None,
|
||||
"usage": {
|
||||
"completion_tokens": 15,
|
||||
"prompt_tokens": 23,
|
||||
"total_tokens": 38,
|
||||
},
|
||||
}
|
||||
),
|
||||
"model": "qwen/Qwen2-72B-Instruct",
|
||||
"prompt": "",
|
||||
"messages": [],
|
||||
"completion": "",
|
||||
"total_time": 0.0,
|
||||
"call_type": "completion",
|
||||
"custom_llm_provider": "together_ai",
|
||||
"region_name": None,
|
||||
"size": None,
|
||||
"quality": None,
|
||||
"n": None,
|
||||
"custom_cost_per_token": None,
|
||||
"custom_cost_per_second": None,
|
||||
}
|
||||
|
||||
response = litellm.cost_calculator.get_model_params_and_category(
|
||||
model_name="qwen/Qwen2-72B-Instruct"
|
||||
)
|
||||
|
||||
assert response == "together-ai-41.1b-80b"
|
||||
|
|
|
@ -3,6 +3,7 @@ import os
|
|||
import sys
|
||||
import traceback
|
||||
import subprocess, asyncio
|
||||
from typing import Any
|
||||
|
||||
sys.path.insert(
|
||||
0, os.path.abspath("../..")
|
||||
|
@ -19,6 +20,7 @@ from litellm import (
|
|||
)
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
import pytest
|
||||
from unittest.mock import patch, MagicMock
|
||||
|
||||
litellm.vertex_project = "pathrise-convert-1606954137718"
|
||||
litellm.vertex_location = "us-central1"
|
||||
|
@ -655,3 +657,47 @@ def test_litellm_predibase_exception():
|
|||
|
||||
# accuracy_score = counts[True]/(counts[True] + counts[False])
|
||||
# print(f"accuracy_score: {accuracy_score}")
|
||||
|
||||
|
||||
@pytest.mark.parametrize("provider", ["predibase"])
|
||||
def test_exception_mapping(provider):
|
||||
"""
|
||||
For predibase, run through a set of mock exceptions
|
||||
|
||||
assert that they are being mapped correctly
|
||||
"""
|
||||
litellm.set_verbose = True
|
||||
error_map = {
|
||||
400: litellm.BadRequestError,
|
||||
401: litellm.AuthenticationError,
|
||||
404: litellm.NotFoundError,
|
||||
408: litellm.Timeout,
|
||||
429: litellm.RateLimitError,
|
||||
500: litellm.InternalServerError,
|
||||
503: litellm.ServiceUnavailableError,
|
||||
}
|
||||
|
||||
for code, expected_exception in error_map.items():
|
||||
mock_response = Exception()
|
||||
setattr(mock_response, "text", "This is an error message")
|
||||
setattr(mock_response, "llm_provider", provider)
|
||||
setattr(mock_response, "status_code", code)
|
||||
|
||||
response: Any = None
|
||||
try:
|
||||
response = completion(
|
||||
model="{}/test-model".format(provider),
|
||||
messages=[{"role": "user", "content": "Hey, how's it going?"}],
|
||||
mock_response=mock_response,
|
||||
)
|
||||
except expected_exception:
|
||||
continue
|
||||
except Exception as e:
|
||||
response = "{}\n{}".format(str(e), traceback.format_exc())
|
||||
pytest.fail(
|
||||
"Did not raise expected exception. Expected={}, Return={},".format(
|
||||
expected_exception, response
|
||||
)
|
||||
)
|
||||
|
||||
pass
|
||||
|
|
|
@ -272,7 +272,7 @@ def test_call_with_invalid_key(prisma_client):
|
|||
except Exception as e:
|
||||
print("Got Exception", e)
|
||||
print(e.message)
|
||||
assert "Authentication Error, Invalid token passed" in e.message
|
||||
assert "Authentication Error, Invalid proxy server token passed" in e.message
|
||||
pass
|
||||
|
||||
|
||||
|
|
|
@ -1059,3 +1059,53 @@ async def test_default_model_fallbacks(sync_mode, litellm_module_fallbacks):
|
|||
|
||||
assert isinstance(response, litellm.ModelResponse)
|
||||
assert response.model is not None and response.model == "gpt-4o"
|
||||
|
||||
|
||||
@pytest.mark.parametrize("sync_mode", [True, False])
|
||||
@pytest.mark.asyncio
|
||||
async def test_client_side_fallbacks_list(sync_mode):
|
||||
"""
|
||||
|
||||
Tests Client Side Fallbacks
|
||||
|
||||
User can pass "fallbacks": ["gpt-3.5-turbo"] and this should work
|
||||
|
||||
"""
|
||||
router = Router(
|
||||
model_list=[
|
||||
{
|
||||
"model_name": "bad-model",
|
||||
"litellm_params": {
|
||||
"model": "openai/my-bad-model",
|
||||
"api_key": "my-bad-api-key",
|
||||
},
|
||||
},
|
||||
{
|
||||
"model_name": "my-good-model",
|
||||
"litellm_params": {
|
||||
"model": "gpt-4o",
|
||||
"api_key": os.getenv("OPENAI_API_KEY"),
|
||||
},
|
||||
},
|
||||
],
|
||||
)
|
||||
|
||||
if sync_mode:
|
||||
response = router.completion(
|
||||
model="bad-model",
|
||||
messages=[{"role": "user", "content": "Hey, how's it going?"}],
|
||||
fallbacks=["my-good-model"],
|
||||
mock_testing_fallbacks=True,
|
||||
mock_response="Hey! nice day",
|
||||
)
|
||||
else:
|
||||
response = await router.acompletion(
|
||||
model="bad-model",
|
||||
messages=[{"role": "user", "content": "Hey, how's it going?"}],
|
||||
fallbacks=["my-good-model"],
|
||||
mock_testing_fallbacks=True,
|
||||
mock_response="Hey! nice day",
|
||||
)
|
||||
|
||||
assert isinstance(response, litellm.ModelResponse)
|
||||
assert response.model is not None and response.model == "gpt-4o"
|
||||
|
|
360
litellm/utils.py
360
litellm/utils.py
|
@ -326,6 +326,22 @@ class Function(OpenAIObject):
|
|||
|
||||
super(Function, self).__init__(**data)
|
||||
|
||||
def __contains__(self, key):
|
||||
# Define custom behavior for the 'in' operator
|
||||
return hasattr(self, key)
|
||||
|
||||
def get(self, key, default=None):
|
||||
# Custom .get() method to access attributes with a default value if the attribute doesn't exist
|
||||
return getattr(self, key, default)
|
||||
|
||||
def __getitem__(self, key):
|
||||
# Allow dictionary-style access to attributes
|
||||
return getattr(self, key)
|
||||
|
||||
def __setitem__(self, key, value):
|
||||
# Allow dictionary-style assignment of attributes
|
||||
setattr(self, key, value)
|
||||
|
||||
|
||||
class ChatCompletionDeltaToolCall(OpenAIObject):
|
||||
id: Optional[str] = None
|
||||
|
@ -385,6 +401,22 @@ class ChatCompletionMessageToolCall(OpenAIObject):
|
|||
else:
|
||||
self.type = "function"
|
||||
|
||||
def __contains__(self, key):
|
||||
# Define custom behavior for the 'in' operator
|
||||
return hasattr(self, key)
|
||||
|
||||
def get(self, key, default=None):
|
||||
# Custom .get() method to access attributes with a default value if the attribute doesn't exist
|
||||
return getattr(self, key, default)
|
||||
|
||||
def __getitem__(self, key):
|
||||
# Allow dictionary-style access to attributes
|
||||
return getattr(self, key)
|
||||
|
||||
def __setitem__(self, key, value):
|
||||
# Allow dictionary-style assignment of attributes
|
||||
setattr(self, key, value)
|
||||
|
||||
|
||||
class Message(OpenAIObject):
|
||||
def __init__(
|
||||
|
@ -3929,54 +3961,6 @@ def client(original_function):
|
|||
return wrapper
|
||||
|
||||
|
||||
####### USAGE CALCULATOR ################
|
||||
|
||||
|
||||
# Extract the number of billion parameters from the model name
|
||||
# only used for together_computer LLMs
|
||||
def get_model_params_and_category(model_name):
|
||||
import re
|
||||
|
||||
model_name = model_name.lower()
|
||||
params_match = re.search(
|
||||
r"(\d+b)", model_name
|
||||
) # catch all decimals like 3b, 70b, etc
|
||||
category = None
|
||||
if params_match != None:
|
||||
params_match = params_match.group(1)
|
||||
params_match = params_match.replace("b", "")
|
||||
params_billion = float(params_match)
|
||||
# Determine the category based on the number of parameters
|
||||
if params_billion <= 3.0:
|
||||
category = "together-ai-up-to-3b"
|
||||
elif params_billion <= 7.0:
|
||||
category = "together-ai-3.1b-7b"
|
||||
elif params_billion <= 20.0:
|
||||
category = "together-ai-7.1b-20b"
|
||||
elif params_billion <= 40.0:
|
||||
category = "together-ai-20.1b-40b"
|
||||
elif params_billion <= 70.0:
|
||||
category = "together-ai-40.1b-70b"
|
||||
return category
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def get_replicate_completion_pricing(completion_response=None, total_time=0.0):
|
||||
# see https://replicate.com/pricing
|
||||
a100_40gb_price_per_second_public = 0.001150
|
||||
# for all litellm currently supported LLMs, almost all requests go to a100_80gb
|
||||
a100_80gb_price_per_second_public = (
|
||||
0.001400 # assume all calls sent to A100 80GB for now
|
||||
)
|
||||
if total_time == 0.0: # total time is in ms
|
||||
start_time = completion_response["created"]
|
||||
end_time = getattr(completion_response, "ended", time.time())
|
||||
total_time = end_time - start_time
|
||||
|
||||
return a100_80gb_price_per_second_public * total_time / 1000
|
||||
|
||||
|
||||
@lru_cache(maxsize=128)
|
||||
def _select_tokenizer(model: str):
|
||||
if model in litellm.cohere_models and "command-r" in model:
|
||||
|
@ -4363,7 +4347,7 @@ def _cost_per_token_custom_pricing_helper(
|
|||
|
||||
|
||||
def cost_per_token(
|
||||
model="",
|
||||
model: str = "",
|
||||
prompt_tokens=0,
|
||||
completion_tokens=0,
|
||||
response_time_ms=None,
|
||||
|
@ -4388,6 +4372,8 @@ def cost_per_token(
|
|||
Returns:
|
||||
tuple: A tuple containing the cost in USD dollars for prompt tokens and completion tokens, respectively.
|
||||
"""
|
||||
if model is None:
|
||||
raise Exception("Invalid arg. Model cannot be none.")
|
||||
## CUSTOM PRICING ##
|
||||
response_cost = _cost_per_token_custom_pricing_helper(
|
||||
prompt_tokens=prompt_tokens,
|
||||
|
@ -4560,213 +4546,6 @@ def cost_per_token(
|
|||
)
|
||||
|
||||
|
||||
def completion_cost(
|
||||
completion_response=None,
|
||||
model=None,
|
||||
prompt="",
|
||||
messages: List = [],
|
||||
completion="",
|
||||
total_time=0.0, # used for replicate, sagemaker
|
||||
call_type: Literal[
|
||||
"embedding",
|
||||
"aembedding",
|
||||
"completion",
|
||||
"acompletion",
|
||||
"atext_completion",
|
||||
"text_completion",
|
||||
"image_generation",
|
||||
"aimage_generation",
|
||||
"moderation",
|
||||
"amoderation",
|
||||
"atranscription",
|
||||
"transcription",
|
||||
"aspeech",
|
||||
"speech",
|
||||
] = "completion",
|
||||
### REGION ###
|
||||
custom_llm_provider=None,
|
||||
region_name=None, # used for bedrock pricing
|
||||
### IMAGE GEN ###
|
||||
size=None,
|
||||
quality=None,
|
||||
n=None, # number of images
|
||||
### CUSTOM PRICING ###
|
||||
custom_cost_per_token: Optional[CostPerToken] = None,
|
||||
custom_cost_per_second: Optional[float] = None,
|
||||
) -> float:
|
||||
"""
|
||||
Calculate the cost of a given completion call fot GPT-3.5-turbo, llama2, any litellm supported llm.
|
||||
|
||||
Parameters:
|
||||
completion_response (litellm.ModelResponses): [Required] The response received from a LiteLLM completion request.
|
||||
|
||||
[OPTIONAL PARAMS]
|
||||
model (str): Optional. The name of the language model used in the completion calls
|
||||
prompt (str): Optional. The input prompt passed to the llm
|
||||
completion (str): Optional. The output completion text from the llm
|
||||
total_time (float): Optional. (Only used for Replicate LLMs) The total time used for the request in seconds
|
||||
custom_cost_per_token: Optional[CostPerToken]: the cost per input + output token for the llm api call.
|
||||
custom_cost_per_second: Optional[float]: the cost per second for the llm api call.
|
||||
|
||||
Returns:
|
||||
float: The cost in USD dollars for the completion based on the provided parameters.
|
||||
|
||||
Exceptions:
|
||||
Raises exception if model not in the litellm model cost map. Register model, via custom pricing or PR - https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json
|
||||
|
||||
|
||||
Note:
|
||||
- If completion_response is provided, the function extracts token information and the model name from it.
|
||||
- If completion_response is not provided, the function calculates token counts based on the model and input text.
|
||||
- The cost is calculated based on the model, prompt tokens, and completion tokens.
|
||||
- For certain models containing "togethercomputer" in the name, prices are based on the model size.
|
||||
- For un-mapped Replicate models, the cost is calculated based on the total time used for the request.
|
||||
"""
|
||||
try:
|
||||
if (
|
||||
(call_type == "aimage_generation" or call_type == "image_generation")
|
||||
and model is not None
|
||||
and isinstance(model, str)
|
||||
and len(model) == 0
|
||||
and custom_llm_provider == "azure"
|
||||
):
|
||||
model = "dall-e-2" # for dall-e-2, azure expects an empty model name
|
||||
# Handle Inputs to completion_cost
|
||||
prompt_tokens = 0
|
||||
completion_tokens = 0
|
||||
custom_llm_provider = None
|
||||
if completion_response is not None:
|
||||
# get input/output tokens from completion_response
|
||||
prompt_tokens = completion_response.get("usage", {}).get("prompt_tokens", 0)
|
||||
completion_tokens = completion_response.get("usage", {}).get(
|
||||
"completion_tokens", 0
|
||||
)
|
||||
total_time = completion_response.get("_response_ms", 0)
|
||||
verbose_logger.debug(
|
||||
f"completion_response response ms: {completion_response.get('_response_ms')} "
|
||||
)
|
||||
model = model or completion_response.get(
|
||||
"model", None
|
||||
) # check if user passed an override for model, if it's none check completion_response['model']
|
||||
if hasattr(completion_response, "_hidden_params"):
|
||||
if (
|
||||
completion_response._hidden_params.get("model", None) is not None
|
||||
and len(completion_response._hidden_params["model"]) > 0
|
||||
):
|
||||
model = completion_response._hidden_params.get("model", model)
|
||||
custom_llm_provider = completion_response._hidden_params.get(
|
||||
"custom_llm_provider", ""
|
||||
)
|
||||
region_name = completion_response._hidden_params.get(
|
||||
"region_name", region_name
|
||||
)
|
||||
size = completion_response._hidden_params.get(
|
||||
"optional_params", {}
|
||||
).get(
|
||||
"size", "1024-x-1024"
|
||||
) # openai default
|
||||
quality = completion_response._hidden_params.get(
|
||||
"optional_params", {}
|
||||
).get(
|
||||
"quality", "standard"
|
||||
) # openai default
|
||||
n = completion_response._hidden_params.get("optional_params", {}).get(
|
||||
"n", 1
|
||||
) # openai default
|
||||
else:
|
||||
if len(messages) > 0:
|
||||
prompt_tokens = token_counter(model=model, messages=messages)
|
||||
elif len(prompt) > 0:
|
||||
prompt_tokens = token_counter(model=model, text=prompt)
|
||||
completion_tokens = token_counter(model=model, text=completion)
|
||||
if model == None:
|
||||
raise ValueError(
|
||||
f"Model is None and does not exist in passed completion_response. Passed completion_response={completion_response}, model={model}"
|
||||
)
|
||||
|
||||
if (
|
||||
call_type == CallTypes.image_generation.value
|
||||
or call_type == CallTypes.aimage_generation.value
|
||||
):
|
||||
### IMAGE GENERATION COST CALCULATION ###
|
||||
if custom_llm_provider == "vertex_ai":
|
||||
# https://cloud.google.com/vertex-ai/generative-ai/pricing
|
||||
# Vertex Charges Flat $0.20 per image
|
||||
return 0.020
|
||||
|
||||
# fix size to match naming convention
|
||||
if "x" in size and "-x-" not in size:
|
||||
size = size.replace("x", "-x-")
|
||||
image_gen_model_name = f"{size}/{model}"
|
||||
image_gen_model_name_with_quality = image_gen_model_name
|
||||
if quality is not None:
|
||||
image_gen_model_name_with_quality = f"{quality}/{image_gen_model_name}"
|
||||
size = size.split("-x-")
|
||||
height = int(size[0]) # if it's 1024-x-1024 vs. 1024x1024
|
||||
width = int(size[1])
|
||||
verbose_logger.debug(f"image_gen_model_name: {image_gen_model_name}")
|
||||
verbose_logger.debug(
|
||||
f"image_gen_model_name_with_quality: {image_gen_model_name_with_quality}"
|
||||
)
|
||||
if image_gen_model_name in litellm.model_cost:
|
||||
return (
|
||||
litellm.model_cost[image_gen_model_name]["input_cost_per_pixel"]
|
||||
* height
|
||||
* width
|
||||
* n
|
||||
)
|
||||
elif image_gen_model_name_with_quality in litellm.model_cost:
|
||||
return (
|
||||
litellm.model_cost[image_gen_model_name_with_quality][
|
||||
"input_cost_per_pixel"
|
||||
]
|
||||
* height
|
||||
* width
|
||||
* n
|
||||
)
|
||||
else:
|
||||
raise Exception(
|
||||
f"Model={image_gen_model_name} not found in completion cost model map"
|
||||
)
|
||||
# Calculate cost based on prompt_tokens, completion_tokens
|
||||
if (
|
||||
"togethercomputer" in model
|
||||
or "together_ai" in model
|
||||
or custom_llm_provider == "together_ai"
|
||||
):
|
||||
# together ai prices based on size of llm
|
||||
# get_model_params_and_category takes a model name and returns the category of LLM size it is in model_prices_and_context_window.json
|
||||
model = get_model_params_and_category(model)
|
||||
# replicate llms are calculate based on time for request running
|
||||
# see https://replicate.com/pricing
|
||||
elif (
|
||||
model in litellm.replicate_models or "replicate" in model
|
||||
) and model not in litellm.model_cost:
|
||||
# for unmapped replicate model, default to replicate's time tracking logic
|
||||
return get_replicate_completion_pricing(completion_response, total_time)
|
||||
|
||||
(
|
||||
prompt_tokens_cost_usd_dollar,
|
||||
completion_tokens_cost_usd_dollar,
|
||||
) = cost_per_token(
|
||||
model=model,
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
response_time_ms=total_time,
|
||||
region_name=region_name,
|
||||
custom_cost_per_second=custom_cost_per_second,
|
||||
custom_cost_per_token=custom_cost_per_token,
|
||||
)
|
||||
_final_cost = prompt_tokens_cost_usd_dollar + completion_tokens_cost_usd_dollar
|
||||
print_verbose(
|
||||
f"final cost: {_final_cost}; prompt_tokens_cost_usd_dollar: {prompt_tokens_cost_usd_dollar}; completion_tokens_cost_usd_dollar: {completion_tokens_cost_usd_dollar}"
|
||||
)
|
||||
return _final_cost
|
||||
except Exception as e:
|
||||
raise e
|
||||
|
||||
|
||||
def supports_httpx_timeout(custom_llm_provider: str) -> bool:
|
||||
"""
|
||||
Helper function to know if a provider implementation supports httpx timeout
|
||||
|
@ -8986,6 +8765,75 @@ def exception_type(
|
|||
response=original_exception.response,
|
||||
litellm_debug_info=extra_information,
|
||||
)
|
||||
elif hasattr(original_exception, "status_code"):
|
||||
if original_exception.status_code == 500:
|
||||
exception_mapping_worked = True
|
||||
raise litellm.InternalServerError(
|
||||
message=f"PredibaseException - {original_exception.message}",
|
||||
llm_provider="predibase",
|
||||
model=model,
|
||||
)
|
||||
elif original_exception.status_code == 401:
|
||||
exception_mapping_worked = True
|
||||
raise AuthenticationError(
|
||||
message=f"PredibaseException - {original_exception.message}",
|
||||
llm_provider="predibase",
|
||||
model=model,
|
||||
)
|
||||
elif original_exception.status_code == 400:
|
||||
exception_mapping_worked = True
|
||||
raise BadRequestError(
|
||||
message=f"PredibaseException - {original_exception.message}",
|
||||
llm_provider="predibase",
|
||||
model=model,
|
||||
)
|
||||
elif original_exception.status_code == 404:
|
||||
exception_mapping_worked = True
|
||||
raise NotFoundError(
|
||||
message=f"PredibaseException - {original_exception.message}",
|
||||
llm_provider="predibase",
|
||||
model=model,
|
||||
)
|
||||
elif original_exception.status_code == 408:
|
||||
exception_mapping_worked = True
|
||||
raise Timeout(
|
||||
message=f"PredibaseException - {original_exception.message}",
|
||||
model=model,
|
||||
llm_provider=custom_llm_provider,
|
||||
litellm_debug_info=extra_information,
|
||||
)
|
||||
elif original_exception.status_code == 422:
|
||||
exception_mapping_worked = True
|
||||
raise BadRequestError(
|
||||
message=f"PredibaseException - {original_exception.message}",
|
||||
model=model,
|
||||
llm_provider=custom_llm_provider,
|
||||
litellm_debug_info=extra_information,
|
||||
)
|
||||
elif original_exception.status_code == 429:
|
||||
exception_mapping_worked = True
|
||||
raise RateLimitError(
|
||||
message=f"PredibaseException - {original_exception.message}",
|
||||
model=model,
|
||||
llm_provider=custom_llm_provider,
|
||||
litellm_debug_info=extra_information,
|
||||
)
|
||||
elif original_exception.status_code == 503:
|
||||
exception_mapping_worked = True
|
||||
raise ServiceUnavailableError(
|
||||
message=f"PredibaseException - {original_exception.message}",
|
||||
model=model,
|
||||
llm_provider=custom_llm_provider,
|
||||
litellm_debug_info=extra_information,
|
||||
)
|
||||
elif original_exception.status_code == 504: # gateway timeout error
|
||||
exception_mapping_worked = True
|
||||
raise Timeout(
|
||||
message=f"PredibaseException - {original_exception.message}",
|
||||
model=model,
|
||||
llm_provider=custom_llm_provider,
|
||||
litellm_debug_info=extra_information,
|
||||
)
|
||||
elif custom_llm_provider == "bedrock":
|
||||
if (
|
||||
"too many tokens" in error_str
|
||||
|
|
|
@ -3009,32 +3009,37 @@
|
|||
"litellm_provider": "sagemaker",
|
||||
"mode": "chat"
|
||||
},
|
||||
"together-ai-up-to-3b": {
|
||||
"together-ai-up-to-4b": {
|
||||
"input_cost_per_token": 0.0000001,
|
||||
"output_cost_per_token": 0.0000001,
|
||||
"litellm_provider": "together_ai"
|
||||
},
|
||||
"together-ai-3.1b-7b": {
|
||||
"together-ai-4.1b-8b": {
|
||||
"input_cost_per_token": 0.0000002,
|
||||
"output_cost_per_token": 0.0000002,
|
||||
"litellm_provider": "together_ai"
|
||||
},
|
||||
"together-ai-7.1b-20b": {
|
||||
"together-ai-8.1b-21b": {
|
||||
"max_tokens": 1000,
|
||||
"input_cost_per_token": 0.0000004,
|
||||
"output_cost_per_token": 0.0000004,
|
||||
"input_cost_per_token": 0.0000003,
|
||||
"output_cost_per_token": 0.0000003,
|
||||
"litellm_provider": "together_ai"
|
||||
},
|
||||
"together-ai-20.1b-40b": {
|
||||
"together-ai-21.1b-41b": {
|
||||
"input_cost_per_token": 0.0000008,
|
||||
"output_cost_per_token": 0.0000008,
|
||||
"litellm_provider": "together_ai"
|
||||
},
|
||||
"together-ai-40.1b-70b": {
|
||||
"together-ai-41.1b-80b": {
|
||||
"input_cost_per_token": 0.0000009,
|
||||
"output_cost_per_token": 0.0000009,
|
||||
"litellm_provider": "together_ai"
|
||||
},
|
||||
"together-ai-81.1b-110b": {
|
||||
"input_cost_per_token": 0.0000018,
|
||||
"output_cost_per_token": 0.0000018,
|
||||
"litellm_provider": "together_ai"
|
||||
},
|
||||
"together_ai/mistralai/Mixtral-8x7B-Instruct-v0.1": {
|
||||
"input_cost_per_token": 0.0000006,
|
||||
"output_cost_per_token": 0.0000006,
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
[tool.poetry]
|
||||
name = "litellm"
|
||||
version = "1.40.7"
|
||||
version = "1.40.8"
|
||||
description = "Library to easily interface with LLM API providers"
|
||||
authors = ["BerriAI"]
|
||||
license = "MIT"
|
||||
|
@ -84,7 +84,7 @@ requires = ["poetry-core", "wheel"]
|
|||
build-backend = "poetry.core.masonry.api"
|
||||
|
||||
[tool.commitizen]
|
||||
version = "1.40.7"
|
||||
version = "1.40.8"
|
||||
version_files = [
|
||||
"pyproject.toml:^version"
|
||||
]
|
||||
|
|
|
@ -1,3 +1,3 @@
|
|||
ignore = ["F405"]
|
||||
ignore = ["F405", "E402"]
|
||||
extend-select = ["E501"]
|
||||
line-length = 120
|
||||
|
|
|
@ -119,9 +119,24 @@ const ChatUI: React.FC<ChatUIProps> = ({
|
|||
|
||||
// Now, 'options' contains the list you wanted
|
||||
console.log(options); // You can log it to verify the list
|
||||
|
||||
// setModelInfo(options) should be inside the if block to avoid setting it when no data is available
|
||||
setModelInfo(options);
|
||||
|
||||
// if options.length > 0, only store unique values
|
||||
if (options.length > 0) {
|
||||
const uniqueModels = Array.from(new Set(options));
|
||||
|
||||
console.log("Unique models:", uniqueModels);
|
||||
|
||||
// sort uniqueModels alphabetically
|
||||
uniqueModels.sort((a: any, b: any) => a.label.localeCompare(b.label));
|
||||
|
||||
|
||||
console.log("Model info:", modelInfo);
|
||||
|
||||
// setModelInfo(options) should be inside the if block to avoid setting it when no data is available
|
||||
setModelInfo(uniqueModels);
|
||||
}
|
||||
|
||||
|
||||
setSelectedModel(fetchedAvailableModels.data[0].id);
|
||||
}
|
||||
} catch (error) {
|
||||
|
|
|
@ -1130,7 +1130,7 @@ const ModelDashboard: React.FC<ModelDashboardProps> = ({
|
|||
setSelectedAPIKey(key);
|
||||
}}
|
||||
>
|
||||
✨ {key["key_alias"]} (Enterpise only Feature)
|
||||
✨ {key["key_alias"]} (Enterprise only Feature)
|
||||
</SelectItem>
|
||||
);
|
||||
}
|
||||
|
@ -1165,7 +1165,7 @@ const ModelDashboard: React.FC<ModelDashboardProps> = ({
|
|||
setSelectedCustomer(user);
|
||||
}}
|
||||
>
|
||||
✨ {user} (Enterpise only Feature)
|
||||
✨ {user} (Enterprise only Feature)
|
||||
</SelectItem>
|
||||
);
|
||||
})
|
||||
|
|
|
@ -114,7 +114,7 @@ const Navbar: React.FC<NavbarProps> = ({
|
|||
textDecoration: "underline",
|
||||
}}
|
||||
>
|
||||
Get enterpise license
|
||||
Get enterprise license
|
||||
</a>
|
||||
</div>
|
||||
) : null}
|
||||
|
|
|
@ -832,7 +832,7 @@ const UsagePage: React.FC<UsagePageProps> = ({
|
|||
// @ts-ignore
|
||||
disabled={true}
|
||||
>
|
||||
✨ {tag} (Enterpise only Feature)
|
||||
✨ {tag} (Enterprise only Feature)
|
||||
</SelectItem>
|
||||
);
|
||||
})}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue